Stability Attributes of Network Availability

- Prevalence (Predictability)
 - o Will you see a route again? (Probability)
- Persistence (Manageability)
 - o Duration of how long a route is valid (Time)
- Prefix Availability
 - o Fraction of time it is reachable
- Prefix Steadiness
 - o Percentage of time continuously reachable
- Sensitivity metrics
 - o routers/topologies
 - o how prone is your h/w prone to traffic shifts
- Control plane + Data plane interactions
 - o not completely quantified

Presentation of Results

10% of prefixes available in less than 95 % of the time

Some flaky routes (low steadiness), something in between, some very stable routes (high steadiness)

MTTF \rightarrow in the order of 25 days

MTTR \rightarrow in the order of 20 minutes or less

Problem Taxonomy

Pathology

- Excess work
- Inconsistency
- Vast majority of pathological changes from small ISPs

Failures

- Routers, links
- Forwarding anomalies
 - o loops
 - o erroneous routing (RARE!)
 - o connectivity alteration
- Hot Potato Changes
 - Shifts in net traffic → packet losses (happens infrequently: big impact)
- Labovitz's taxonomy for failures
 - o Failure = path withdrawn and not replaced
 - o Repair = path restoration
 - o Fall-over = new path announcement
 - o Experimental study of 1999:

- o Top tree failure categories constitute almost 50% of failures:
- o Maintenance (16.2%)
- o Power Outage (16.0%)
- o Fiber Cut/Circuit/Carrier Problem (15.3%)

Congestion

- Will congestion ever lead to path failure?
- Artifact of protocol processing it should actual be zero

Instability

- 1st derivative is high routing flaps
- Policy fluctuations + normal convergence → Routing convergence
- Now we look at finer time scales
 - Who is responsible for fluctuations?
 - not dominated by small set of AS's/routes
- "Routing Stability in Congested Networks: Experimentation and Analysis"
 - o Only interesting thing was methodology
 - o Treated router as a black box
 - Quantifying time observations of different implementations

Anomaly Detection

- Methodology is important
- Main value: Holt-Winters approach
- Correlating multiple sources
- Combining with actual trouble ticket data
- Is there value in knowing something is higher than usual?
 - Anomaly Detection
- Previous papers concentrated on the phenomenon
- Detecting earlier can help solve the problem
- Anomalous behavior of routing announcements

Why Routing?

- Packet forwarding as an essential service
- Control plane
- [◀] Data plane

Disturbances → network availability

- Update frequency → Route utilization (high message frequency/high updates)
- Propagation of changes dynamic temporary impairments to reachability → higher than normal packet loss rate
- o Duration → stabilizes convergence
- o Intrinsic Distributed Algorithm → 30 seconds phenomenom

- Intra
- Inter domain (eBGP)

Timeline

1995 Paxson Apr 1, 1995 (7 major AS) (Early day / early debugging) (200 AS)

1997 (Peering between ISPs)
1998 (1005 AS) In 1998: malicious attacks = 1-5% of failures

2001 congestion, worms
2003

2004 Managing T1 ISPs (1500 AS, 12 T1 ISPs)

End comments

- All previous papers
 - o single view point
 - o backbone
 - o not end system to end system
- Reachability/Availability is the critical metric
 - o not possible to achieve 99.9%
 - so go for redundant paths etc.