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Review #1: Hardware versus
Software Speculation Mechanisms

• To speculate extensively, must be able to
disambiguate memory references

– Much easier in HW than in SW for code with pointers

• HW-based speculation works better when control
flow is unpredictable, and when HW-based
branch prediction is superior to SW-based
branch prediction done at compile time

– Mispredictions mean wasted speculation

• HW-based speculation maintains precise
exception model even for speculated instructions

• HW-based speculation does not require
compensation or bookkeeping code
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Review #2: Hardware versus Software
Speculation Mechanisms cont’d

• Compiler-based approaches may benefit from the
ability to see further in the code sequence,
resulting in better code scheduling

• HW-based speculation with dynamic scheduling
does not require different code sequences to
achieve good performance for different
implementations of an architecture

– may be the most important in the long run?
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Review #3: Software Scheduling

• Instruction Level Parallelism (ILP) found either by
compiler or hardware.

• Loop level parallelism is easiest to see
– SW dependencies/compiler sophistication determine if compiler can

unroll loops
– Memory dependencies hardest to determine => Memory disambiguation
– Very sophisticated transformations available

• Trace Sceduling to Parallelize If statements
• Superscalar and VLIW: CPI < 1 (IPC > 1)

– Dynamic issue vs. Static issue
– More instructions issue at same time => larger hazard penalty
– Limitation is often number of instructions that you can successfully

fetch and decode per cycle
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VLIW in Embedded Designs

• VLIW: greater parallelism under
programmer, compiler control vs. hardware
in superscalar

• Used in DSPs, Multimedia processors as well
as IA-64

• What about code size?
• Effectiveness, Quality of compilers for

these applications?
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Example VLIW for multimedia:
Philips Trimedia CPU

• Every instruction contains 5 operations
• Predicated with single register value;

if 0 => all 5 operations are canceled
• 128 64-bit registers, which contain either

integer or floating point data
• Partitioned ALU (SIMD) instructions to

compute on multiple instances of narrow data
• Offers both saturating arithmetic (DSPs) and

2’s complement arithmetic (desktop)
• Delayed Branch with 3 branch slots
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Trimedia Operations
Operation
Category

Examples No.
Ops

Comment

Load/store
ops

ld8, ld16, ld32, ld64,limm. st8,
st16, st32, st64

39 SIMD, signed, unsigned,
register indirect, indexed,
scaled addressing

Byte
shuffles

shift right 1-, 2- , 3-bytes, select
byte, merge, pack

67  SIMD type convert

Bit shifts asl, asr, lsl, lsr, rol, 48  round, fields, SIMD

Multiplies mul, sum of products, sum-of-
SIMD-elements

54  round, saturate, 2’s
comp, SIMD

Integer
arithmetic

add, sub, min, max, abs, average,
bitand, bito r, bitxor, bitinv ,
bitandinv, eql, neq, gtr, geq, les,
leq, sign extend, zero extend,
sum of absolute differences

104 saturate, 2’s comp,
unsigned, immediate,
SIMD

Floating
point

add, sub, neg, mul, div, sqrt eql,
neq, gtr, geq, les, leq, IEEE flags

59  scalar and SIMD

Lookup
table

SIMD gather load using registers
as addresses

6  SIMD

Special ops alloc, prefetch block, invalidate
block, copy block back, read tag
read, cache status, read counter

23  MMU, cache, special
regs

Branch jmpt, jmpf 10  (un)interruptible, trap

Total 410

• large number of
ops because used
retargetable
compilers,
multiple machine
descriptions, and
die size
estimators to
explore the
space to find the
best cost-
performance
design

– Verification time,
manufacturing
test, design time?
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Trimedia Functional Units, Latency,
Instruction Slots

F.U. Latency Operation Slot Typical operations performed
by functional unit

1 2 3 4 5

ALU 0 X X X X X Integer add/subtract/compare,
logicals

DMem 2 X X Loads and stores

DMemSp
ec

2 X Cache invalidate, prefetch,
allocate

Shifter 0 X X Shifts and rotates

DSPALU 1 X X Simple DSP arithmetic ops

DSPMul 2 X X DSP ops with multiplication

Branch 3 X X X Branches and jumps

FALU 2 X X FP add, subtract

IFMul 2 X X Integer and FP multiply

FComp 0 X FP compare

FTough 16 X FP divide, square root

• 23 functional
units of 11
types,

• which of 5 slots
can issue (and
hence number
of functional
units)
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Philips Trimedia CPU

• Compiler responsible for including no-ops
– both within an instruction-- when an operation field

cannot be used--and between dependent instructions
– processor does not detect hazards, which if present

will lead to incorrect execution

• Code size? compresses the code (~ Quiz #1)
– decompresses after fetched from instruction cache
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Example

• Using MIPS notation, look at code for
void sum (int a[], int b[], int c[],
int n)

{ int i;

for (i=0; i<n; i++)

c[i] = a[i]+b[i];
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Example
• MIPS code for loop
Loop: LD R11,R0(R4) # R11 = a[i]

LD R12,R0(R5) # R12 = b[i]

DADDU R17,R11,R12 # R17 = a[i]+b[i]

SD R17,0(R6) # c[i] = a[i]+b[i]

DADDIU R4,R4,8 # R4 = next a[] addr

DADDIU R5,R5,8 # R5 = next b[] addr

DADDIU R6,R6,8 # R6 = next c[] addr

BNE R4,R7,Loop # if not last go to
Loop

• Then unroll 4 times and schedule
CS252/Patterson
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Tridmedia Version
Slot 1 Slot 2 Slot 3 Slot 4 Slot 5

LD R11,0(R4) LD R12,R0(R5)

DADDUI R25,R6,32 LD R14,8(R4) LD R15,8(R5)

SETEQ R25,R25,R7 LD R19,16(R4) LD R20,16(R5)

DADDU R17,R11,R12 DADDIU R4,R4,32 LD R22,24(R4) LD R23,24(R5)

DADDU R18,R14,R15 JMPF R25,R30 SD R17, 0(R6)

DADDU R21,R19,R20 DADDIU R5,R5,32 SD R18, 8(R6)

DADDU R24,R22,R23 SD R21,16(R6)

DADDIU R6,R6,32 SD R24, 24(R6)

• Loop address in register 30
• Conditional jump (JMPF) so that only jump is conditional, not whole

instruction predicated
• DADDUI (1st slot, 2nd instr) and SETEQ (1st slot, 3rd instr) compute loop

termination test
– Duplicate last add early enough to schedule 3 instruction branch delay

• 24/40 slots used (60%) in this example
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Clock cycles to execute 2D iDCT

• Note that the Trimedia results are based on compilation, unlike many of the others.
The year 2000 clock rate of the CPU64 is 300 MHz . The 1999 clock rates of the
others are about 400 MHz for the PowerPC, PA-8000, and Pentium II, with the TM-
1000 at 100 MHz and the TI 320620x at 200 MHz.
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Administratrivia

• 3rd project meetings 4/11: good progress!
– Meet with some on Friday

• 4/18 Wed Quiz #2 310 Soda at 5:30
• Pizza at La Val’s at 8:30
• What’s left:

– 4/20 Fri, “How to Have a Bad Academic Career”
(Career/Talk Advice); signup for talks

– 4/25 Wed, Oral Presentations (8AM to 2 PM) 611 Soda (no
lecture)

– 4/27 Fri (no lecture)
– 5/2 Wed Poster session (noon - 2); end of course
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Transmeta Crusoe MPU

• 80x86 instruction set compatibility through
a software system that translates from the
x86 instruction set to VLIW instruction set
implemented by Crusoe

• VLIW processor designed for the low-power
marketplace
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Lec 20.164/13/01

 Crusoe processor: Basics

• VLIW with in-order execution
• 64 Integer registers
• 32 floating point registers
• Simple in-order, 6-stage integer pipeline:

2 fetch stages, 1 decode, 1 register read,
1 execution, and 1 register write-back

• 10-stage pipeline for floating point, which has 4
extra execute stages

• Instructions in 2 sizes: 64 bits (2 ops) and 128
bits (4 ops)
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 Crusoe processor: Operations

• 5 different types of operation slots:
• ALU operations: typical RISC ALU operations
• Compute: this slot may specify any integer ALU

operation (2 integer ALUs), a floating point
operation, or a multimedia operation

• Memory: a load or store operation
• Branch: a branch instruction
• Immediate: a 32-bit immediate used by another

operation in this instruction
• For 128-bit instr: 1st 3 are Memory, Compute,

ALU; last field either Branch or Immediate
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80x86 Compatability
• Initially, and for lowest latency to start

execution, the x86 code can be interpreted on
an instruction by instruction basis

• If a code segment is executed several times,
translated into an equivalent Crusoe code
sequence, and the translation is cached

– The unit of translation is at least a basic block, since we
know that if any instruction is executed in the block, they
will all be executed

– Translating an entire block both improves the translated
code quality and reduces the translation overhead, since
the translator need only be called once per basic block

• Assumes 16MB of main memory for cache
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Exception Behavior during Speculation

• Crusoe support for speculative reordering consists
of 4 major parts:

1. shadowed register file
– Shadow discarded only when x86 instruction has no exception

2. program-controlled store buffer
– Only store when no exception; keep until OK to store

3. memory alias detection hardware with
speculative loads

4. conditional move instruction (called select) that
is used to do if-conversion on x86 code
sequences
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Crusoe Performance?

• Crusoe depends on realistic behavior to tune the
code translation process, it will not perform in a
predictive manner when benchmarked using simple,
but unrealistic scripts

– Needs idle time to translate
– Profiling to find hot spots

• To remedy this factor, Transmeta has proposed a
new set of benchmark scripts

– Unfortunately, these scripts have not been released and
endorsed by either a group of vendors or an independent entity
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Real Time, so comparison is Energy

Workload
description

Energy consumption
for the workload
(W/Hr.)

Relative
consumption
TM 3200 /
Mobile
Pentium III

Mobile
Pentium III
@ 500 MHz

TM 3200
@400MHz
1.5V

MP3
playback

0.672 0.214 0.32

DVD
playback

1.13 0.479 0.42
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Crusoe Applications?

• Notebook: Sony, others
• Compact Servers: RLX technologies
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VLIW Readings

• Josh Fisher 1983 Paper + 1998 Retrospective
• What are characteristics of VLIW?
• Is ELI-512 the first VLIW?

– How many bits in instruction of ELI-512?

• What is breakthrough?
• What expected speedup over RISC?
• What is wrong with vector?
• What benchmark results on code size,

speedup?
• What limited speedups to 5X to 10X?
• What other problems faced ELI-512?
• In retrospect, what wished changed?
• In retrospect, what naïve about? CS252/Patterson
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Review of Course

• Review and Goodbye to Computer Architecture,
topic by topic + follow-on courses

• Future Directions for Computer Architecture?
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Chapter 1: Performance and Cost
• Amdahl’s Law:

• CPI Law:

• Designing to  Last  through Trends
Capacity Speed

Logic 2x  in  3 years 2x  in   3 years

DRAM 4x  in  4 years 2x  in 10 years

Disk 4x  in  3 years 2x  in   5 years

    Processor 2x every 1.5 years?

Speedupoverall   =
ExTimeold

ExTimenew

=

1

(1 - Fractionenhanced) +  Fractionenhanced

Speedupenhanced

CPU time =  Seconds    =   Instructions  x    Cycles     x   Seconds

    Program     Program          Instruction       Cycle

CPU time =  Seconds    =   Instructions  x    Cycles     x   Seconds

    Program     Program          Instruction       Cycle
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Chapter 1: Performance and Cost
• Die Cost  goes roughly

with die area4

– Microprocessor with 1B
transistors in 2005?

• Cost vs. Price
– Can PC industry support engineering/research investment?

• For better or worse, benchmarks shape a field
• Interested in learning more on integrated circuits?

EE 241 “Advanced Digital Integrated Circuits”
• Interested in learning more on performance?

CS 266 “Introduction to Systems Performance”
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Goodbye to
Performance and Cost

• Will sustain 2X every 1.5 years?
– Can integrated circuits improve below 1.8 micron in speed

as well as capacity?

• 5-6 yrs to PhD =>
16X CPU speed ,  10XDRAM Capac i ty ,  25X  D isk
capacity?
(10  GHz  CPU,  1GB DRAM,  2TB d isk?)
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Chapter 5: Memory Hierarchy

• Processor-DRAM Performance gap
• 1/3 to 2/3 die area for caches, TLB
• Alpha 21264: 108 clock to memory

⇒ 648 instruction issues during miss
• 3 Cs: Compulsory, Capacity, Conflict
• 4 Questions: where, who, which, write
• Applied recursively to create multilevel caches
• Performance = f(hit time, miss rate, miss penalty)

– danger of concentrating on just one when evaluating performance

MPU
60%/yr.

DRAM
7%/yr.
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Cache Optimization Summary

Technique MR MP HT Complexity
Larger Block Size + – 0
Higher Associativity + – 1
Victim Caches + 2
Pseudo-Associative Caches + 2
HW Prefetching of Instr/Data + 2
Compiler Controlled Prefetching + 3
Compiler Reduce Misses + 0
Priority to Read Misses + 1
Subblock Placement + + 1
Early Restart & Critical Word 1st + 2
Non-Blocking Caches + 3
Second Level  Caches + 2
Small & Simple Caches – + 0
Avoiding Address Translation + 2
Pipelining Writes + 1
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CPUtime = IC × CPI
Execution

+
Memory accesses

Instruction
× Miss rate × Miss  penalty

 
 

 
 × Clock  cycle  time

memory hierarchy art: taste in selecting between alternatives 
to find combination that fits well together CS252/Patterson
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Goodbye to
 Memory Hierarchy

• Will L2 cache keep growing? (e.g, 64 MB L2 cache?)
• Will multilevel hierarchy get deeper? (L4 cache?)
• Will DRAM capacity/chip keep going at 4X / 4

years? (e.g., 16 Gbit chip?)
• Will processor and DRAM/Disk be unified?

For which apps?
• Out-of-order CPU hides L1 data cache miss

(3–5 clocks), but hide L2 miss? (>100 clocks)
• Memory hierarchy likely overriding issue in algorithm

performance: do algorithms and data structures of
1960s work with machines of 2000s?
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Chapter 6: Storage I/O
• Disk BW 40%/yr, areal density 60%/ yr, $/MB

faster?
• Little’s Law: Lengthsystem  = rate x Timesystem

(Mean number customers = arrival rate x mean service time)

– Througput vs. response time
– Value of faster response time on productivity

• Benchmarks: scaling, cost, auditing,
response time limits

• RAID: performance and reliability
• Queueing theory? IEOR 161, 267, 268
• SW storage systems? CS 286

“Implementation of Data Base Systems”

Proc IOC Device

Queue serverSystem

1

3

5
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Summary: I/O Benchmarks

• Scaling to track technological change
• TPC: price performance as nomalizing

configuration feature
• Auditing to ensure no foul play
• Throughput with restricted response time is

normal measure
• Benchmarks to measure Availability,

Maintainability?
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Goodbye to
 Storage I/O

• Disks attached directly to networks, avoiding the
file server? (“Network Attached Storage Devices”)

• Disks:
– Extraodinary advance in capacity/drive, $/GB
– Currently 17 Gbit/sq. in. ; can continue past 100 Gbit/sq. in.?
– Bandwidth, seek time not keeping up: 3.5 inch form factor makes

sense? 2.5 inch form factor in near future? 1.0 inch form factor
in long term?

• Tapes
– No investment, must be backwards compatible
– Are they already dead?
– What is a tapeless backup system?
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Goodbye to
 Storage I/O

• Terminology of Fault/Error/Failure
• Is Availability the killer metric for Service oriented

world?
• Can we construct systems that will actually achieve

99.999% availability, including software and people?
• Disks growing at 2X/ 1 years recently:

Will Patterson continue get email messages to reduce
file storage for the rest of my career?

• Heading towards a personal terabyte:
hierarchical file systems vs. database to organize
personal storage?

• What going to do when can have video record of
entire life on line?
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Chapter 7: Networks
Sender

Receiver

Sender
Overhead

Transmission time
(size ÷ bandwidth)

Transmission time
(size ÷ bandwidth)

Time of
Flight

Receiver
Overhead

Transport Latency

Total Latency = Sender Overhead + Time of Flight +
                           Message Size ÷ BW + Receiver Overhead

Total Latency

(processor
busy)

(processor
busy)

High BW networks + high overheads violate of Amdahl’s Law
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Chapter 7: Networks

• Similarities of SANs, LANs, WANs
• Integrated circuit revolutionizing networks as well as

processors
• Switch is a specialized computer
• Protocols allow hetereogeneous networking ,

handle normal and abnormal events
• Interested in learning more on networks?

EE 122 “Introduction to Computer Networks” (Stoika)
CS 268 “Computer Networks” (Stoika)
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Review: Networking
• Clusters +: fault isolation and repair, scaling,

cost
• Clusters -: maintenance, network interface

performance, memory efficiency
• Google as cluster example:

– scaling (6000 PCs, 1 petabyte storage)
– fault isolation (2 failures per day yet available)
– repair (replace failures weekly/repair offline)
– Maintenance: 8 people for 6000 PCs

• Cell phone as portable network device
– # Handsets >> # PCs
– Univerisal mobile interface?

• Is future services built on Google-like clusters
delivered to gadgets like cell phone handset?
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Goodbye to
 Networks

• Will network interfaces follow example of graphics
interfaces and become first class citizens in
microprocessors, thereby avoiding the I/O bus?

• Will Ethernet standard keep winning the LAN wars?
e.g., 1 Gbit/sec, 10 Gbit/sec, wireless (802.11B)...
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Chapter 8: Multiprocessors

• Layers:
– Programming Model:

» Multiprogramming : lots of jobs, no communication
» Shared address space: communicate via memory
» Message passing: send and recieve messages
» Data Parallel: several agents operate on several data sets

simultaneously and then exchange information globally and
simultaneously (shared or message passing)

– Communication Abstraction:
» Shared address space: e.g., load, store, atomic swap
» Message passing: e.g., send, recieve library calls
» Debate over this topic (ease of programming, scaling)

=> many hardware designs 1:1 programming model
• Interested in learning more on multiprocessors:

CS 258 “Parallel Computer Architecture”
• E 267 “Programming Parallel Computers”

Programming Model
Communication Abstraction
Interconnection SW/OS 
Interconnection HW
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Goodbye to
 Multiprocessors

• Successful today for file servers, time sharing,
databases, graphics; will parallel programming
become standard for production programs?
If so, what enabled it: new programming languauges,
new data structures, new hardware, new coures, ...?

• Which won large scale number crunching, databases:
Clusters of independent computers connected via
switched LAN vs. large shared NUMA machines?
Why?
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Chapter 2:
Instruction Set Architecture

• What ISA looks like to pipeline?
– Cray: load/store machine; registers; simple instr. format

• RISC: Making an ISA that supports pipelined
execution

• 80x86: importance of being their first
• VLIW/EPIC: compiler controls Instruction Level

Parallelism (ILP)
• Interested in learning more on compilers and

ISA?
CS 264/5 “Advanced Programming Language
Design and Optimization”
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Goodbye to
 Instruction Set Architecture

• What did  IA-64/EPIC do well besides floating
point programs?

– Was the only difference the 64-bit address v. 32-bit address?
– What happened to the AMD 64-bit address 80x86 proposal?

• What happened on EPIC code size vs. x86?
• Did Intel Oregon increase x86 performance so as

to make Intel Santa Clara EPIC performance
similar?
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Goodbye to Dynamic Execution
• Did Transmeta-like compiler-oriented translation

survive vs. hardware translation into more efficient
internal instruction set?

• Did ILP limits really restrict practical machines to
4-issue, 4-commit?

• Did we ever really get CPI below 1.0?
• Did value prediction become practical?
• Branch prediction: How accurate did it become?

– For real programs, how much better than 2 bit table?

• Did Simultaneous Multithreading (SMT) exploit
underutilized Dynamic Execution HW to get higher
throughput at low extra cost?

– For multiprogrammed workload (servers) or for parallelized single
program? CS252/Patterson
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Goodbye to Static, Embedded

• Did VLIW become popular in embedded?
What happened on code size?

• Did vector become popular for media
applications, or simply evolve SIMD?

• Did DSP and general purpose
microprocessors remain separate cultures,
or did ISAs and cultures merge?

– Compiler oriented?
– Benchmark oriented?
– Library oriented?
– Saturation + 2’s complement
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Goodbye to Computer Architecture

• Did emphasis switch from cost-performance
to cost-performance-availability?

• What support for improving software
reliability? Security?
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Goodbye to Computer Architecture

• 1985-2000: 1000X performance
– Moore’s Law transistors/chip => Moore’s Law for Performance/MPU

• Hennessy: industry been following a roadmap of ideas
known in 1985 to exploit Instruction Level Parallelism
to get 1.55X/year

– Caches, Pipelining, Superscalar, Branch Prediction, Out-of-order
execution, …

• ILP limits: To make performance progress in future
need to have explicit parallelism from programmer vs.
implicit parallelism of ILP exploited by compiler, HW?

• Did Moore’s Law in transistors stop predicting
microprocessor performance? Did it drop to old rate
of 1.3X per year?

– Less because of processor-memory performance gap?


