CS 188, Spring 2004
Solutions for Assignment 2

1. First, to help you become familiar with tracks and pieces, write a function (count-loose-ends track), which
should return the number of loose ends in the track.

The solution is fairly simple: just go trough the track pieces and check for each outgoing connec-
tion to an adjacent square whether that square has a matching connection. Return the number of
mismatches.

CL-USER(335): (count-loose-ends (read-track '"~cs188/code-188/search/domains/random44.track'™))

20

CL-USER(336): (count-loose-ends (read-track "~cs188/code-188/search/domains/weak44.track'))

0

CL-USER(336): (count-loose-ends (read-track '"~cs188/code-188/search/domains/strong44.track’™))

0
CL-USER(338): (print-track (setq random44 (make-random-track-unlimited 4 4)))

| |
----- | / /] / ————
I 1 | ,---- S | —=Te—mm- [
_____ 1/ 1 PR
| |
| | | |
----- \ / | \ ————
I 1 fmm-=7 e |------ S B
_____ / 1 \ PR
| | I
| |
_____ 1 1 ——
[I e (.
_____ 1 / 1 JER—
| | |
|
_____ \ ——
[T o1
————— \ / / ————
| | |
1 1 1 1 1 1
NIL
CL-USER(339): CL-USER(339): (count-loose-ends random44)
25

CL-USER(340): (print-track (setq random22 (make-random-track-unlimited 2 2)))

NIL
CL-USER(341): (count-loose-ends random22)
7

CL-USER(342): (print-track (setq random42 (make-random-track-unlimited 4 2)))

|
_____ 1 \ \ —— e
I -—-l---- fommmm- fommmmmm- 1
_____ 1 —— e
|
| I
_____ \ \ R
I s el
_____ \ ———
|
I 1 I 1 I 1 I 1 I 1 [
NIL
CL-USER(343): (count-loose-ends random42)
11

CL-USER(344): (print-track (setq randomll (make-random-track-unlimited 1 1)))

NIL
CL-USER(345): (count-loose-ends randomll)
2

. If atrack has no loose ends, what does that imply about the numbers of Isplit and rsplit pieces?

#lsplit-piece and #rsplit-piece have an odd number of connectors while every other piece has an even
number of connectors. A necessary condition for a track to have no loose ends is that the sum of
connectors of all the pieces be even; this is because each connection between pieces consumes
exactly two connectors. Therefore, (#lsplit-piece + #rsplit-piece) must be even.

. Now, write a function (count-wccs track), which should return the number of WCCs in the track.

The function count - wecs returns the number of weakly connected components. It uses an array
of marks, indicating for each edge which wcc it belongs to. It works by finding an edge (with a track
connection) that has not yet been marked; this must be part of a new wcc. It then recursively explores
the wcc (calling mar k- wece), following both links within the piece and the corresponding edge on the
adjacent piece, if any.

CL-USER(335): (count-wccs (read-track "~ cs188/code-188/search/domains/random44 . track’™))

6

CL-USER(335): (count-wccs (read-track "~cs188/code-188/search/domains/weak44.track'™))

1

CL-USER(335): (count-wccs (read-track '"~cs188/code-188/search/domains/strong44.track’™))

1
CL-USER(348): (print-track (setq randomll (make-random-track-unlimited 1 1)))

NIL

CL-USER(349): (count-wccs randomll)

1

CL-USER(350): (print-track (setq random22 (make-random-track-unlimited 2 2)))

NIL
CL-USER(351): (count-wccs random22)
2

CL-USER(352): (print-track (setq random23 (make-random-track-unlimited 2 3)))

NIL
CL-USER(353): (count-wccs random23)
4

CL-USER(354): (print-track (setq random33 (make-random-track-unlimited 3 3)))

_____ / ——
|
P r @+ 1r 11 1 1/ 11
NIL
CL-USER(355): (count-wccs random33)
6

CL-USER(356): (print-track (setq random44 (make-random-track-unlimited 4 4)))

NIL
CL-USER(357): (count-wccs random44)
8

CL-USER(358): (print-track (setq random66 (make-random-track-unlimited 6 6)))

| |
_____ \ 1 | JER—
- o | 1o
_____ \ I \ I _————
| | | |
| |
_____ \ I _————
I 1 -- i 1
----- \ N \ ———-
| | |
| | |
_____ / \ I _————
I 1 - -- -=7 - | 11
_____ \ \ I —_————
| | |
| | | |
----- / | / \ ——
[T I T I
_____ I _————
|
| | | |
_____ 1 / | \ R

————— \ \ \ / ————

[femmmiommmm T (.

_____ \ —— e
|

I 1 I 1 I 1 11 I 1 11 [[

NIL

CL-USER(359): (count-wccs random66)

18

. Now, formulate and solve the local search problem type, unlimited-track-local-problem, where the goal is to
construct a track with as few loose ends and WCCs as possible. In such problems, we start with a randomly
filled track and make changes to improve it, with no limitations on the pieces that can be used. You will need
to define the actions or random-action method and the result, h-cost and goal-test methods. Then construct a
suitable problem instance with a random initial state and apply a suitable algorithm from local-search.lisp.

First, the h-cost function to be minimized is defined as (1 oose ends + wccs - 1), so that goal
state have value 0, but this is just a convention. Other functions are also possible (e.g. (2*1| oose
ends + weces - 1)), but they still need to minimize both loose ends and wccs, and to have their mini-
mum at the goal states. The neighborhood structure of the space is huge but it is never made explicit.
Instead, it is defined by the random act i on method, which generates an action that randomly se-
lects a square and replaces the piece with a randomly chosen new piece in a random orientation. The
action is executed by the r esul t method, which simply applies the action (interpreted as a function)
to a copy of the state.

Here is a sample result for a 4 x 4 track, which took 429 steps (with simulated annealing; parameters
details explained below):

[[|
[[|
————— [[|
I fmmmmmm - |------ N Lo
————— / [[N
[[[|
[[[|
————— [[[/|
I [| ,---e- I------ " Lo
----- [% [|
[[[|
[[[|

W U T
| |
| |
AN \ / A
| -—== -—== | |
| \ s D
| | |
| | |
\ / /7

/ \ / N e
| | | |
| | | |
\ \ \ A
e Lo
\ L
| |
| |
[Y —
—————— . Lo
/ T
| |
| |
\ 22—

----- / \ / \ —_——
[| [[
[| [[
----- [[[/
1o o - | .--m-m- e . 1o
----- / \ \| V4 | —-———
[[[[[
[[[[[
----- [[[\ \
1o [[[I
————— [[[\ \
[[[[[
[[[[[
----- [[[[/
1o [[| Lmmmmmmmmeeen ------ . 1o
————— [[% I
[[[[
[[[[
_____ I I \ / —_————
1o [I . 1o
_____ I I/ _————
[[
[[
_____ \ / [,

Now, let us look at some example executions for a 3 x 3 track follow. The si mul at ed- anneal i ng-
sear ch function has been modified to print the iteration number t , the h-cost h, as defined above,
and the current temperature d. These are printed each 20 steps as well as at the final step after a
solution has been found.

CL-USER(31): (print-track (setq t33 (make-random-track-unlimited 3 3)))

_____ /’ —— e
|
I
_____ \ [,
I B : -1
_____ \ ——
I
I I
_____ \ \ [,
I B T e
----- / \ \ ——

CL-USER(32): (print-track (simulated-annealing-search
(make-unlimited-track-local-problem :initial-state t33) :schedule
(make-exp-schedule :k 0.3 :lambda 0.0005 :limit 10000)))

CL-USER(33):

t=20 h=11 d=0.29701495
t=40 h=8 d=0.2940596
t=60 h=4 d=0.29113367
t=80 h=4 d=0.28823686

1=100 h=4 d=0.28536886
t=120 h=3 d=0.28252938
t=140 h=3 d=0.27971816
t=160 h=3 d=0.27693492
t=180 h=2 d=0.27417937
=200 h=1 d=0.27145123
t=220 h=1 d=0.26875025
t=240 h=1 d=0.26607615
1=260 h=1 d=0.26342866
1=280 h=1 d=0.26080748
=300 h=1 d=0.25821242
1=320 h=1 d=0.25564313
1=340 h=1 d=0.25309947
1=360 h=1 d=0.2505811
1=369 h=0 d=0.249456
11 [1 I I
[sm——= I
_____ / \ P
| |
| |
_____ \ I —————
[e Bl | 1
_____ / \I —————
| |
| |
_____ \ / ——
I e y I
[[1 I I
NIL

CL-USER(34): (print-track (simulated-annealing-search
(make-unlimited-track-local-problem :init -state t33) :schedule
(make-exp-schedule :k 0.3 :lambda 0.0005 :limit 10000)))

t=20 h=10 d=0.29701495
t=40 h=9 d=0.2940596

t=60 h=5 d=0.29113367

t=80 h=5 d=0.28823686

t=100 h=2 d=0.28536886
t=120 h=2 d=0.28252938
t=140 h=2 d=0.27971816
t=160 h=2 d=0.27693492
t=180 h=2 d=0.27417937
t=200 h=2 d=0.27145123
t=220 h=1 d=0.26875025
t=240 h=1 d=0.26607615
t=260 h=1 d=0.26342866
t=280 h=1 d=0.26080748
t=300 h=1 d=0.25821242
t=320 h=1 d=0.25564313
t=340 h=1 d=0.25309947
t=360 h=1 d=0.2505811

t=380 h=1 d=0.24808775
t=400 h=1 d=0.24561924

=420 h=1 d=0.24317528
=440 h=1 d=0.24075565
t=460 h=1 d=0.23836009
t=480 h=1 d=0.23598836
=481 h=0 d=0.23587039
I 1 | I 1 I 1 I 1
I 1 ymm————— ,———— |
----- / / \ B
| | |
| | |
_____ I\ I / —————
I 1 | “-——--- |--——-- ” 11
_____ I I —————
| |
| |
_____ \ / ———

NIL

CL-USER(35): (print-track (simulated-annealing-search
(make-unlimited-track-local-problem :init -state t33) :schedule
(make-exp-schedule :k 0.3 :lambda 0.0005 :limit 10000)))

t=20 h=10 d=0.29701495

t=40 h=9 d=0.2940596

t=60 h=6 d=0.29113367

t=80 h=5 d=0.28823686

t=100 h=5 d=0.28536886

t=120 h=5 d=0.28252938

t=140 h=5 d=0.27971816

t=160 h=5 d=0.27693492

t=180 h=2 d=0.27417937

=200 h=2 d=0.27145123

1=220 h=2 d=0.26875025

t=240 h=2 d=0.26607615

t=260 h=2 d=0.26342866

t=280 h=3 d=0.26080748

1=299 h=0 d=0.25834152
P r °+r 1 11 11/ 11
I 1 ymm—————— ,———— I 1
----- / / \ —_—

| | |
| | |

----- \ / / —_—

NIL

CL-USER(36): (print-track (simulated-annealing-search

(make-unlimited-track-local-problem :initial-state t33) :schedule
(make-exp-schedule :k 0.3 :lambda 0.0005 :limit 10000)))

=20 h=12 d=0.29701495
t=40 h=12 d=0.2940596
t=60 h=8 d=0.29113367
1=80 h=8 d=0.28823686
1=100 h=5 d=0.28536886
t=120 h=5 d=0.28252938
t=140 h=3 d=0.27971816
t=160 h=2 d=0.27693492
1=180 h=3 d=0.27417937
1=200 h=3 d=0.27145123
t=220 h=2 d=0.26875025
t=240 h=2 d=0.26607615
=260 h=2 d=0.26342866
=280 h=2 d=0.26080748
1=300 h=2 d=0.25821242
=320 h=2 d=0.25564313
=340 h=2 d=0.25309947
1=360 h=1 d=0.2505811
=380 h=1 d=0.24808775
1=400 h=1 d=0.24561924
=420 h=1 d=0.24317528
t=440 h=1 d=0.24075565
1=460 h=1 d=0.23836009
1=480 h=1 d=0.23598836
=500 h=1 d=0.23364024
t=520 h=1 d=0.23131548
t=540 h=1 d=0.22901386
=551 h=0 d=0.22775774
11 [1 I I
[o I
_____ / \ —— e
| |
| |
_____ I I —————
1 | | 1
_____ I I —————
| |
| |
_____ \ / [
1o Lo
[1 1 1 1
NIL

CL-USER(37): (print-track (simulated-annealing-search
(make-unlimited-track-local-problem :initial-state t33) :schedule
(make-exp-schedule :k 0.3 :lambda 0.0005 :limit 10000)))

t=20 h=12 d=0.29701495
t=40 h=12 d=0.2940596

t=60 h=7 d=0.29113367

t=80 h=7 d=0.28823686

t=100 h=7 d=0.28536886
t=120 h=7 d=0.28252938
t=140 h=7 d=0.27971816
t=160 h=7 d=0.27693492
t=180 h=7 d=0.27417937
t=200 h=7 d=0.27145123
t=220 h=6 d=0.26875025
t=240 h=6 d=0.26607615
t=260 h=5 d=0.26342866
t=280 h=1 d=0.26080748
t=300 h=1 d=0.25821242
t=320 h=1 d=0.25564313
t=340 h=1 d=0.25309947
t=360 h=1 d=0.2505811

10

t=380 h=1 d=0.24808775
t=400 h=3 d=0.24561924
t=420 h=2 d=0.24317528
t=440 h=2 d=0.24075565
t=460 h=2 d=0.23836009
t=480 h=2 d=0.23598836
t=500 h=2 d=0.23364024
t=520 h=1 d=0.23131548
t=540 h=1 d=0.22901386
t=556 h=0 d=0.22718905
[[1 [1
[sm——- 1
_____ / \ N
| |
| |
_____ \ / o

NIL

CL-USER(38): (print-track (simulated-annealing-search
(make-unlimited-track-local-problem :initial-state t33) :schedule
(make-exp-schedule :k 0.3 :lambda 0.0005 :limit 10000)))

t=20 h=12 d=0.29701495
t=40 h=7 d=0.2940596

t=60 h=4 d=0.29113367

t=80 h=4 d=0.28823686

t=100 h=3 d=0.28536886
t=120 h=3 d=0.28252938
t=140 h=3 d=0.27971816
t=160 h=2 d=0.27693492
t=180 h=2 d=0.27417937
t=200 h=2 d=0.27145123
t=220 h=2 d=0.26875025
t=240 h=2 d=0.26607615
t=260 h=2 d=0.26342866
t=280 h=1 d=0.26080748
t=300 h=1 d=0.25821242
t=320 h=1 d=0.25564313
t=340 h=1 d=0.25309947
t=360 h=1 d=0.2505811

t=380 h=1 d=0.24808775
t=400 h=1 d=0.24561924
t=420 h=1 d=0.24317528
t=440 h=1 d=0.24075565
t=460 h=1 d=0.23836009
t=480 h=1 d=0.23598836
t=500 h=1 d=0.23364024
t=520 h=1 d=0.23131548
t=540 h=1 d=0.22901386
t=560 h=1 d=0.22673513
t=580 h=1 d=0.22447906
t=600 h=1 d=0.22224547
t=620 h=1 d=0.2200341

h=0 d=0

.21849923

11

NIL

CL-USER(39): (print-track (simulated-annealing-search
(make-unlimited-track-local-problem :initial-state t33) :schedule
(make-exp-schedule :k 0.3 :lambda 0.0005 :limit 10000)))

t=20 h=16 d=0.29701495

1=40 h=13 d=0.2940596

1=60 h=9 d=0.29113367

t=80 h=8 d=0.28823686

t=100 h=9 d=0.28536886

1=120 h=4 d=0.28252938

1=140 h=4 d=0.27971816

t=160 h=4 d=0.27693492

t=180 h=3 d=0.27417937

=200 h=2 d=0.27145123

1=220 h=2 d=0.26875025

1=240 h=2 d=0.26607615

=260 h=2 d=0.26342866

t=280 h=2 d=0.26080748

=300 h=3 d=0.25821242

1=320 h=2 d=0.25564313

1=338 h=0 d=0.25335267
M r °r°r 11 11 11
1 1
1 ymmmmmmmmmmo 1
_____ / \ P

| |
| |

_____ \ / ——
I . Lo
M r °r°r 11 11 11

NIL

CL-USER(40): (print-track (simulated-annealing-search
(make-unlimited-track-local-problem :initial-state t33) :schedule
(make-exp-schedule :k 0.3 :lambda 0.0005 :limit 10000)))

0 d=0.29701495
0.2940596

.29113367
.28823686
.28608316

TTTNY
© 00BN
[N eReoNoNe]
= piien s e pien 3
0o n
OrUIE
oooQ
[T
[eNeNe]

12

NIL

CL-USER(41): (print-track (simulated-annealing-search
(make-unlimited-track-local-problem :initial-state t33) :schedule
(make-exp-schedule :k 0.3 :lambda 0.0005 :limit 10000)))

t=20 h=13 d=0.29701495
t=40 h=5 d=0.2940596
t=60 h=4 d=0.29113367
t=80 h=4 d=0.28823686
t=100 h=3 d=0.28536886
t=120 h=3 d=0.28252938
t=140 h=2 d=0.27971816
t=160 h=2 d=0.27693492
t=180 h=2 d=0.27417937
t=200 h=2 d=0.27145123
=220 h=2 d=0.26875025
t=240 h=1 d=0.26607615
t=260 h=1 d=0.26342866
t=280 h=1 d=0.26080748
=300 h=1 d=0.25821242
=320 h=1 d=0.25564313
=340 h=1 d=0.25309947
t=360 h=1 d=0.2505811
t=380 h=1 d=0.24808775
=400 h=1 d=0.24561924
t=416 h=0 d=0.24366212
I 1 I 1 I 1 I 1 I 1
I 1 smmmm e mmmmm——— I 1
----- / \ \ —
| | |
| | |
_____ I \ /I —————
I 1 | .-~ R | I 1
_____ I/ \ I —————
| | |
| | |
----- \ / / ———-
1o e . Lo
I 1 I 1 I 1 I 1 I 1
NIL

CL-USER(42): (print-track (simulated-annealing-search
(make-unlimited-track-local-problem :initial-state t33) :schedule

13

(make-exp-schedule :k 0.3 :lambda 0.0005 :limit 10000)))

t=20 h=11 d=0.29701495

1=40 h=12 d=0.2940596

t=60 h=13 d=0.29113367

t=80 h=13 d=0.28823686

1=100 h=13 d=0.28536886

1=120 h=10 d=0.28252938

t=140 h=8 d=0.27971816

t=160 h=8 d=0.27693492

t=180 h=8 d=0.27417937

1=200 h=3 d=0.27145123

=220 h=3 d=0.26875025

t=240 h=3 d=0.26607615

=260 h=3 d=0.26342866

t=280 h=3 d=0.26080748

1=300 h=3 d=0.25821242

1=320 h=3 d=0.25564313

=340 h=3 d=0.25309947

=360 h=3 d=0.2505811

1=380 h=3 d=0.24808775

1=400 h=3 d=0.24561924

1=420 h=3 d=0.24317528

t=440 h=3 d=0.24075565

t=460 h=3 d=0.23836009

1=480 h=3 d=0.23598836

1=500 h=2 d=0.23364024

1=504 h=0 d=0.23317343
1 1 1 1 1
1 sm—-= 1
_____ / \ P

| |
| |
_____ I / —————
1 ymmm—— |------ ; 1
_____ / I —————
| |
| |

_____ \ / ——
1o Lo
11 [1 1 I

NIL

We can see that the h-cost is sort of monotonically decreasing (at least when looking once per 20
steps). Of course, this is not always the case. As we already mentioned above, the local search
algorithm used in the examples is simulated annealing. Note that it will work only with an appropriate
schedule, i.e. we need more than just executing the following code:

(simulated-annealing-search (make-unlimited-track-local-problem
cinitial-state t33))

By default, the function si nul at ed- anneal i ng- sear ch uses an exponential schedule (see the
function make- exp- schedul e in | ocal - sear ch. | i sp) with parameters k¥ = 20, A = 0.005 and
limit = 100. These are used to calculate the temperature according to the formula: ke=*t, where t is
the time (the number of the present iteration). The major problem is caused by the last value, which
specifies the number of iterations, as in for our purposes the search normally takes much longer than
100 steps. Experiments showed that while the exponential schedule is good to use, it needs different
parameters, e.g. k = 0.3, A = 0.0005 and limit = 10000:

(simulated-annealing-search (make-unlimited-track-local-problem

14

cinitial-state t33) :schedule (make-exp-schedule :k 0.3 :lambda
0.0005 :limit 10000))

Why these particular values? Since we have the freedom to perform arbitrary changes to a single
square, we can expect to be able to easily escape most of the local minima. So, it would be better to
prefer a more conservative schedule, which starts with a low temperature that cools slowly. Looking at
the formula, ke—**, we can see that this can be achieved with a small k£ = 0.3 (low initial temperature)
and also a small A = 0.0005 (slow cooling). Another alternative is to start with a much higher &, but to
alow it to go down faster, e.g. £ = 30 and A = 0.01. Here is a sample test:

CG-USER(21): (simulated-annealing-search
(make-unlimited-track-local-problem :initial-state t33) :schedule
(make-exp-schedule :k 30 :lambda 0.01 :limit 10000))

t=20 h=17 d=24.561924
t=40 h=19 d=20.1096
t=60 h=21 d=16.46435
t=80 h=27 d=13.47987
t=100 h=18 d=11.036384

t=120 h=18 d=9.035827

t=140 h=12 d=7.397909

t=160 h=8 d=6.056896

t=180 h=9 d=4.9589667

=200 h=21 d=4.0600586

=220 h=16 d=3.3240945

=240 h=11 d=2.721539

t=260 h=10 d=2.2282076

t=280 h=7 d=1.824302

=300 h=11 d=1.493612

=320 h=13 d=1.2228664

=340 h=12 d=1.0011982

=360 h=10 d=0.81971174

=380 h=10 d=0.67112315

=400 h=9 d=0.5494692

t=420 h=7 d=0.4498674

t=440 h=6 d=0.36832017

t=460 h=3 d=0.3015551

=480 h=3 d=0.24689248

=500 h=2 d=0.20213841

=520 h=2 d=0.16549696

=540 h=2 d=0.13549742

=560 h=1 d=0.11093592

=580 h=1 d=0.09082667

t=600 h=1 d=0.07436257

=620 h=1 d=0.060882933

=626 h=0 d=0.05733739
M @ 119 1 1 191
I 1 ymm—————— ,———— |
----- / / \ —

| | |
| | |

----- \ \ / ——

As you can see, as the temperature is high at the beginning, the search goes almost randomly for the
first 400 steps with the h-cost going up and down randomly. Only after the temperature is already low,
real progress is observed. Compare this to the previous examples, where the h-cost has been going

15

1400
1200 E k=0.3, A=0.0005 |
E k=3, A=0.001
O k=30, A=0.01
1000
800
600
400
200 +
i 1
runt jrun2 {run3 jrund (run5 |runé |run7 |run& [run9 jrun 10| AVG | STD
Ek=0.3, A=0.0005| 77 175 27 117 | 344 36 30 133 42 40 |102.10/93.97
W k=3, A=0.001 35 | 1162 | 818 | 123 | 604 | 505 | 986 | 505 | 873 | 656 |626.70[338.78
O k=30, A=0.01 114 | 358 | 423 | 744 | 258 | 348 35 122 | 401 | 616 [341.90(211.83

Figure 1: Unlimited-track problem, track 2 x 2: experiments with different values for &£ and A. The number of steps
needed to find a perfect solution for a 2 x 2 track (for 10 runs) is shown. The last two bars/columns show the average
and the standard deviation.

down almost monotonically. One might think that neither of these schedules is good enough and it
would be better to choose something in the middle, e.g. £k = 3 and A = 0.001. In fact, this happens
to be a worse choice in practice, as shown on Figures 1, 2, 3 and 4. The first combination of £ and A
is clearly best for 2 x 2. The explanation should be that for such a small track bad moves are unlikely
to be necessary to achieve the goal state (see Figure 2). For a 3 x 3 tracks though the two extremes
look almost equally good. While & = 0.3, A = 0.0005 performs slightly better than &k = 30, A = 0.01, it
has a higher standard deviation: it can find a solution fairly fast as it does not loose time with a lot of
initial random moves, but that way it could also miss the opportunity to move to a better state before
starting the optimization.

5. Next, formulate and solve the fixed-track-local-problem, where the track must be constructed from a fixed set
of pieces that exactly fills the track. (Hence, actions can rotate or swap pieces, but cannot introduce new ones.)
Experiment with various different track sizes and sets of pieces. Is this problem harder or easier than the
unlimited problem? Why? Which kinds of pieces seem to cause difficulties?

The solution is very similar to the unlimited problem, except that the available actions swap two existing
pieces rather than making a new one. Random rotations of the two pieces are performed during the
swap.

Below are some experiments with 6 different sets of pieces for a 3 x 3 track. To study the effect of
going to a larger track, the same pieces are used for a 4 x 4 track (adding 7 more #blank-piece). Three
additional configurations are tried for the 4 x 4 track (see sets 7, 8 and 9 below). Each set of pieces
is chosen in a way that there exists an exact solution. Some sample runs for each of the sets follow,
which give a visual idea of the kind of pieces used in the set.

16

12.00

—k=0.3, A=0.0005
— k=3, A=0.001
k=30, A=0.01
10.00 —
8.00 ——
6.00

\
4.00 V/ \

- \ \/AVA\J\'_,R
0.00

OIS O P O PSP PO PSSO RSP PD S ®
TP PSS PEPPERESEPLEL S S P

Figure 2: Unlimited-track problem, track 2 x 2: experiments with 3 different values for &£ and \. The average value
of the h-cost (over 10 runs) as a function of time is shown.

17

3000
O k=0.3, A=0.0005
W k=3, A=0.001
O k=30, A=0.01
2500 ~
2000
1500
1000 - — —
500 — —
07 run 1 run 2 run 3 run 4 run 5 run 6 run’v run 8 run9 | run10 | AVG STD
Dk=0.3, A=0.0005| 382 556 152 1753 126 2021 421 514 288 1001 | 721.40 | 630.37
B k=3, A=0.001 2637 | 2414 | 2034 | 1900 1542 | 1414 | 2377 | 2447 | 1976 2557 |2129.80|403.21
O k=30, A=0.01 642 802 675 609 1038 626 776 710 1513 941 | 833.30 | 262.74

Figure 3: Unlimited-track problem, track 3 x 3: experiments with different values for k£ and A. The number of steps
needed to find a perfect solution for a 3 x 3 track (for 10 runs) is shown. The last two bars/columns show the average
and the standard deviation.

18

25.00

—k=0.3, A=0.0005
— k=3, A=0.001
| k=30, A=0.01
20.00 T
15.00 F—

./\W A
10.00 v

- \x WM\\\
0.00

DD 00 D 0 %)
MG A Sl S U G SRS SR R QRIS gt P S O o

Figure 4: Unlimited-track problem, track 3 x 3: experiments with 3 different values for k£ and \. The average value
of the h-cost (over 10 runs) as a function of time is shown.

19

e 3 x 3track
(a) Set1l

CL-USER(5): (setf pieces *((curve-piece . 4) (blank-piece . 5)))

CL-USER(6): (setf t33 (make-random-track-fixed 3 3 pieces)))
CL-USER(7): (print-track (simulated-annealing-search

(make-fixed-track-local-problem :initial-state t33) :schedule
(make-exp-schedule :k 0.3 :lambda 0.0005 :limit 10000)))

(b) Set 2

CL-USER(5): (setf pieces *((curve-piece . 4)
(blank-piece . 1) (straight-piece . 4)))

éL;USER(G): (setf t33 (make-random-track-fixed 3 3 pieces)))
éL;USER(7): (print-track (simulated-annealing-search

(make-Ffixed-track-local-problem :initial-state t33) :schedule
(make-exp-schedule :k 0.3 :lambda 0.0005 :limit 10000)))

(c) Set3

CL-USER(5): (setf pieces *((curve-piece . 4)
(blank-piece . 3) (straight-piece . 2)))

éL;USER(G): (setf t33 (make-random-track-fixed 3 3 pieces)))

CL-USER(7): (print-track (simulated-annealing-search
(make-Ffixed-track-local-problem :initial-state t33) :schedule
(make-exp-schedule :k 0.3 :lambda 0.0005 :limit 10000)))

20

(d) Set4
CL-USER(5): (setf pieces *((curve-piece . 5)
(straight-piece . 2) (rsplit-piece . 2)))

éL;USER(G): (setf t33 (make-random-track-fixed 3 3 pieces)))
éL;USER(7): (print-track (simulated-annealing-search

(make-Ffixed-track-local-problem :initial-state t33) :schedule
(make-exp-schedule :k 0.3 :lambda 0.0005 :limit 10000)))

_____ / \ S
| |
| |
_____ | | P
I 1 | .---- | 1
_____ V4 \ | S
| | |
| | |
————— \ \ / ————-

(e) Set5
CL-USER(5): (setf pieces *((curve-piece . 4) (rsplit-piece . 3)
(Isplit-piece . 1) (twocurve-piece . 1)))

éL;USER(G): (setf t33 (make-random-track-fixed 3 3 pieces)))
éL;USER(7): (print-track (simulated-annealing-search

(make-Ffixed-track-local-problem :initial-state t33) :schedule
(make-exp-schedule :k 0.3 :lambda 0.0005 :limit 10000)))

N
=
1
1
1
1
1

21

() Set6
CL-USER(5): (setf pieces *((curve-piece . 6)
(cross-piece . 1) (blank-piece . 2)))

éL;USER(6): (setf t33 (make-random-track-fixed 3 3 pieces)))
CL-USER(7): (print-track (simulated-annealing-search

(make-fixed-track-local-problem :initial-state t33) :schedule
(make-exp-schedule :k 0.3 :lambda 0.0005 :limit 10000)))

|

|

|

|

|

I
v

e 4 x 4 track The above six and the following additional ones:

(a) Set7
CL-USER(5): (setf pieces *((curve-piece . 8) (cross-piece . 2)
(straight-piece . 2) (blank-piece . 4)))

éL;USER(6): (setf t44(make-random-track-fixed 4 4 pieces)))
CL-USER(7): (print-track (simulated-annealing-search

(make-Ffixed-track-local-problem :initial-state t44) :schedule
(make-exp-schedule :k 0.3 :lambda 0.0005 :limit 10000)))

22

(b) Set8

CL-USER(5): (setf pieces *((curve-piece . 12) (cross-piece . 4)))
éL;USER(6): (setf t44(make-random-track-fixed 4 4 pieces)))
éL;USER(7): (print-track (simulated-annealing-search

(make-fixed-track-local-problem :initial-state t44) :schedule
(make-exp-schedule :k 0.3 :lambda 0.0005 :limit 10000)))

| | | |
| | | |
_____ \ 1 | / R
1o “eeeee- — |------ . Lo
_____ I I _————
| |
| |
_____ I I _—————
I 1 yom———— |-------- |-——-—-- - 11
_____ / I I \ _————
| | | |
| | | |
----- \ / \ / ——-

(c) Set9
CL-USER(5): setf pieces *((curve-piece . 7) (cross-piece . 1)
(rsplit-piece . 2) (straight-piece . 4) (blank-piece . 1)
(twocurve-piece . 1)))
éL;USER(6): (setf t44(make-random-track-fixed 4 4 pieces)))

CL-USER(7): (print-track (simulated-annealing-search
(make-fixed-track-local-problem :initial-state t44) :schedule
(make-exp-schedule :k 0.3 :lambda 0.0005 :limit 10000)))

| | |
| | |
_____ 1 / | R
1o | o= - | Lo
----- I/ / \ I —
| | | |
| | | |
_____ 1 \ | / R
1o [“eeeee- I------ . Lo
_____ I I —_————
| |
| |
_____ \ / R

23

runl | run2 [run3 | run4 [run5 [run6 [run7 [run8 | run9 | run10 | Average | StdDev
Setl | 1158 15 398 366 382 148 497 815 807 163 47490 | 336.92
Set2 | 2000 193 1430 829 563 2000 293 335 2000 1674 1131.70 | 726.59
Set3 | 1775 568 820 226 171 60 2000 | 2000 800 200 862.00 | 740.21
Set4 | 894 554 1403 210 412 1120 | 1959 | 486 1464 1045 954.70 | 523.21
Set5 | 654 375 411 2455 270 280 381 319 887 227 625.90 | 639.01
Set6 | 1165 69 880 305 835 163 287 220 494 140 455.80 | 356.38

Table 1: Fixed-track-local problem, track 3 x 3: the number of steps for 10 runs to find a solution for 6 different
piece sets. The last two columns show the average and the standard deviation over the 10 runs. The maximum number
of iterations performed was 2,000.

runl [run2 | run3 | run4 | run5 | run6 | run?7 | run8 | run9 | run10 | Average | StdDev
Setl | 3728 | 1064 | 1627 | 1924 | 1786 336 420 470 2530 1599 1548.40 | 1003.06
Set2 | 10000 | 1329 | 9424 | 8540 | 10000 | 10000 | 10000 | 10000 | 10000 | 10000 | 8929.30 | 2572.66
Set3 | 896 744 3612 | 7235 | 5335 | 2315 | 2292 | 10000 | 2308 7346 4208.30 | 2966.74
Set4 | 10000 | 10000 | 10000 | 10000 | 10000 | 10000 | 10000 | 10000 | 10000 | 10000 | 10000.00 0.00

Set5 | 9305 | 10000 | 10000 | 10000 | 8533 | 10000 | 10000 | 10000 | 2702 | 10000 | 9054.00 | 2166.72
Set6 | 3607 | 2453 210 803 1689 | 3762 | 3607 | 3133 | 1428 4318 2501.00 | 1329.75
Set7 | 10000 | 10000 | 10000 | 1364 | 10000 | 9879 | 10000 | 10000 | 2333 9626 8320.20 | 3245.01
Set8 | 566 1121 1128 878 1261 1278 971 1512 | 10000 | 1183 1989.80 | 2681.03
Set9 | 3403 | 10000 | 3597 | 10000 | 9848 | 4456 | 10000 | 10000 | 3224 8994 7352.20 | 3034.73

Table 2: Fixed-track-local problem, track 4 x 4: the number of steps for 10 runs to find a solution for 9 different
piece sets. The last two columns show the average and the standard deviation over the 10 runs. The maximum number
of iterations performed was 10,000.

The results of these experiments (¢ = 0.3, A = 0.0005) are shown in Tables 1, 2 and Figures 5, 6.
Comparing Figures 3 and 5 (and also Figure 4 and Table 1) we see that the fixed track is harder than
the unlimited one. The hardest sets for the 3 x 3 track are 2 and 4. Set 2 is hard as it has only one
solution®, which requires everything to be put together in a particular way. The solution is global and
any move that destroys it (and thus, any move that leads to it) has a score of 5, which is more than,
e.g. the score of 3, achieved for an “ellipse” (like in the solution for set 3) and two additional joined
straight pieces. A similar argument holds for sets 4 and 3. In the latter case one can construct a small
circle and additional two joined straight pieces.

Things get even worse for the 4 x 4 track, where simulated annealing (with the chosen schedule) is
unable to find the exact solution for 10,000 steps (see sets 4,5,7,9 in Table 2). Interestingly, the sets
4 and 5 get much harder (set 4 never gets solved within 10,000 steps for our 10 runs). Having a fixed
set of pieces severely limits the set of possible solutions and thus the probability to achieve one. In the
unlimited set problem, escaping a local minimum is much easier and is often possible by introducing
or removing? an appropriate piece. But here this requires one or more “bad” moves. Further, the
larger the track, the harder to pick the right “bad” move (and even harder if a sequence of “bad” moves
is needed). Here is a sample hard to escape local minimum for set 9:

Lstrictly speaking, there are more as we can swap some elements and obtain the same solution.
2|.e. putting a#blank-piece

24

1200

O Average
H StdDev
1000
800
600 -
400 -
200 -
0 i
Set 1 Set 2 Set3 Set4 Set 5 Set 6

Figure 5: Fixed-track-local problem, track 3 x 3: the average number of steps (over 10 runs) to find a solution (and
the standard deviation) for 6 different piece sets.

_____ / \ ———
| |
| |
_____ \ / ——
L T e R I
_____ / \ ———
| |
| |
_____ 1 /1 —— e
I jmmmmmmmmm oo |------ " I
_____ / 1 1 ——— e
| | |
| | |
----- \ \ / —_——

In general®, in looks like the most problematic pieces are #twocurve-piece and #cross-piece, which
usually require to be put in a limited number of positions in any possible solution (e.g. cannot be
adjacent to a wall in an exact solution). The #straight-piece also looks problematic as it connects
parts from two distant non-adjacent squares in a line, which is a limitation ()4e.g. compared with a
#curve-piece.

6. Now, formulate and solve the no-loose-ends, unlimited track design problem as a CSP. (For now, ignore WCCs.)
Do this by the following two methods:

3And in the last example.

25

12000

@ Average
W StdDev

10000

8000

6000

4000 [

2000

. .

Set 1 Set 2 Set 3 Set 4 Set5 Set 6 Set7 Set 8 Set 9

Figure 6: Fixed-track-local problem, track 4 x 4: the average number of steps (over 10 runs) to find a solution (and
the standard deviation) for 9 different piece sets.

(a) Define a function (track-¢enumerated-csp width height), which constructs an enumerated CSP, rather like
australia-csp but generated automatically.
There is a variable in the enumerated CSP corresponding to each tile position. The tiles on
around the border of the track can only take on a single value: #barrier-piece. The remaining
variables range over the set of possible track piece types (#straight-piece, #cross-piece, etc.) at
each possible orientation. For every tile not on the border, there is a constraint between the tile
and each of it's 4 neighbors. This constraint enumerates the possible values the two tiles can
take on such that they either both have connections on the adjoining boundary or they both don't.
Figure 7 shows a circle for each variable in the CSP for a 2 x 2 track. The shaded circles can
only take on the value #barrier-piece.

CL-USER(6): (print-track (csp-state-to-track (recursive-backtracking
(make-track->enumerated-CSP 3 3)) 3 3))

LI

TG

>
o0

XYY
o000

Figure 7: Enumerated CSP formulation: a circle for each variable in the CSP for a 2 x 2 track is shown. The shaded
circles can only take on the value #barrier-piece.

26

NIL

CL-USER(7): (print-track (csp-state-to-track (recursive-backtracking
(make-track->enumerated-CSP 4 4)) 4 4))

NIL

CL-USER(12): (print-track (csp-state-to-track (recursive-backtracking
(make-track->enumerated-CSP 5 5)) 5 5))

----- / / \ —_—
| | |
| | |
————— | [/
I | L---me- |------ y 1o
_____ V4 1 P
| |
| |
_____ \ / ——

NIL

CL-USER(13): (print-track (csp-state-to-track (recursive-backtracking
(make-track->enumerated-CSP 8 8)) 8 8))

27

| | | |
| | | |
----- AN N | | -———-
I 1 | “-——-- | “——-- 1 | I 1
----- | \ | A\ | ——---
| | | | |
| | | | |
----- | \ AN \ | -———=
I 1 | fom-l | - =1 I 1
----- | \ | \ A\ ——---
| | | | |
| | | | |
----- AN | / / | -———=
I 1 | “-——-- | ,——-" =7 - I 1
----- | \ \/ / V| —-
| | | | |
| | | | |
----- AN | AN /1 | ————=
| | .1 | “-——--"1 | |
----- | A\ | | | ——---
| | | | |
| | | | |
----- \ / / \ / —

(b) Define a subtype of CSPs called a track-csp and a subtype of CSP states called track-csp-state. Define
suitable methods for these, analogous to all the methods defined for enumerated CSPs, so that backtracking
can be applied directly to a track-csp instance.

CL-USER(71): (print-track (recursive-backtracking (make-track-csp :width 3 :height 3)))

NIL

28

| | |
| | |
| | I
| S | - | | “----. 11
----- / | / A\l | | \ ——
| | | | | | |
| | | | | | |
----- | / / | | \ | -
I 1 I T | | e |
----- | / | | \ ===
| | | | |
| | | | |
----- n /1 \ \ | ———-
I 1 | “-—>1 - bt | 11
----- | | / / \ | —
| | | | | |
| | | | | |
----- | / \ | \ /1 ———-
I | o-mmmmmee- e T e et I
----- V4 \ V] / / | ——
| | | | | |
| | | | | |
----- N /1 n /1 \ / ——-
I 1 | “-——----- ====" | | “—-"1 B et |
----- | / | | | / ===
| | | | | |
| | | | | |
----- \ \ / / n / ———-
I St | ommm oo I
_____ \ 1 \ P
| | |
| | |
----- \ \ / ——

7. What difficulties might arise in the reduction to enumerated CSPs for the track design problem where solu-
tions must have exactly one WCC, or where there is a fixed supply of track? How might you overcome these
difficulties?

Weak connectedness is a global constraint that involves all the squares. This creates two difficulties:
1) the number of tuples to consider in writing out the constraint is exponential in the number of vari-
ables; 2) generating and testing in order to list the tuples that satisfy the constraint is tantamount to
solving the problem by exhaustive search. One solution is to replace the enumerated constraint by a
functionally defined constraint that returns true iff count - weccs returns 1. This will have the effect of
throwing out otherwise satisfactory solutions at the leaves of the search tree.

Checking that only a fixed set of pieces is used has a similarily global character. If there are N tiles
and M > N available pieces, then for each of the N2 pairs of tiles, we need to rule out the possibility
that they both take on the value Py, P, ... etc. Since there are M possibilities, we need to rule out we
end up with M N? additional constraints.

8. Write a predicate (strongly-connected? track), which should return t iff the track is strongly connected, and use
it with any of your track design methods to make some large, strongly connected tracks.

The idea is that if the track is strongly connected then we can pick any point we like and be able to
visit from there any point in the track in either direction. We need to be a little bit careful about that as
it can be the case that in a weakly connected track this could be possible if we start in one direction,
but not if we go opposite at the start point. So, the idea is to pick a point on the track and try to go in
both directions.

The function st rongl y- connect ed? checks whether the track represents a single strongly con-
nected component (SCC). It uses an array mar k, where there are two elements for each combination
of square and its edge: “enter” and “exit”. For each combination of (square,edge,enter/exit) the array

29

shows whether it has been visited/nonvisited from the starting point, going forward or both forward
and backward. The values are filled in recursively with a call to mar k- scc following the directed links
within the piece and the corresponding edge on the adjacent piece, if any. The function st rongl y-
connect ed? never calls mar k- scc for a second time: it returns ni | if a never visited square has
been found. ni | is also returned, if a node in the graph is visited when going forward, but not when
going backward.

If we are interested in counting the strongly connected componets or finding the articulation points
then there are efficient linear algorithms that again rely on DFS. But this is not our goal here.

NOTE: Remember that a circle or a line represent *two* separate SCCs.

CL-USER(7): (strongly-connected? (read-track "~cs188/code-188/search/domains/weak44.track'))
NIL

CL-USER(8): (strongly-connected? (read-track '"~cs188/code-188/search/domains/strong44.track™))
T

CL-USER(9): (print-track (setf t33-1 (make-full-track 3 3 (list (make-curve-piece :orientation 0)

(make-Isplit-piece :orientation 2)

(make-curve-piece :orientation 1)

(make-straight-piece :orientation 1)

(make-Isplit-piece :orientation 1)

(make-rsplit-piece :orientation 1)

(make-curve-piece :orientation 3)

(make-Isplit-piece :orientation 0)

(make-curve-piece :orientation 2)))))

| | |
| | |
_____ N / | ——
1o T - Lo
_____ 1 \ S
| |
| |
_____ \ / e

NIL
CL-USER(10): (strongly-connected? t33-1)
NIL

CL-USER(11): (print-track (setf t33-2 (make-full-track 3 3 (list (make-curve-piece :orientation 0)
(make-Isplit-piece :orientation 2)
(make-curve-piece :orientation 1)
(make-straight-piece :orientation 1)
(make-Isplit-piece :orientation 1)
(make-Isplit-piece :orientation 3)
(make-curve-piece :orientation 3)
(make-Isplit-piece :orientation 0)
(make-curve-piece :orientation 2)))))

|
1
1
1
1
-z
N

_____ | \

30

NIL

CL-USER(12): (strongly-connected? t33-2)

NIL

CL-USER(13): (print-track (setf t33-3 (make-full-track 3 3 (list (make-curve-piece :orientation 0)
(make-Isplit-piece :orientation 2)
(make-curve-piece :orientation 1)
(make-straight-piece :orientation 1)
(make-Isplit-piece :orientation 1)
(make-Isplit-piece :orientation 3)
(make-curve-piece :orientation 3)
(make-rsplit-piece :orientation 2)
(make-curve-piece :orientation 2)))))

----- / / \ —_—
| | |
| | |
----- n / /1 ——-
1o | fommmmeeme- " Lo
_____ I I —————
| |
| |
_____ \ / [,

NIL
CL-USER(14): (strongly-connected? t33-3)
NIL

CL-USER(15): (print-track (setf t33-4 (make-full-track 3 3 (list (make-curve-piece :orientation 0)
(make-Isplit-piece :orientation 2)
(make-curve-piece :orientation 1)
(make-straight-piece :orientation 1)
(make-Isplit-piece :orientation 1)
(make-rsplit-piece :orientation 1)
(make-curve-piece :orientation 3)
(make-rsplit-piece :orientation 2)
(make-curve-piece :orientation 2)))))

| | |
| | |
----- AN / /1 ————
I 1 | “-—--"--mm- A 11
_____ | | S
| |
| |
_____ \ / ———

31

NIL
CL-USER(16): (strongly-connected? t33-4)
NIL

CL-USER(17): (print-track (setf t22
(make-full-track 2 2 (list (make-rsplit-piece :orientation 0)
(make-curve-piece :orientation 1)
(make-curve-piece :orientation 3)
(make-curve-piece :orientation 2)))))

_____ / \ ———
| |
| |
_____ 1 / ——_———
1 | .----~ 1
_____ 1/ —— e
|
1 [1 1
NIL
CL-USER(18): (strongly-connected? t22)
NIL

CL-USER(19): (strongly-connected? strong44)
T

CL-USER(20): (strongly-connected? weak44)
NIL
CL-USER(21): (print-track (setf t22-2
(make-full-track 2 2 (list (make-curve-piece :orientation 0)
(make-curve-piece :orientation 1)
(make-curve-piece :orientation 3)
(make-curve-piece :orientation 2)))))

_____ / \ —_———
| |
| |
_____ \ / ——_———
I 1 f----7 I 1
I 1 I 1 11 11
NIL
CL-USER(22): (strongly-connected? t22-2)
NIL

32

