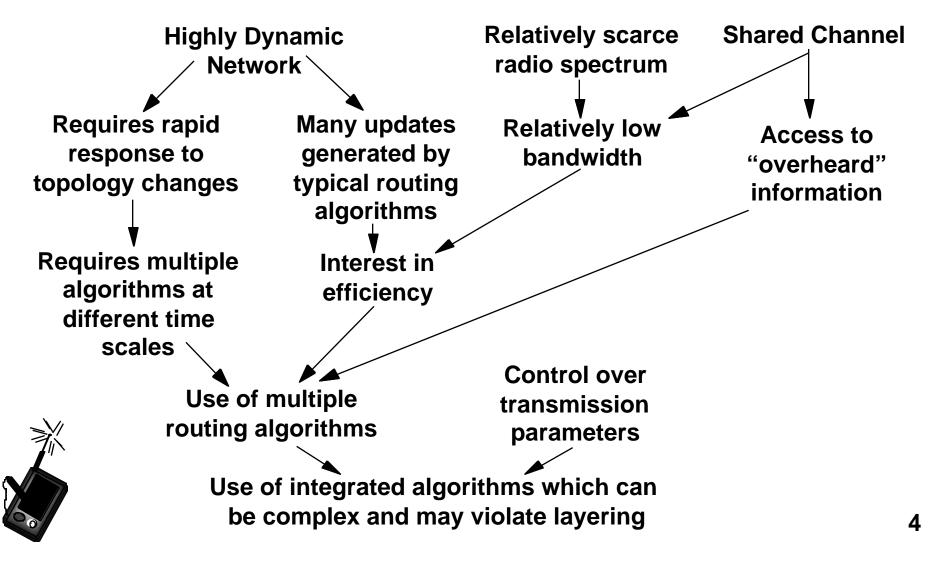
CS 294-7: Introduction to Packet Radio Networks

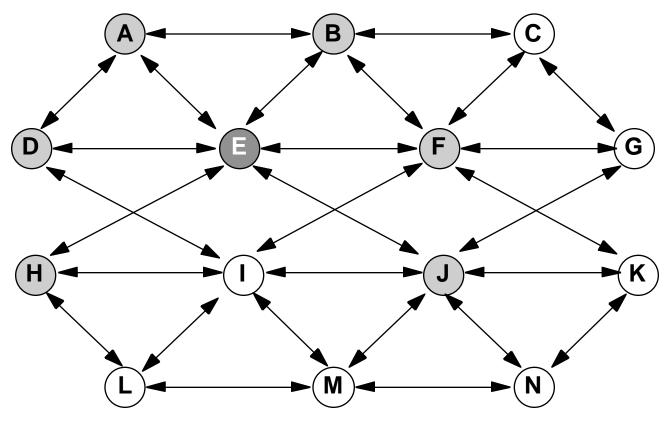
Professor Randy H. Katz CS Division University of California, Berkeley Berkeley, CA 94720-1776 © 1996

Packet Radio Networks

- Fixed or mobile nodes that communicate via radios
 - Advantages:
 - » Fast (re)deployment and set-up of network
 - » Ability to support mobile nodes
 - Disadvantage: complications due to
 - » Communications medium
 - » Dynamic nature of the network topology
 - » Half duplex operation
- Single hop vs. multi-hop
- Ad-hoc networks vs. fixed networks



Historical Perspective: ARPA Packet Radio Program


- Program initiated in 1973
 - Geographically distributed network
 - Array of packet radios and minicomputer-based "stations"
 - Deployed in SF Bay Area in 1975
 - Experimental packet radio (EPR)
 - » 100, 400 kbps (128/32 chips per bit respectively)
 - » Use lower data rate in worse multipath environments
 - » Operates in half duplex mode
 - Upgraded packet radio (UPR)
 - » Bit-by-bit PN variability in the waveform
 - » Agile spreading factors to improve LPI/LPJ
 - » Implemented FEC rather than ARQ
 - Low cost packet radio (LPR)
 - » Cost reduced version of UPR (1986)

Complexity Issues in Packet Radio Networks

Packet Radio Network Topology

e.g., E can hear transmissions from A, B, F, J, H

Links need not be bidirectional!

Physical/Link Layer

- Physical Connectivity
 - » Depends on RF propagation charactistics
 - Frequency choice
 - Distance between nodes (LOS vs. OTH)
 - Antenna height and directionality
 - Terrain type
 - Xmit power
 - Interference
- Bandwidth-Time-Space Management
 - » Frequency, time, code, & spatial reuse of bandwidth resources
- Channel Access (Narrowband Systems)
 - » Random Access (e.g., Aloha, CSMA schemes)
 - » Reserved Access (e.g., Reservation, Demand Assignment Schemes)

• Physical/Link Layer (cont.)

- Channel Access (Spread Spectrum Systems)
 - » Code division schemes
 - Common preamble for all transmitters AKA broadcast reception (space-homogeneous preamble code assignment)
 - Receiver-directed preamble code assignment directed towards a specific receiver
 - Similar choices for data portion of packet--once a receiver is locked on to a packet, other overlapping packets do not interfere with correct reception
 - Bit-by-bit code changing--reduces probability of intereference
 - Transmitter directed code assignment--preamble contains information on spreading waveform to be used used to encode the data
 - » Aloha random access versus CSMA schemes with this level of code division schemes

- Data Link Control
 - ARQ and FEC techniques needed due to variability in the link quality
 - Especially important with SS systems--possibility of correlated codes is high for at least part of the packet
 - Hop by hop acks in a multihop route
 - » Explicit short acks
 - Priority over data packets
 - » Echo/Passive acks
 - Forwarding on the message is interpreted as an ack to the preceeding sender
 - Delays introduced (forwarding packet placed at bottom of queue)
 - Long packets increase probability of interference
 - Can't be used in SS systems with received-directed codes

Network Management

- Link determination and control
 - » Centrally collected and redistributed
 - » Locally determined
 - » Use channel measurements:
 - Signal strength, SNR, BER
 - Integrate over packets sent across radio-to-radio links
 - OR simply track packet loss rates per link--delay in discovering loss of link quality?
 - » Balance link parameters (e.g., transmission bandwidth), hop-by-hop FEC/ARQ, end-to-end ARQ
 - » Partitioned networks

• Network Management (cont)

- Routing: choosing routes based on link connectivity
 - » Routing schemes:
 - Flooding methods--inefficient utilization, but simple and may be best strategy for rapidly changing network topologies
 - Point-to-Point Routing--sequence of links associated with src-dst pair AKA "connection-oriented" routing
 - Connectionless--no knowledge of connections, local adapative behavior to forward packet on "towards" destination. This is a good approach for dynamic networks.
 - » Spreading routing information
 - Centralized routing server
 - Distributed routing--each node determines routes on its own; Hop-by-hop decisions or specify full route at source; Exchange routing tables among neighbors
 - Hierarchical organizations: topology changes more rapidly within clusters than between clusters (centralized "station" within cluster)
- Packet forwarding
 - » Localized rerouting to fix broken routes: broadcast a packet to any node that can complete the route

Network Management Issues

- Congestion and flow control
 - » Virtual circuits and resource reservation with rapidly changing topologies
 - » Rate control of packet forwarding based on local congestion
- Mapping between end nodes and packet radios
 - » Must be able to detach and reattach modem to different end nodes

Operation and Management

- Network Deployment
 - » Coverage and capacity requirements
 - » Rapidity of deployment
 - » Software distribution
- Maintenance and Reliability
 - » Fault detection
 - » Redundancy of coverage
- Diagnostics and monitoring
 - » Remote/over the air capability

- Connecting to External World
 - Gateways
 - » Network vs. gateway-based routing
 - Network access control
 - » Control typically exercised at the periphery
 - » Complexity when users can attach to the network anywhere within the network
 - Addressing and naming
 - » Internet addressing versus more efficient subnet addressing
 - Security
 - » End-to-end encryption
 - » What about headers?

• Impact on Radio Spectrum

- Electromagnetic compatibility
- Electronic counter-countermeasures/noise immunity
 - » link-by-link power control to hide the network
 - » route around nodes being targeted by jammers

- Efficiency

- » number of users/bandwidth and or area
- » performance metrics
 - availability
 - delay
 - priority
 - throughput
 - coverage
 - mobility
 - accuracy

- Cost