
Page 1

CS252/Patterson
Lec 18.14/4/01

CS252
Graduate Computer Architecture

Lecture 18:
 ILP and Dynamic Execution #3: Examples
(Pentium III, Pentium 4, IBM AS/400)

April 4, 2001
Prof. David A. Patterson
Computer Science 252

Spring 2001

CS252/Patterson
Lec 18.24/4/01

Review: Dynamic Branch Prediction
• Prediction becoming important part of scalar

execution
• Branch History Table: 2 bits for loop accuracy
• Correlation: Recently executed branches correlated

with next branch.
– Either different branches
– Or different executions of same branches

• Tournament Predictor: more resources to
competitive solutions and pick between them

• Branch Target Buffer: include branch address &
prediction

• Predicated Execution can reduce number of
branches, number of mispredicted branches

• Return address stack for prediction of indirect
jump

CS252/Patterson
Lec 18.34/4/01

Review: Limits of ILP

• 1985-2000: 1000X performance
– Moore’s Law transistors/chip => Moore’s Law for Performance/MPU

• Hennessy: industry been following a roadmap of ideas
known in 1985 to exploit Instruction Level Parallelism
to get 1.55X/year

– Caches, Pipelining, Superscalar, Branch Prediction, Out-of-order
execution, …

• ILP limits: To make performance progress in future
need to have explicit parallelism from programmer vs.
implicit parallelism of ILP exploited by compiler, HW?

– Otherwise drop to old rate of 1.3X per year?
– Less because of processor-memory performance gap?

• Impact on you: if you care about performance,
better think about explicitly parallel algorithms
vs. rely on ILP?

CS252/Patterson
Lec 18.44/4/01

Dynamic Scheduling in P6
(Pentium Pro, II, III)

• Q: How pipeline 1 to 17 byte 80x86 instructions?
• P6 doesn’t pipeline 80x86 instructions
• P6 decode unit translates the Intel instructions into 72-bit
micro-operations (~ MIPS)
• Sends micro-operations to reorder buffer & reservation
stations
• Many instructions translate to 1 to 4 micro-operations
• Complex 80x86 instructions are executed by a conventional
microprogram (8K x 72 bits) that issues long sequences of micro-
operations
• 14 clocks in total pipeline (~ 3 state machines)

CS252/Patterson
Lec 18.54/4/01

Dynamic Scheduling in P6

Parameter 80x86 microops
Max. instructions issued/clock 3 6
Max. instr. complete exec./clock 5
Max. instr. commited/clock 3
Window (Instrs in reorder buffer) 40
Number of reservations stations 20
Number of rename registers 40
No. integer functional units (FUs) 2
No. floating point FUs 1
No. SIMD Fl. Pt. FUs 1
No. memory Fus 1 load + 1 store

CS252/Patterson
Lec 18.64/4/01

P6 Pipeline
• 14 clocks in total (~3 state machines)
• 8 stages are used for in-order instruction

fetch, decode, and issue
– Takes 1 clock cycle to determine length of 80x86 instructions +

2 more to create the micro-operations (uops)

• 3 stages are used for out-of-order execution
in one of 5 separate functional units

• 3 stages are used for instruction commit

Instr
Fetch
16B
/clk

Instr
Decode
3 Instr

/clk

Renaming
3 uops
/clk

Execu-
tion
units
(5)

Gradu-
ation

3 uops
/clk

16B 6 uops
Reserv.
Station

Reorder
Buffer

Page 2

CS252/Patterson
Lec 18.74/4/01

• IP = PC

P6 Block Diagram

From: http://www.digit-
life.com/articles/pentium4/

CS252/Patterson
Lec 18.84/4/01

Pentium III Die Photo
• EBL/BBL - Bus logic, Front, Back
• MOB - Memory Order Buffer
• Packed FPU - MMX Fl. Pt. (SSE)
• IEU - Integer Execution Unit
• FAU - Fl. Pt. Arithmetic Unit
• MIU - Memory Interface Unit
• DCU - Data Cache Unit
• PMH - Page Miss Handler
• DTLB - Data TLB
• BAC - Branch Address Calculator
• RAT - Register Alias Table
• SIMD - Packed Fl. Pt.
• RS - Reservation Station
• BTB - Branch Target Buffer
• IFU - Instruction Fetch Unit (+I$)
• ID - Instruction Decode
• ROB - Reorder Buffer
• MS - Micro-instruction Sequencer

1st Pentium III, Katmai: 9.5 M transistors, 12.3 *
10.4 mm in 0.25-mi. with 5 layers of aluminum

CS252/Patterson
Lec 18.94/4/01

P6 Performance: Stalls at decode stage
I$ misses or lack of RS/Reorder buf. entry

0 0.5 1 1.5 2 2.5 3

wave5

fpppp

apsi

turb3d

applu

mgrid

hydro2d

su2cor

swim

tomcatv

vortex

perl

ijpeg

li

compress

gcc

m88ksim

go

0.5 to 2.5 Stall cycles per instruction: 0.98 avg. (0.36 integer)

Instruction stream Resource capacity stalls

CS252/Patterson
Lec 18.104/4/01

P6 Performance: uops/x86 instr
200 MHz, 8KI$/8KD$/256KL2$, 66 MHz bus

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7

wave5

fpppp

apsi

turb3d

applu

mgrid

hydro2d

su2cor

swim

tomcatv

vortex

perl

ijpeg

li

compress

gcc

m88ksim

go

1.2 to 1.6 uops per IA-32 instruction: 1.36 avg. (1.37 integer)

CS252/Patterson
Lec 18.114/4/01

P6 Performance: Branch Mispredict Rate

0% 5% 10% 15% 20% 25% 30% 35% 40% 45%

wave5

fpppp

apsi

turb3d

applu

mgrid

hydro2d

su2cor

swim

tomcatv

vortex

perl

ijpeg

li

compress

gcc

m88ksim

go

10% to 40% Miss/Mispredict ratio: 20% avg. (29% integer)

BTB miss frequency
Mispredict frequency

CS252/Patterson
Lec 18.124/4/01

P6 Performance: Speculation rate
(% instructions issued that do not commit)

0% 10% 20% 30% 40% 50% 60%

wave5

fpppp

apsi

turb3d

applu

mgrid

hydro2d

su2cor

swim

tomcatv

vortex

perl

ijpeg

li

compress

gcc

m88ksim

go

1% to 60% instructions do not commit: 20% avg (30% integer)

Page 3

CS252/Patterson
Lec 18.134/4/01

P6 Performance: Cache Misses/1k instr

0 20 40 60 80 100 120 140 160

wave5

fpppp

apsi

turb3d

applu

mgrid

hydro2d

su2cor

swim

tomcatv

vortex

perl

ijpeg

li

compress

gcc

m88ksim

go

10 to 160 Misses per Thousand Instructions: 49 avg (30 integer)

L1 Instruction

L1 Data

L2

CS252/Patterson
Lec 18.144/4/01

P6 Performance: uops commit/clock

Average
0: 55%
1: 13%
2: 8%
3: 23%

Integer
0: 40%
1: 21%
2: 12%
3: 27%

0% 20% 40% 60% 80% 100%

wave5

fpppp

apsi

turb3d

applu

mgrid

hydro2d

su2cor

swim

tomcatv

vortex

perl

ijpeg

li

compress

gcc

m88ksim

go

0 uops commit

1 uop commits

2 uops commit

3 uops commit

CS252/Patterson
Lec 18.154/4/01

P6 Dynamic Benefit?
Sum of parts CPI vs. Actual CPI

Ratio of
sum of

parts vs.
actual CPI:
1.38X avg.

(1.29X
integer)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

wave5

fpppp

apsi

turb3d

applu

mgrid

hydro2d

su2cor

swim

tomcatv

vortex

perl

ijpeg

li

compress

gcc

m88ksim

go

0.8 to 3.8 Clock cycles per instruction: 1.68 avg (1.16 integer)

uops
Instruction cache stalls
Resource capacity stalls
Branch mispredict penalty
Data Cache Stalls

Actual CPI

CS252/Patterson
Lec 18.164/4/01

Administratrivia

• 3rd (last) Homework on Ch 3 due Saturday
• 3rd project meetings 4/11
• Quiz #2 4/18 310 Soda at 5:30

CS252/Patterson
Lec 18.174/4/01

AMD Althon
• Similar to P6 microarchitecture

(Pentium III), but more resources
• Transistors: PIII 24M v. Althon 37M
• Die Size: 106 mm2 v. 117 mm2

• Power: 30W v. 76W
• Cache: 16K/16K/256K v. 64K/64K/256K
• Window size: 40 vs. 72 uops
• Rename registers: 40 v. 36 int +36 Fl. Pt.
• BTB: 512 x 2 v. 4096 x 2
• Pipeline: 10-12 stages v. 9-11 stages
• Clock rate: 1.0 GHz v. 1.2 GHz
• Memory bandwidth: 1.06 GB/s v. 2.12 GB/s

CS252/Patterson
Lec 18.184/4/01

Pentium 4
• Still translate from 80x86 to micro-ops
• P4 has better branch predictor, more FUs
• Instruction Cache holds micro-operations vs. 80x86

instructions
– no decode stages of 80x86 on cache hit
– called “trace cache” (TC)

• Faster memory bus: 400 MHz v. 133 MHz
• Caches

– Pentium III: L1I 16KB, L1D 16KB, L2 256 KB
– Pentium 4: L1I 12K uops, L1D 8 KB, L2 256 KB
– Block size: PIII 32B v. P4 128B; 128 v. 256 bits/clock

• Clock rates:
– Pentium III 1 GHz v. Pentium IV 1.5 GHz
– 14 stage pipeline vs. 24 stage pipeline

Page 4

CS252/Patterson
Lec 18.194/4/01

Pentium 4 features
• Multimedia instructions 128 bits wide vs. 64 bits

wide => 144 new instructions
– When used by programs??
– Faster Floating Point: execute 2 64-bit Fl. Pt. Per clock
– Memory FU: 1 128-bit load, 1 128-store /clock to MMX regs

• Using RAMBUS DRAM
– Bandwidth faster, latency same as SDRAM
– Cost 2X-3X vs. SDRAM

• ALUs operate at 2X clock rate for many ops
• Pipeline doesn’t stall at this clock rate: uops replay
• Rename registers: 40 vs. 128; Window: 40 v. 126
• BTB: 512 vs. 4096 entries (Intel: 1/3 improvement)

CS252/Patterson
Lec 18.204/4/01

Pentium, Pentium Pro, Pentium 4 Pipeline

• Pentium (P5) = 5 stages
Pentium Pro, II, III (P6) = 10 stages (1 cycle ex)
Pentium 4 (NetBurst) = 20 stages (no decode)

From “Pentium 4 (Partially) Previewed,” Microprocessor Report, 8/28/00

CS252/Patterson
Lec 18.214/4/01

Block Diagram of Pentium 4 Microarchitecture

• BTB = Branch Target Buffer (branch predictor)
• I-TLB = Instruction TLB, Trace Cache = Instruction cache
• RF = Register File; AGU = Address Generation Unit
• "Double pumped ALU" means ALU clock rate 2X => 2X ALU F.U.s
From “Pentium 4 (Partially) Previewed,” Microprocessor Report, 8/28/00

CS252/Patterson
Lec 18.224/4/01

Pentium 4 Die Photo

• 42M Xtors
– PIII: 26M

• 217 mm2

– PIII: 106 mm2

• L1 Execution
Cache

– Buffer 12,000
Micro-Ops

• 8KB data
cache

• 256KB L2$

CS252/Patterson
Lec 18.234/4/01

Benchmarks: Pentium 4 v. PIII v. Althon
• SPECbase2000

– Int, P4@1.5 GHz: 524, PIII�@1GHz: 454, AMD Althon@1.2Ghz:?
– FP, P4@1.5 GHz: 549, PIII�@1GHz: 329, AMD

Althon@1.2Ghz:304

• WorldBench 2000 benchmark (business) PC World
magazine, Nov. 20, 2000 (bigger is better)

– P4 : 164, PIII : 167, AMD Althon: 180

• Quake 3 Arena: P4 172, Althon 151
• SYSmark 2000 composite: P4 209, Althon 221
• Office productivity: P4 197, Althon 209
• S.F. Chronicle 11/20/00: "… the challenge for AMD

now will be to argue that frequency is not the most
important thing-- precisely the position Intel has
argued while its Pentium III lagged behind the Athlon
in clock speed."

CS252/Patterson
Lec 18.244/4/01

Why?

• Instruction count is the same for x86
• Clock rates: P4 > Althon > PIII
• How can P4 be slower?
• Time =

Instruction count x CPI x 1/Clock rate
• Average Clocks Per Instruction (CPI) of P4 must

be worse than Althon, PIII
• Will CPI ever get < 1.0 for real programs?

Page 5

CS252/Patterson
Lec 18.254/4/01

Another Approach: Mulithreaded
Execution for Servers

• Thread: process with own instructions and data
– thread may be a process part of a parallel program of

multiple processes, or it may be an independent program
– Each thread has all the state (instructions, data, PC,

register state, and so on) necessary to allow it to execute

• Multithreading: multiple threads to share the
functional units of 1 processor via overlapping

– processor must duplicate indepedent state of each thread
e.g., a separate copy of register file and a separate PC

– memory shared through the virtual memory mechanisms

• Threads execute overlapped, often interleaved
– When a thread is stalled, perhaps for a cache miss, another

thread can be executed, improving throughput

CS252/Patterson
Lec 18.264/4/01

Multithreaded Example: IBM AS/400
• IBM Power III processor, “ Pulsar”

– PowerPC microprocessor that supports 2 IBM product
lines: the RS/6000 series and the AS/400 series

– Both aimed at commercial servers and focus on
throughput in common commercial applications

– such applications encounter high cache and TLB miss
rates and thus degraded CPI

• include a multithreading capability to enhance
throughput and make use of the processor
during long TLB or cache-miss stall

• Pulsar supports 2 threads: little clock rate,
silicon impact

• Thread switched only on long latency stall

CS252/Patterson
Lec 18.274/4/01

Multithreaded Example: IBM AS/400
• Pulsar: 2 copies of register files & PC
• < 10% impact on die size
• Added special register for max no. clock

cycles between thread switches:
– Avoid starvation of other thread

CS252/Patterson
Lec 18.284/4/01

Simultaneous Multithreading (SMT)
• Simultaneous multithreading (SMT): insight that

dynamically scheduled processor already has
many HW mechanisms to support multithreading

– large set of virtual registers that can be used to hold the
register sets of independent threads (assuming separate
renaming tables are kept for each thread)

– out-of-order completion allows the threads to execute out
of order, and get better utilization of the HW

Source: Micrprocessor Report, December 6, 1999
 “Compaq Chooses SMT for Alpha”

CS252/Patterson
Lec 18.294/4/01

SMT is coming
• Just adding a per thread renaming table and

keeping separate PCs
– Independent commitment can be supported by logically

keeping a separate reorder buffer for each thread

• Compaq has announced it for future Alpha
microprocessor: 21464 in 2003; others likely

On a multiprogramming workload
comprising a mixture of SPECint95
and SPECfp95 benchmarks, Compaq
claims the SMT it simulated
achieves a 2.25X higher throughput
with 4 simultaneous threads than
with just 1 thread. For parallel
programs, 4 threads 1.75X v. 1

Source: Micrprocessor Report, December 6, 1999
 “Compaq Chooses SMT for Alpha”

