Security and Privacy in Wireless Systems

Professor Randy H. Katz CS Division University of California, Berkeley Berkeley, CA 94720-1776 © 1996

Security Levels

- Level 0: No Privacy
- Level 1: Equivalent to Wireline
 - For routine conversations
 - Significant level of effort to "crack" conversation (e.g., 1 year)
- Level 2: Commercially Secure
 - For "proprietary" conversations
 - 10-25 years to crack
- Level 3: Government/Military Secure

Privacy Requirements

- Privacy of Call Setup Information
 - e.g., calling #, credit card #, type of service, etc.
- Privacy of Speech
- Privacy of Data
- Privacy of User Location
 - Radio link eavesdropping
 - Unauthorized access to VLR/HLR
- Privacy of User Identification
 - Encrypt user id to protect against analysis of user calling patterns
- Privacy of Calling Patterns
 - Protect against traffic analysis of user: calling number, use of the MH, caller ID, privacy of financial transactions

But law enforcement must be able to wire-tap

Theft Resistance

Clone Resistant Design

- Over the air eavesdropping
- Network databases
- Network interconnect
- Intersystem validation: enough to authenticate but not enough clone

Installation and Repair Fraud

- Multiple mobile hosts programmed with same ID
- Unique User ID
 - User unique security module (e.g., smart cards)
- Unique Mobile Station ID
 - Uniquely identify MS to avoid re-registrations with new users

Security and Privacy in Existing Wireless Systems

• MIN/ESN

- AMPS: 10 digit mobile ID, 32 bit equipment serial number
- All data sent in clear, systems share info on bad MIN/ESN

Shared Secret Data

TDMA/CDMA cellular: secret key shared between mobile station and system

• Security Triplets

- GSM: challenge/response pairs plus privacy key
- Home system generates 3-5 for visited system;
 One used per connection
- Public Key
 - PACS proposed as an option
 - Avoids need for communications with home system

MIN/ESN Authentication

- Phone is uniquely identified by 10 digit MIN and 32-bit serial number
 - Serial number is supposed to be in "tamper proof" hardware
 - In reality, it is stored in EEPROM--easily duplicated from sniffed MIN/ESN pairs
- At call set-up:
 - First check list of bad MIN/ESNs
 - If not found, authenticate with home system
 - Not all system support realtime authentication
- System has recently been extended to support user entered PIN

Shared Secret Data

- Common authentication key in mobile station and cellular network (64-bit key), in addition to ESN and 15 digit Intl Mobile Subscriber ID (IMSI)
- Registration
 - MS sends IMSI to system; VLR queries HLR; VLR assigns Temp MS ID (TMSI)
 - Latter step used to insure anonymity of user (control link)
- Authentication
 - System transmits RAND om control channel
 - MS encrypts using its key, system does same calculation
 - Airlink is encrypted with shared key
- Call Counter
 - MS and system keep running count of placed calls
 - Helps to defeat cloning based only on ESN/IMSI information

Shared Secret Data

- Registration Types
 - Distance-based: re-register when mobile has moved a threshold distance of cells
 - Geographic-based: re-register when entering new region
 - Parameter change: re-register when operating parameters change
 - Periodic: system forces a re-registration
 - Power down: (de)register when MS is turned off
 - Power up: register when MS is turned on
 - Timer-based: MS re-registers whenever a timer expires; allows system to drop registrations that "age"

Token-Based Authentication

- Does NOT require the sharing of secrets between local/home service providers
- Triplet: <RAND, Response, Encryption Key>
 - Computed in home authentication center (and MS)
 - Stored in visited VLR

• Registration process:

- MS sends registration request
- Network gets triplets from mobile's HAC (note that local service provider knows nothing about the algorithm to derive responses to challenges!)
- Network sends unique challenge
- MS calculates response, and replies to network
- If match, then MS is registered with local system
- No call counter, but subscriber identity module (SIM)

Public Key Authentication

- MS has private key and public key; network has private key and public key
 - Sender encrypts message with receiver's public key; receiver decrypts message with own private key
 - Sender can digitally sign a message by encrypting it with own private key; receiver uses sender's public key to decrypt
- MS knows system's public key; network must know public key of all MS's
 - Use public key scheme to exchange secret encryption key for connection security

- MIN/ESN
 - Very poor privacy/security support, easily cloned
- Shared Secret Key
 - Reasonable privacy/security support, but requires systems to exchange keys of visiting mobile stations
 - Since airlink is encrypted, may need to wiretap at the switch

Token-Based

- Like shared secret key, but does not require systems to share keys; algorithms used by MS and its home system need not be known by visited system
- Some potential problems if tokens are reused (because of latency to obtain new triplets)

Public Key

- Strong privacy/security: MS and network never reveal their private keys
- Complexity of encryption operations

