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Abstract

Real-time systems are designed for environments in which the utility of actions is
strongly time-dependent. Recent work by Dean, Horvitz and others has shown that
anytime algorithms are auseful tool for real-time system design, sincethey alow com-
putation time to be traded for decision quality. In order to construct complex systems,
however, we need to be able to compose larger systems from smaller, reusable anytime
modules. This paper addresses two basic problems associated with composition: how
to ensure the interruptibility of the composed system; and how to allocate computation
time optimally among the components. The first problem is solved by a simple and
general construction that incurs only a small, constant penalty. The second is solved
by an off-line compilation process. We show that the general compilation problem is
NP-complete. However, efficient local compilation techniques, working on a single
program structure at a time, yield globally optimal allocations for a large class of
programs. We illustrate these results with two simple applications.
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1 Introduction

This paper describes work on a fundamental problem in computer science and artificial
intelligence, namely the construction of systems that can operate robustly in a variety of
real-time environments. A real-time environment can be characterized by a time-dependent
utility function. In amost all cases, the deliberation required to select optimal actions will
degrade the system’s overall utility. It is by now well-understood that a successful system
must trade off decision quality for deliberation cost [1, 4, 16, 21, 28, 31, 32].

The problem of deliberation cost has been widely discussed in artificial intelligence,
economicsand philosophy. Inartificia intelligencein particul ar, researchers have proposed
anumber of meta-level architecturesto control the cost of base-level reasoning [5, 6, 8, 12,
16, 27]. One promising approach isto use anytime [7] or flexible [14] algorithms, which
allow the execution timeto be specified, either asaparameter or by an interrupt, and exhibit
atime/quality tradeoff defined by a performance profile. They provide a simple means by
which a system can control its deliberation without significant overhead.

Soon after the introduction of anytime algorithms, it became apparent that their com-
position presents a vital, non-trivial problem [7]. This paper reports the first results on
the composition problem showing that real-time systems can be modularly composed of
anytime algorithms. Moreover, the meta-level scheduling problem is solved in polynomial
timetoyield optimal (near-optimal) performancefor any tree (directed acyclic graph) struc-
tured program. These results extend the advantages of anytime algorithms to the desi gn of
complex real-time systems with many components.

In standard al gorithms, the fixed quality of the output allowsfor composition to beim-
plemented by a simple call-return mechanism. When agorithms have resource allocation
as a degree of freedom, and can be interrupted at any time, the situation becomes more
complex. Consider the following ssmple example: areal-time medical expert system con-
taining a diagnosis component which passes its results to a treatment-planning component.
The following issues arise:

1. How can theindividual components be designed as anytime algorithms?

2. How can their performance be described as a function of time and the nature of the
inputs?

3. How does the output quality of the treatment component depend on the accuracy of
the diagnosisit receives?

4. What sort of programming language constructs are needed to specify how the system
is built from its components?



5. For any given amount of time, how should that time be alocated to each of the
components?

6. What if the condition of the patient suddenly requiresintervention whilethe diagnosis
component is still running and no treatment has been considered?

7. How should the execution of the composite system be managed so as to optimize
overal utility?

In other publications, particularly [36], we address these issues in some depth. Here,
we focus on item 5, which we call the compilation problem. Given a system composed of
anytime algorithms, compilation determines off-line the optimal alocation of time to the
components for any given total allocation. The crucia meta-level knowledge for solving
this problem is kept in the anytime library in the form of conditional performance profiles.
These profiles characterize the performance of each elementary anytime al gorithm as a
function of run-time and input quality. In Section 2, we define the basic properties of
anytime algorithms. An important distinction is made between contract algorithms, which
require the determination of thetotal run-time when activated, and interruptible al gorithms,
whosetotal run-timeisunknowninadvance. Thereductiontheorem showshow to construct
an interruptiblealgorithm once a contract algorithmis compiled. In Section 3, we definethe
compilation problem and present a simple example of compilation. Then, in Section 4, we
analyzein detail the compilation of functional composition. While the general compilation
problem is shown to be NP-complete in the strong sense, local compilation techniques,
whose complexity is linear in the size of the program, are shown to be both efficient and
optimal for a large class of programs. In addition, a number of efficient approximation
algorithms are given for the genera case. Finally, Section 5 summarizes the benefits of
compilation and outlines the direction for further work in thisfield.

2 AnytimeAlgorithms

The term “anytime algorithm” was coined by Dean in the late 1980's in the context of his
work on time-dependent planning. Anytime a gorithms expand upon the traditional view
of a computational procedure as they offer to fulfill an entire spectrum of input-output
specifications, over the full range of run-times, rather than just a single specification. A
standard algorithm is an implementation of a mapping from a set of inputs into a set of
outputs. For each input that specifies a problem instance there is a particular element in
the output set that is considered the correct solution to be generated by the algorithm.
An anytime algorithm is an implementation of a mapping from a set of inputs and time
alocation into a set of outputs. For each input there is a corresponding set of possible
outputs, each of which is associated with a particular time allocation and some measure of
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its quality. The advantage of this generalization is that computation can be interrupted at
any time and still produce results of a certain quality, hence the name “ anytime algorithm.”

2.1 Measuring the Quality of Results

In the context of anytime algorithms, a quality measure is typically a function from the
output of the algorithm to the [0,1] interval. It may or may not be related to the utility
function of the system that incorporates the algorithm; but it should measure some aspect
of the algorithm’s output that improves over time, at least on average. The following three
metrics have proved useful in anytime agorithm construction:

1. Certainty — This metric reflects the degree of certainty that a result is correct. The
degree of certainty can be expressed using probabilities, fuzzy set membership, or any
other method of expressing uncertainty. For example, consider an anytime diagnosis
algorithm that is based on combining more and more evidence as computation time
increases. The certainty that the diagnosis is correct increases as a function of run-
time, but there remains a possibility that the correct result is entirely different from
the result generated by the algorithm.

2. Accuracy — This metric reflects the degree of accuracy in the value returned by the
algorithm, typically through a bound on the difference from the exact solution. For
example, if a Taylor series is being used to approximate a certain function, then the
error bound (given by Lagrange's remainder formula) decreases with the iteration
number. This error bound determines the quality of the results.

3. Specificity — This metric reflects the level of detail of the result. In this case, the
anytime a gorithm always produces correct results, but the level of detail isincreased
over time. For example, consider a hierarchical diagnosis agorithm that pinpoints
a subassembly as the source of the fault. Over time, this can be refined all the way
down to primitive components, but at any point the output is correct, even if not fully
specific.

Notice that accuracy, a standard measure in numerical domains, can be mapped onto
specificity, which is more commonly used in symbolic domains. An inaccurate numerical
solution is very specific but incorrect, and could be mapped to an equally useful, correct
statement that the solution lies within a certain interval. Anytime algorithms can also have
multidimensional quality measures. For example, PAC algorithms for inductive learning
are characterized by an uncertainty measure, ¢, and a precision measure, .
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Figure 1. Typica performance profiles. (a) Standard algorithm. (b) Idealized anytime
algorithm. (c) Actual anytime algorithm.

2.2 Performance Profiles

The performance profile of an algorithm characterizes the quality of its output as afunction
of computation time. All agorithms —whether standard or anytime — have a performance
profile. Figure 1 shows typical performance profiles for standard algorithms (a) and ideal-
ized anytime algorithms (b). The performance profile of the standard algorithm shows that
no results are avail able until its termination at which point the exact result isreturned. The
idealized anytime algorithm provides output whose quality improves gradually over time.
In practice, the improvement in quality of an anytime algorithm may look more like the
profile shown in Figure 1 (c).

Strictly speaking, such profiles are defined only for a particular input, and only for
deterministic algorithms. We will also need to describe the output quality for a population
of inputs, and for a set of runs of a randomized agorithm. Further refinements are needed
to describe how the performance depends on various aspects of the input such as quality
and size. We aso need ways to acquire and represent profiles. These issues are dealt with
in the following subsections.

2.2.1 Categoriesof Performance Profiles

Given a deterministic anytime algorithm A, let ¢ 4(z, t) be the quality of results produced
by A with input = and computation time; let ¢ 4(¢) be the expected quality of resultswith
computation time ¢; and let p4+(q) be the probability (density function in the continuous
case) that A with computation time ¢ produces results of quality ¢q. The most informative
type of performance profile used in thiswork isthe performance distribution profile defined
below:

Definition 2.1 The performancedistribution profile (PDP) of analgorithm .4 isafunction
D4 @ R™ — Pr(R) that maps computation time to a probability distribution over the
quality of the results.



An obvious simplification of the PDP is the expected performance profile (EPP), as
used by Boddy and Dean [1] and by Horvitz [14]:

Definition 2.2 The expected performance profile (EPP) of an algorithm A is a function
E4 : Rt — R that maps computation time to the expected quality of the resuilts.

Note that £ 4(¢) can be calculated directly when the expected quality of the algorithm can
be determined for each time allocation or it can be estimated by averaging the actual quality
achieved over many problem instances (as shown in Equation 1).

Eu(t) =Y parla)g =Y Pr(z)qa(x,t) 1)

For any summary description of component algorithms, it is important to understand
how the summary description of a composite system can be derived from the descriptions
of its components. Suppose, for example, that for any particular input to a two-component
system, the output quality is some function f of the qualities ¢ (x, ¢) and ¢»(x, t) achieved
by the components. Unfortunately, it is generally the case

F(Ea(qi(x,1)), Eo(q2(, 1)) # Ex(f (a1 (2, 1), 2 (1))

Hence the EPP of the composed system cannot be recovered easily from the EPPs of the
components. EPPs are therefore most useful when the variance of the original PDPs is
small, so that the error associated with composition of EPPs is also small. In the special
case where the variance of the distribution is zero (or infinitesimal), the anytime algorithm
issaid to have a fixed performance. For such algorithms, an expected performance profile
offers a complete, accurate description of performance.

Definition 2.3 The performance interval profile (PIP) of an algorithm A is a function
I, : Rt — R x R that maps computation time to the upper and lower bounds of the
quality of the results.

Notethat if 74(t) = [L, U] then:
Vo : L <qu(x,t) <U (2

Performance interval profiles offer a representation that is both compact and easy to
manipulate. From the lower bounds on the qualities of the results of two algorithms, one
can normally find a lower bound on the quality of their combined result. Hence, when a
compact representation is preferred and the variance of thedistributioniswi de, performance
interval profiles are useful.

In order to define optimal compilation, wewill aso need anotion of dominance among
profiles.
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Figure 2: Dominance relations among profiles: aand b dominate ¢, but neither of aand b
dominates the other.

Definition 2.4 Let A and B be two anytime algorithms that solve the same problem, then
B issaid to dominate A (B > A) if for every input = and every time allocation ¢:

Vo ¥t gp(z,t) > qalx,t)

The relationship of dominance between anytime algorithms is a partial order. Given two
anytimealgorithmsthat solveacertain problem, it ispossiblethat neither of them dominates
the other (see Figure 2).

2.2.2 Conditional Performance Profiles

It may happen that the performance of the algorithm depends significantly on the nature of
theinputs, in which casethe PDP will betoo coarsefor general use. If theinput-dependence
can be attributed to asmall set of features, one can use a conditional performance profile by
partitioning the input domain into classes and storing a separate profile for each input class.
The partitioning can be done using any attribute of theinput that may influence performance,
such as size or a complexity measure. Input classes of similar performance can also be
derived automatically using Bayesian statistics by programs such as Autoclass [3].

In this paper, we consider conditioning on the input quality. A conditional performance
profile therefore consists of a mapping from input quality and run-time to probability
distribution of output quality:

Definition 2.5 The conditional performance profile (CPP) of an algorithm A isafunction
Cy @ RxR" — Pr(R) that maps input quality and computation time to a probability
distribution over the quality of the results.

A CPP can aso be seen as a family of PDPs, each for a different input quality and
denoted by C 4 ,. Thisleadsto the graphical representation shown in Figure 3. Each curve
in the figure represents an expected performance profile for a particular input quali ty.
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Figure 3. Graphical representation of a conditional performance profile

The information in the CPP is essential to the compilation process since the allocation
of time to a certain modul e affects not only the quality of the result of that module but also
the quality of the results of any modulethat usesthat result. The CPP thus provides enough
information to characterize the performance of any module in such a way that it can be
combined optimally with other modules without “looking inside”.

Definition 2.6 Input monotonicity: a CPP for algorithm .4 exhibits input monotonicity if
and only if
Vp,q:p>q=Cup>Cay

That is, as the input quality improves, so should the performance profile. Thisisavery
natural property, and also very useful as we show below.

2.2.3 Acquiring and Representing Perfor mance Profiles

Performance profiles can sometimes be calculated by algorithm analysis. For example,
in many iterative algorithms, such as Newton's method, the error in the result is bounded
by a function that depends on the number of iterations. In such cases, the performance
profile can be calculated once the run-time of a single iteration is determined. In general,
however, such structural analysis of the code is hard because the improvement in quality in
each iteration and its run-time may be unpredictable. To overcome thisdifficulty, ageneral
simulation method can be used. It isbased on gathering statistics on the performance of the
algorithm on randomly generated problem instances. Ideally, the statistics are gathered for



the same population of instances as will appear when the algorithm is deployed. This can
be ensured by learning the profiles during actual operation.

Performance profiles can be represented either by aclosed form or asatable of discrete
entries. Since performance profiles are normally monotone functions of time, they can be
approximated using asimple family of functions. Once the simulation data is gathered, the
performance information can be derived by various curve fitting techniques. For exampl e,
Boddy and Dean [1] used thefunction: Q(t) = 1 —e ' tomodel the expected performance
of an anytime planner. Performance distribution profiles can be approximated by applying
a similar method to a family of distributions. For example, if the normal distribution is
used, one can apply curve fitting techniques to approximate the mean and variance of the
distribution as a function of time.

The advantage of using a closed-form representation of performance profiles is that
optimization of time allocations can be performed for a general parameterized family of
profiles, using straightforward calculus techniques. The results of such compilation can
be used each time members of that family are compiled. Closed-form representation has
two magjor disadvantages: (1) fitting a closed-form approximation to real data may involve
alarge error; and (2) it is hard to maintain closure under the compilation operation. The
closure property requires that the result of compilation of two (or more) performance
profiles that belong to a certain family be a member of the same family, or at least that
it be approximable by a function in that family. The disadvantages of the closed-form
representation led us to use a more flexible, discrete representation.

The discrete representation of performance profiles is based on a table that specifies
the discrete probability distribution over quality for a range of time alocations. For this
purpose, the complete range of qualities has to be divided into discrete qualities ¢, ..., g,,.
Theentry 4, j in the table represents the discrete probability that with time allocation ¢; the
actual output quality ¢ isin the range [¢; — J,q; + 0]. The size of the table is a system
parameter that controls the accuracy of performance information. Linear interpolation is
used to find the quality when the run-time does not match exactly one of the table entries.

2.3 Interruptible versus Contract Algorithms

We make an important distinction between two types of anytime algorithms called inter-
ruptible algorithmsand contract agorithms. Interruptible algorithms produce results of the
“advertised quality” even when interrupted unexpectedly. Contract algorithms, although
capable of producing results whose quality varies with time allocation, must be given a
particular time allocation in advance. If a contract algorithm is interrupted at any time
shorter than its contract time, it may yield no useful results. Both interruptible and con-
tract algorithms have been used in the past. Dean and Boddy’s [7] definition of anytime
algorithms refers to the interruptible case. Techniques such as depth-limited search and
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Figure 4. Performance profiles of interruptible and contract algorithms

alpha-beta search, on the other hand, are more suited for contract algorithms. Although
they can produce a suitable result for any given effort limit, they may return meaningless
resultsif interrupted before completion.

In genera, every interruptible algorithm is trivially a contract algorithm, but the con-
verse is not true. Intuitively, one tends to think about anytime algorithms as interruptible,
yet the greater freedom of design makes it easier to construct contract algorithms than
interruptible ones. In the case of functional composition, as illustrated by the real-time
medical system mentioned above, it is possible to allocate a fixed contract time optimally
between the two components. This results, however, in a contract algorithm since inter-
rupting the system during diagnosis leaves one with no treatment recommendation at all.
Thisisthe case even if the individual components are themselvesinterruptible. Thus naive
composition destroys interruptibility. This problem is solved by the following reduction
theorem [29]:

Theorem 2.7 (Reduction) For any contract algorithm A, aninterruptiblealgorithm 3 can
be constructed such that for any particular input gz (4t) > qa(t).

Proof: Construct B by running .4 repeatedly with exponentially increasing time limits. If
interrupted, return the best result generated so far. Let the sequence of run-ti me segmentsbe
€, 2¢, ..., 2%, ..., and assume that the time overhead of the code required to control thisloop
can be ignored. Note also that 37~ 2! = 2" — 1. The worst case situation occurs when 3
isinterrupted after amost (2" — 1)e time units, just before the last iteration terminates and
the returned result is based on the previous iteration with a run-time of 2" 2¢ time units.
Since 2= < 4, the factor of 4 results. If one replaces the multiplier of time intervals by
a, one getsatimeratio of: —%—L . The lower bound of this expressionis 4, for o = 2,
hence 2 isthe optimal multiplier under this strategy. O

Figure 4 shows a typical performance profile for the contract algorithm A, and the
corresponding performance profile for the constructed interruptible algorithm 5, reduced
along the time axis by a factor of 4. As an example, consider the application of this
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construction method to Korf’s RTA*, a contract algorithm. As the time alocation is
increased exponentially, the algorithm will increase its depth bound by a constant; the
construction therefore generates an iterative deepening search automatically.

2.4 Programming Techniquesfor Anytime Algorithms

The development of elementary anytime algorithms does not require a radical change in
programming methodol ogies. Many existing programming and automated reasoning tech-
niques produce useful anytime algorithms: search techniques such as iterative deepening;
asymptotically correct inference algorithms such as approximate query answering [9, 32],
bounded cutset conditioning (see [14]), and variable precision logic [24]; various greedy
algorithms (see [1]); iterative methods such as Newton's method; adaptive algorithms such
as PAC learning algorithms or neural networks; randomized methods such as Monte Carlo
algorithms or fingerprinting techniques [17]; and the use of optimal meta-level control
of computation [27]. We conclude this section with an example of a particular anytime
algorithm and its performance profile.

An Example: The Traveling Salesman Problem

The traveling salesman problem (TSP) involves a salesman that must visit n cities. If the
problem is modeled as a complete graph with n vertices, the solution becomes a tour, or
Hamiltonian cycle, visiting each city exactly once, starting and finishing at the same city.
The cost function, Cost(i, j), defines the cost of traveling directly from city 7 to city j
(The cost is not necessarily the Euclidean distance.) The problem is to find an optimal
tour, that is, a tour with minimal total cost. The TSP is known to be NP-complete [10],
henceit is hard to find an optimal tour when the problem includes alarge number of cities.
Iterative improvement algorithms can find a good approximation to an optimal solution,
and naturally yield an interruptible anytime algorithm.

The anytime traveling salesman algorithm is a randomized agorithm that repeatedly
tries to perform a tour improvement step [20, 22]. In the general case of tour improvement
procedures, r edgesin afeasible tour are exchanged for » edges not in that solution aslong
astheresult remains atour and the cost of that tour islessthan the cost of the previoustour.
The simplest caseiswhen r = 2. Figure 5 demonstrates one step of tour improvement. An
existing tour, shown in part (a), visits the vertices in the following order: a, b, c, d, e, f.
The algorithm selects two random edges of the graph, (¢, d) and ( f, a) in thisexample, and
checks whether the following condition holds:

Cost(c, f) 4+ Cost(d,a) < Cost(c,d) + Cost(f,a) (3)

If this condition holds, the existing tour is replaced by the new tour, shown in part (b),
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Figure 5. The operation of randomized tour improvement

ANYTIME-TSP(V, iter)

O oO~NO O WNPE

o O N o
WNRFPO

Tour < INITIAL-TOUR(V)
cost + Cost(Tour)
REGISTER-RESULT(Tour)
for i « 1toiter
e, < RANDOM-EDGE(Tour)
e, + RANDOM-EDGE(Tour)
0 < CosTt(Tour) — Cost(SwiTcH(Tour, e, e3))
if § > 0then
Tour + SwiTcH(Tour, ey, e5)
cost < cost — ¢
REGISTER-RESULT(Tour)
SIGNAL(TERMINATION)
HALT

Figure 6: The anytime traveling salesman algorithm
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Figure 7: The quality map of the TSP algorithm

a b, c f, e d The improvement condition guarantees that the new path has a lower
cost. The algorithm starts with a random tour that is generated by simply taking a random
ordering of the cities. Then the algorithm tries to reduce the cost by a sequence of random
improvements. The result is an interruptible anytime algorithm, as shown in Figure 6.
Note that the algorithm has a generic design that includes an initial step to generate and
register the first result followed by aloop containing an improvement step. The compiled
code handlesan interrupt by returning the most recently registered result. The iter argument
indicates the maximum number of iterations but execution can beinterrupted by the monitor

a an earlier point.

Figure 7 showsthe quality map of the a gorithm, which summarizesthe results of many
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Figure 8. The expected performance profile of the TSP algorithm
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Figure 9: Compilation and monitoring

activations with randomly generated input instances (including 50 cities). Each point (¢, ¢)
represents an instance for which quality ¢ was achieved with run-time ¢. The quality of
results in this experiment measures the percentage of tour length reduction with respect
to the initial tour. These statistics form the basis for the construction of the performance
profile of the algorithm. The resulting expected performance profile is shown in Figure 8.

3 Compilation of Anytime Algorithms

We now turn from the examination of individual anytime algorithms to the problem of
building large systems using anytime a gorithms as components. The compilation process,
illustrated in Figure 9, plays a central role in the solution to this problem.

The input to the compiler is acompound anytime module, that is, a module composed
of several elementary anytime agorithms. The primitive programming language constructs
that are used to define compound modules can vary from a small set of simple constructs
to arich programming language [36]. The choice of language primitives determine the
feasibility and complexity of the compilation problem. Compound modules do not include
time allocation code and hence they are not readily executable. 1n addition to the compound
module, the compiler’sinput includes the performance profiles of the elementary anytime
algorithms. The result of the compilation process is an executable anytime module that
consists of a compiled version of the original module, a pre-defined run-time monitor,
and the performance profile of the system that may include some auxiliary time all ocation
information. The compiled moduleincludescodeto control the activation of the elementary
components with an appropriate time allocation.

Optimal scheduling of the elementary components may also require run-time moni-
toring. The problem addressed by the monitor is similar to the deliberation scheduling
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problem introduced by Dean and Boddy in [7]. Previous solutionsto the problem included
only a small set of algorithms characterized by non-conditional performance profiles. In
this work we have studied the composition and monitoring of an arbitrary number of dif-
ferent algorithms characterized by conditiona performance profiles. We found that the
complexity of the compilation process is largely determined by the choice of a run-time
monitoring scheme. Activemonitoring, that revisesthe allocation the the componentswhile
the system is active, is discussed in [36]. To simplify the discussion here, we assume that
time allocation to the components is determined prior to the activation of the system.

3.1 Aspectsof the Compilation Problem

The solution to the compilation problem depends on a number of factors that characterize
the inputs and the outputs of the process. The main aspects of the problem are described
below:

1. Program structure—Thestructure of acompound anytimemoduleisaprimary factor
that determines the complexity of its compilation. Some programming structures,
such as sequencing, are easier to handle, while others, such as recursive function
cals, are quite difficult to compile.

2. Type of performance profiles — The type of performance profiles and their repre-
sentation also influence the compilation process. Highly informative performance
profiles, such asthe performance distribution profile, are moredifficult to compileand
manipulate. The complexity of the compilation isincreased due to the complexity of
the representation and the requirement that the resulting performance profile provi des
the same level of information.

3. Type of anytime algorithms — The type of algorithm used as input to the compiler
and the desired type of the resulting algorithm have a direct effect on the compilation
process. Contract algorithms are normally easier to construct both as el ementary and
as compound algorithms. Interruptible a gorithmsare more complicated. One can, of
course, construct first a contract algorithm and then use the result of Theorem 2.7 to
makeit interruptible. However, with some programming structuresit is advantageous
to generate an interruptible algorithm directly and avoid the constant slowdown of
the reduction theorem.

4. Type of monitoring — Anytime computation can be controlled using either passive
or active monitoring. Passive monitoring meansthat meta-level scheduling decisions
are made before the activation of the anytime algorithms. Elementary algorithms are
activated as contract algorithmsonly and their run-time cannot be modified beforethe
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termination of the contract. Obviously, the assumption of passive monitoring limits
the capability to optimize the performance profile of a system, but it also simplifies
the compilation problem. With active monitoring, time allocation decisions may be
made after the activation of the system, in response to the actual rather than expected
performance of the components.

5. Quality of intermediate results — With both interruptible and contract anytime
algorithms, an active monitor can examine the quality of intermediate resultsin order
to modify the allocation of the remaining time. However, this requires a capability
to determine the actual quality of intermediate results. The quality of intermediate
results may be a simple aspect that can be quickly calculated. For example, in
the case of a bin packing program whose quality function is the proportion of the
container space filled with packages, the quality of an intermediate result can be
easily calculated. In other cases, such as a chess playing program, the quality of a
recommended move is not apparent from the move itself. Hence, the capability to
determinethe quality of intermediate resultsisan important factor in compilation and
monitoring.

3.2 Compilation Examples

As asimple example of compilation, consider the composition of two anytime algorithms.
Suppose that one agorithm takes the input and produces an intermediate result. This
result is then used as input to another anytime algorithm which, in turn, produces the final
result. Many systems can be implemented by a composition of a sequence of two or more
algorithms. We will examine two particular systems. The first is a repair system whose
elementary performance profiles are represented using a closed form. The second is a
path planning system whose performance profiles are represented using the discrete tabular
approach.

3.2.1 Composition of Diagnosisand Treatment Planning

Consider an automated repair system that iscomposed of two anytimealgorithms: diagnosis
and treatment planning. The system can be represented by the following expression:

Output < TREATMENT(DIAGNOSIS(Input))
The input to DIAGNOSIS is a set of symptoms for which a diagnosis is computed. This

diagnosisisused as input to TREATMENT that produces the final output — a treatment plan.
Figure 10 shows the linear performance profiles of the elementary anytime agorithms.
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Figure 10: Performance profiles of DIAGNOSIS and TREATMENT

They start with an arbitrary initial quality ¢; (that may be zero) and reach the maximal
quality of 1 at time T;. Hence they can be represented by:

Qi(t)=q +ast (0<t<Ty) Qa(t) =g+ ast (0<t<Ty)

Thequality of DIAGNOSIS, 1, reflectsthe probability that thediagnosisiscorrect. Similarly,
the quality of TREATMENT, @)», reflects the probability that the treatment plan repairs the
problem given that the diagnosisis correct. Assuming that the qualities of the two modules
are independent, we can express the overall quality by the product of the qualities of the
two modules. Our goal isto compile the best contract algorithm for the compl ete system.
In other words, the compilation process has to create the following mappings:

T:.R" = R" x R* 4

PP:R" —10,1] (5)

The first mapping specifies for each total alocation the amount of time that should be
alocated to each algorithm so as to maximize the output quality'. The second mapping
is the performance profile of the composed agorithm based on optimal time allocation.
For each total allocation, ¢, the compiler has to find the optimal alocation, =, to the first
algorithm (which implies alocation ¢+ — x to the second algorithm) such that the overal
quality Q(x) ismaximal.

Theorem 3.1 Given the performance profiles of the input modules, the optimal time allo-
cation mapping is:

. 1o o @1 o 92
T.t—>(2(t a1+a2)’2<t+a1 a2>> (6)

1Only the appropriate allocation to the first component is really necessary because the allocation to the
second is simply the remaining time.
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Figure11: (a) Expected performanceprofileof GET-DOMAIN-DESCRIPTION. (b) Conditional
performance profile of PATH-PLAN, given input quality between 0.86 and 1.0.

Proof: Since the overall output quality is:

Qx) = —apap1” + (st — qran + o )T + q1Ge + qrast ()

the maximal quality is achieved when %—f = 0, or when:

— 20001 + apet — qrag + qeap =0 (8)

The solution of this equation yields the above allocation. O

A trivial correctionisneeded to cover boundary conditions(sinceallocationto DIAGNOSIS
should be in [0, 71] and to TREATMENT in [0, 73]): (1) If an algorithm gets more run-time
than is necessary for its completion, then the extra time should be allocated to the other
algorithm (or ignored when both algorithmsterminate); and (2) If thetime alocation to one
algorithm is negative, then al the available time should go to the other algorithm.

3.2.2 Composition of Sensing and Path Planning

Consider a robot navigation system that is composed of two anytime algorithms. visual
sensing and path planning. The system can be represented by the following expression:

Output < PATH-PLAN(Start, Goal, GET-DOMAIN-DESCRIPTION(/nput))

The input to GET-DOMAIN-DESCRIPTION is raw data from a visual sensor from which the
modul e constructs an approximate map of the robot’s local environment. Thismap is used
as input to PATH-PLAN that produces the final output — a path from Start to Goal. The

actual implementation of these anytime modulesis described in [37]. Figure 11 showsthe
performance profiles.
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Figure 12: The compiled performance profile for the composed system (COMP). The
profileslabeled MIN and MAX show the result of minimal and maximal allocations to the
vision component.

The domain is represented as a matrix of elementary positions each of which can be
either free or occupied by an obstacle. The quality of GET-DOMAIN-DESCRIPTION reflects
the probability that an elementary domain position would be wrongly identified, that is,
identified asfree space while actually blocked by an obstacle or viceversa. InFigure 11, T,
istheminimal amount of timeneeded for themodul eto produce aninitial domain description
with quality Q,. For arun-timet, T, < t < Ty, the quality of GET-DOMAIN-DESCRIPTION
improves from @, to the maximal quality Q.

Path planning is performed using a coarse-to-fine search algorithm (similar to Lozano-
Pérez and Brooks [23]) that allows for unresolved path segments. In order to make it an
anytime algorithm, we vary the abstraction level of the domain description. This allows
the algorithm to find a feasible plan quickly, and then repeatedly refine it by replanning a
segment of the plan in more detail. The quality of a plan is the ratio between the length
of the shortest path and the path that the robot follows when it uses the abstract plan. To
capture the dependency of the quality of planning on the quality of sensing, we used a
conditional performance profile.

Performance profiles in this application were represented using the discrete tabular
approach. Using thisrepresentation, the compilation of the two modul esbecomes adiscrete
optimization problem that we solved using a simple search algorithm. Figure 12 showsthe
resulting performance profile. Also shown in that figure are the performance profil es of
two other modules: MIN, that alocates to GET-DOMAIN-DESCRIPTION aminimal amount of
time, T,,, and MAX, that allocates amaximal amount of time, 7;,. The compiled performance
profileis superior to both. Itiscloser to MIN with small allocations of timeand is closer to
MAX in the limit.

The above two examples demonstrate several general issues in compilation. When
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performance profiles are represented using a certain formula, as in the first example, the
compilation problem involves solving a differential equation. The complexity of the
equation, in terms of both size and number of variables, grows as a function of the number
of elementary algorithms that are compiled. If a discrete tabular representation is used,
then the compilation problem becomes a search problem in a discrete domain whose size
grows exponentialy with the number of modules. The problem of exponential growth in
the complexity of compilation is addressed in the next section.

4 Compilation of Functional Expressions

We now turn to amore formal analysis of agenera class of compilation problems, namely
the family of programs created by functional composition of anytime algorithms. In
functiona composition each expression to be compiled iscomposed of an anytime function
whose arguments may be either input variables or another expression created by functi onal
composition. In the case of contract algorithms, the compilation task involves finding for
each total allocation ¢, the best way to schedule the components so as to optimize the
expected quality of the result of the complete expression.

Let F beaset of anytimefunctions. To simplify the discussion, assumethat all function
parameters are passed by value and that functions have no side-effects (asin pure functional
programming). Let Z be a set of input variables. The notion of afunctional expression is
defined as follows:

Definition 4.1 A functional expression over F with input Z is:
1. Aninput variablei; € Z, or

2. Anexpression f(gi, ..., 9,) Where f € F and each g; isa functional expression.

Each function f € F has a fixed conditional performance profile associated with it that
specifies the quality of its output as a function of time allocation and input quality.

Figure 13 shows two possible graphical representations of the functional expression:

Thefirst representation is a tree constructed in the following way:

1. If eisaninput variable:; then it isrepresented by a leaf node 7;.

2. Ife= f(q,...,9n) thenit is represented by a tree whose root node is f and whose
main subtrees are the trees representing g1, ..., g,.
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Figure 13: Graph representation of functional expressions

The second representation is a directed acyclic graph (DAG) constructed in the following
way:

1. If eisaninput variablei; then it isrepresented by a leaf node 7.

2. Ife= f(g1, ..., gn) thenitisrepresented by a DAG that includesa node f and directed
arcs fromthe (roots of the) DAGs representing ¢4, ..., g, t0 f.

Notice that the DA G representation requires only one DAG to represent all the copies of a
repeated subexpression, while the tree representation requires multiple copies of subtrees
for repeated subexpressions. When afunctional expression has no repeated subexpressions,
itstree and DAG representations are identical and its compilation is simplified.

4.1 The Complexity of Compilation

In this section we will analyze the complexity of compilation of Functional expressions
and show that the general problem is NP-complete in the sense. A relaxed version of the
problem, that excludes repeated subexpressions, will be shown to be pseudo-polynomial.

The compilation problem is normally defined as an optimization problem, that is, a
problem of finding a schedule for a set of components that yields maximal output quality.
But in order to prove NP-completenessresults, it ismore convenient to refer to the decision
problem variant of the compilation problem. This decision problem is stated as foll ows:
given a functional expression e, the conditional performance profiles of its components,
and atotal alocation B, does there exist a schedule of the components that yields output
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quality greater than or equal to K'? We refer to this decision problem as the problem of
global compilation of functional expressions, or GCFE. The first complexity result asserts
the following:

Theorem 4.2 The GCFE problemis NP-complete in the strong sense.

Proof: The GCFE problem is clearly NP since, given a particular allocation to the com-
ponents, it is easy to determine in linear time the output quality of the expression. Hence,
the verification problem is polynomia and the decision problem is NP. The rest of the
proof is by transformation from the PARTIALLY ORDERED KNAPSACK problem, an
NP-complete problem in the strong sense [10] defined as follows:

INSTANCE: Finite set U, partial order < on U, foreachu € U asizes(u) € Z* and a
vauew(u) € Z*, and positiveintegers B and K .
QUESTION: Isthereasubset U’ C U suchthatif u € U' and v’ < u, then«' € U’, and
suchthat 3, cpr s(u) < Band Y, v(u) > K?

An instance of the PARTIALLY ORDERED KNAPSACK problem can be directly
transformed into a DAG representing a corresponding functional expression. To describe
the construction of the DAG, we must first define the notion of a maximal element in a
partialy ordered set.

Definition 4.3 An dement » € U isa maximal element of U if there is no other e ement
u' € U suchthat u < u'.

The notion of a minimal element is defined in an analogous way. Every partialy
ordered set has at least one maximal element and at least one minimal element. Now, the
construction of the DAG is defined as follows. For each u € U the DAG will contain a
corresponding computational node. A direct arc goes from w; to u, if and only if u; is
a maxima element of the set {u|u < u,} of al elements smaller than u,. In addition,
the DAG has a“root” node r with a directed arc from every other node v € U tor. The
conditional performance profile of anode u € U is:

v(u) ift>s(u)andVi:q >0

Qu<q1a 7QH7t) = { 0 0therW|Se (9)

where ¢, ..., ¢, are the qualities of the nodes that have a directed arc to u. If thereisno

such node, that is, if v isaminimal element of U, then its performance profileis:

v(u) ift > s(u)

Qut) = { 0 otherwise (10)

22



The conditional performance profile of r is defined as follows:

k
Q7(q17aqk7t) :ZQz (11)
i=1

Finally, the overall output quality ), is defined as the quality of the root node, 7.

It is easy to see that the construction of the DAG can be accomplished in polynomial
time. All that isleft to show isthat theanswer tothe PARTIALLY ORDERED KNAPSACK
problemis*“yes’ if and only if the answer to the corresponding GCFE problem is“yes.”

If theanswer to the GCFE problemispositive (with contract time B and minimal output
quality K), then define U’ asthe set of nodes v’ € U whose “output quality” inthe DAG is
positive. The sum of the output qualitiesof all the modules, except the root, must be at least
K. Each module can only contribute its value to the output quality when itsallocation is at
least its size. In addition, the output quality of an internal node of the DAG is “enabled”
only when all its inputs have positive quality, that is, all the elements smaller than it are
included. Thereforetheconditionthat v’ € U’ whenu € U’ and v’ < v issatisfied. Finally,
since the tota alocation is B, Y., s(u) < B, and since the output quality is at least
K, > conv(u) > K, theanswer to the PARTIALLY ORDERED KNAPSACK problemis
also positive.

If the answer to the PARTIALLY ORDERED KNAPSACK problem is positive (with
knapsack size B and minimal value K), then simply allocate to each computationa node
v’ € U' anamount of timeequal to itssize. The definition of the PARTIALLY ORDERED
KNAPSACK problem and the transformation to the DAG guarantee that the output quality
of each «' would be equd to its value s(u'). Hence a minimal output qudity of K is
guaranteed and the answer to the GCFE problem is also positive.

Sincethe PARTIALLY ORDERED KNAPSACK problemisNP-completeinthe strong
sense, and since the above transformation is polynomial, the GCFE problemisNP-complete
in the strong sense. O

We now turn to the analysis of arelaxed case of the compilation problem, referred to as
tree-structured GCFE. In this case, no repeated subexpressions are allowed and as a result
the DAG representation becomes a directed tree. We show that the tree-structured GCFE
is NP-complete.

Theorem 4.4 The tree-structured GCFE problem is NP-complete.

Proof: Asin the case of the GCFE problem, the verification problem is polynomia and the
problem is therefore NP. The rest of the NP-completeness proof is by transformation from
the KNAPSACK problem [10], defined as follows:
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INSTANCE: Finiteset U, foreachu € U asizes(u) € Z™ andavauev(u) € Z*, and
positiveintegers B and K.
QUESTION: Isthereasubset U’ C U suchthat -, ;v s(u) < Band Y, v(u) > K?

An instance of the KNAPSACK problem can be transformed into a tree-structured
GCFE problem by constructing a binary tree whose leaves are the elements of U. Each
element u € U corresponds to one leaf of the tree (one can add leaf nodes of zero size and
value to make the number of |eaves an exact power of 2). The performance profile of each
leaf nodeis: (W (W

v(u) ift>s(u

Qu(t) = { 0 otherwise

Now, O(|U]) internal nodes are added to construct a complete binary tree. The conditional

performance profile of each internal node, w, isthe sum of the qualities of its|eft and right
branches:

(12)

Qu(q1. 2. 1) =1 + @2 (13)

Note that internal nodes of the tree do not consume any computation time. The output
quality, Q..., isthe quality of the root node which is the sum of the values of all the the
elements of U whose alocation exceeds their size.

It iseasy to seethat the construction of thetree can be accomplished in polynomial time.
To complete the proof, we need to show that the answer to the KNAPSACK problem is
“yes’ if and only if the answer to the corresponding tree-structured GCFE problem is“yes.”
This istrivialy true when one sets the contract time to B and the minimal output quality
to K. The argument is similar to the previous proof. We conclude that the tree-structured
GCFE problem is NP-complete. O

The KNAPSACK problem itself is pseudo-polynomial. In fact, the problem can be
solved by a simple dynamic programming algorithm. This raises the question of whether
the compilation problem of tree-structured expressions is also pseudo-polynomia. The
next section identifies the conditions under which the answer to this question is positive.

4.2 Local Compilation

Loca compilation is the key mechanism in our model to cope with the exponential com-
plexity of global compilation. Theideaisto replace asingle, complex optimization problem
with aset of ssimple optimization problemswhose number grows linearly with the size of the
program being compiled. If these local optimization problems can be solved in polynomial
time, then the total amount of work becomes polynomial.

Definition 4.5 Local compilation is the process of optimizing the quality of the output of
each programming construct by considering only the performance profiles of itsimmediate
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Figure 14: Tree representation of afunctional expression

sub-components.

Local compilation solvesthe sametype of problem as global compilation except for the fact
that its scopeis limited to one programming structure at a time. While global compilation
derivesdirectly the best timeallocation to all the el ementary components, local compilation
computes the best time allocation to the immediate sub-components, treating them as if
they were elementary anytime algorithms. If a sub-component is not e ementary, then its
performance profile is derived using local compilation as well.

A fundamental question regarding local compilation is the relationship between its
result and the result of global compilation. Local compilation is said to be optimal with
respect to a particular program structure if it always achieves a globally opti mal expected
performance. Our first goal in thissection isto prove the optimality of local compilation of
tree-structured functional expressions under the input monotonicity assumption. Without
loss of generality, we will consider binary functions only and assume that the functional
expression is a complete binary tree. The leaves of the tree are functions that take input
variables as inputs and the internal nodes are functions that take functional expressions as
inputs.

Let f;; denote the ;% function on the i"" level of the tree. The root node is denoted
accordingly by fy . If thetreeisof depth n, thenthe nodes correspondingto £, o, ..., frn.2n—1
areleaf nodeswhoseinputsareinput variables. For any othernode f; ;, 0 <i<n—1,0 <
j <2'—1,theinputsare: f;12; and fi112;11 ashownin Figure 14.

Corresponding to each node of the binary tree is a conditiona performance profile
Qi ;(q1, ¢2, t) which characterizes the output quality for that node as a function of its input
qualities, ¢; and ¢», and time allocation ¢.

Given a functiona expression e of depth n, and a particular input quality, the global
compilation problem is to find the optimal time alocation to all the nodes of the tree that
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maximizes the quality of the output of the root node:

Qf(t) = argmax Qoo(.), Z Z tij=t (14
" 0<i<n 0<j<2i—1
where (g o(.) denotes the result of replacing (in the expression ¢) every function by its
conditional performance profile and every input variable by its quality.

We definealocal compilation schemefor e by inductiononitsstructure. For aleaf node,
the locally compiled performance profile is the conditional performance profile associated
with that node:

QL (1) = Qui(Gnjnsgnjait), 0<j<2"—1 (15)
where ¢, ;1 and ¢, ; » arethe qualities of the two inputs of the particular function. For each
internal node, the locally compiled performance profile is defined using the performance
profiles of itsimmediate inputs:

z‘L,j (t) =arg fg%f{Qi,j(QiLﬂ,zj (t1), QiL+1,2j+1(t2)at —t —t)} (16)
Finally, the performance profile of ¢ is denoted by the following expression:
Qr (t) = Qpyo(t) 17)

Note that the external input quality was deliberately omitted in this notation since we focus
on the result of local compilation for any given input quality. We are now ready to prove
the following result:

Theorem 4.6 Optimality of local compilation of functional expressions: Let ¢ be a func-
tional expression of an arbitrary depth n whose conditional performance profiles satisfy
the input monotonicity assumption, then for any input and total time allocation ¢:

Q: (1) = QI (t)

Proof: By induction on the depth of the tree. For trees of depth 1 the claim istrivialy true
because both compilation schemes solve the same optimization problem. Suppose that the
claimistruefor treesof depth n — 1 or less. Let e bean expression of depth n, and let ¢; ; be
the allocations to f; ; based on global compilation and resulting in a global optimum. Let
t; and t, be respectively the total alocation to the left and right subtrees of the root node:

n 2i-1_-1

o= >ty (18)
i=1 j=0
n  2i—1

o= > Y tiy (19
1=1 j=2i—1

t = i+t +too (20)
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Then:

QL) =

By definition and input monotonicity:

= QU,O(QEU (tl>7 Qﬁl(tr)a to,o) (21)
By the induction hypothesis:

= Qo,o(@fo(ma Qfl(tr)a to,0) (22)
By definition of local compilation:

< Quolt) (23)
By definition:

= Qr(t) (24)
By definition of global compilation:

< Q) (25)

Hence Q7 (t) = Q¢ (t) D

Since local compilation yields optimal results, it is useful to determine the conditions
under which it can reduce the complexity of the compilation problem. Obvioudly, if
each function can take any number of arguments, we cannot guarantee any reduction in
complexity. With unbounded number of inputs the depth of the corresponding tree may be
one in which case local and globa compilation solve the same problem. Hence, we will
examine the complexity of local compilation under the bounded degree assumption that
each node of the tree has a bounded degree. In other words, we assume that the number
of inputs to each function is bounded. This assumption only reinforces the principle of
modularity that has been long recognized in the devel opment of complex systems.

Given afunctional expression of size n and discrete performance profileswith maximal
run-time ¢, we have the following result:

Theorem 4.7 The tree-structured GCFE problem is polynomial in nt under the input
monotonicity and bounded degree assumptions.

Proof: Since local compilation guarantees optimality under input monotonicity and since
local compilation needs to be repeasted O(n) times, we only need to show that local
compilation of a single node is polynomial in ¢. Thisis trivialy true under the bounded
degree assumption. In particular, if the degree of each node is bounded by %, then the
complexity of local compilationis O(nt*). Unless otherwise mentioned, we will assume
in this section that £ = 2 and that the complexity of local compilationis O(nt?). O

Note that there is no contradiction between this result and the NP-compl eteness of the
KNAPSACK problem. Both the input monotonicity and the bounded degree assumptions
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are met by thereduction of theorem 4.4. However, thisdoesnot imply that the KNAPSACK
problem is polynomia in n. It doesimply that the problem is polynomial in nt (where t
represents the maximal element size), and this is already known. The dependency of the
algorithm complexity on ¢ is not a problem in our domain for severa reasons. First, the
range of possible run-timesin a real-time system is normally bounded by some constant.
Second, the fixed tabular representation of performance profilesallowsusto limit thevalue
of ¢ by selecting the “appropriate” time unit for the application. When the performance
profile sizeisbounded by aconstant, local compilation can be performed in constant time at
each node, and the complexity of the entire process becomes O(n) — linear in the program
size.

In terms of space requirements, even though local compilation requires O(n) separate
performance profiles (one for each internal node of the tree), itstotal space requirement is
only a constant factor more than the space requirement of global compilation. Thisis due
the fact that a globally compiled performance profile must specify the allocation to each
node of the tree while a locally compiled performance profile needs to specify only the
allocation to the immediate successors of each node and to the node itself. To summarize,
local compilation has the same space complexity as global compilation but it reduces the
time compl exity of the optimization problem from exponential to polynomia in nt.

4.3 Additional Compositional Operators

The family of functional expressions can be enriched with alarge set of standard composi-
tional operators. The optimality of local compilationremainsvalid aslong as each operator,
¢, satisfies two requirements: (1) The operator produces a result whose quality depends
on the qualities of its inputs and on the amount of time allocated to the evaluation of the
operator itself, t,; and (2) The conditiona performance profile of the operator exhibits
input monotonicity. Many useful operators satisfy these requirements. In many cases the
evaluation time of such operatorsisasmall constant timeand their conditiona performance
profiles are represented as step functions.

For example, consider the operator oneof:
F(x) = oncof (M (x), ... My ()

Theoutput of oneof istheresult of itssingle component, M;, with the highest quality and its
quality isthe quality of that component. Suppose that each component, M/;, is an anytime
algorithm whose performance profile is ;. The conditiona performance profile of oneof
is:

— max(Qla"'aQn) ift>toneof
Qoneof(cha 7QHﬂt> - { 0 Othet’WISG (26)

28



This models a situation in which several aternative methods can be used to solve the
same problem. For example, suppose that one needs to transport n identical packages
using a certain container. The components of oneof might be several aternative bin
packing agorithms where the quality of each algorithm is measured by the portion of
the container’s volume filled with packages. Obvioudly, the maximal volume that can be
transported is proportiona to the maximal quality among al the individua bin packing
algorithms. Additional examples of such compositional operators appear in [36].

4.4 Repeated Subexpressions

Loca compilation does not produce good results when applied to functional expressions
with repeated subexpressions. Using the tree representation, a repeated subexpression
corresponds to a repeated sub-tree. The problem with local compilationisthat it allocates
computation time to all the nodes of the tree while time should be allocated only once to
evaluate all the copies of a repeated subexpression. For example, consider the functional
expression that appearsin Figure 13.

F(x) = E(D(B(A(x)), C(A(x))))

The subexpression A(x) appears twice and an efficient compiler should not alocate time
to both copies. This means, however, that the allocation of time to A(x) cannot be done
locally, since it affects the output qualities of both C' and D.

Inthissection, we present threetimeall ocation methodsthat deal with general functional
expressions.

e HiLL-CLIMBING-ALLOCATION finds a solution to the global compilation problem
directly, but does not guarantee global optimality.

e CONDITIONING-ALLOCATION tries all possible alocations to the repeated subexpres-
sions, then applieslocal compilation to the resulting trees (note the anal ogy to condi-
tioning methods in belief network evaluation [25]).

e TRADING-ALLOCATION begins with the allocation determined by local compilation,
and then trades time among components so that only one copy of each repeated
subexpression ends up with a non-zero alocation.

All three methods where devel oped using the discrete tabul ar representation of performance
profiles. The complexity and optimality of the three methods are discussed below. For each
algorithmwewill computethe complexity of cal culating each entry of thetablerepresenting
the performance profile (that is, the complexity of calculating the optimal allocation to the
components for any particular input quality and total run-time).
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HILL-CLIMBING-ALLOCATION

1 for each Q;, € [Q;..Qy] do

2 for each T' € [T},..Ty] do

3 s < INITIAL-RESOLUTION(T)

4 ti«—T/n Vi:1<i<n

5 repeat

6 while 3, 7 such that
E(Qout(@ina Ty ey by — 8, oiny tj + 5, ..., tn>> >
E(Qout(Qin. t1, ..., 1n))

7 let 7, j be the ones that maximize expected quality

8 t; < t;, — s

9 tj — t]' + s

10 s 4 5/2

11 until s < ¢

12 T(Qin, T] < (t1, ..., tn)

Figure 15: Time alocation using a hill-climbing search

4.4.1 Time Allocation Using a Hill-Climbing Search

Thistime allocation agorithm uses the DA G representation of functional expressions. For
each particular time allocation to the components of aDAG, the quality of the output can be
computed using the conditional performance profiles of the components. This computation
can be performed in linear time in the size of the graph. While the search space of all
possible time allocations has exponentia size, an efficient hill-climbing search procedure
can be constructed by limiting the search space.

Thetime allocation algorithm, shown in Figure 15, starts with an equal amount of time
allocated to each component of the DAG. Then it considers trading s time units between
two modules so as to increase the expected quality of the output. Aslong asit canimprove
the expected quality, it trades s time units between the two modules that have maximal
effect on output quality. When no such improvement is possible with the current value of
s, it divides s by 2 until s reaches a certain minimal value, ¢. At that point, it reaches a
local maximum and returns the best time allocation it found. As with any hill-climbing
algorithm, it suffers from the problem of converging on alocal maximum. An analysis of
the algorithm shows that simple properties of the conditional performance profiles of the
components, such as monotonicity, are not sufficient to guarantee global optimality.

Complexity. Let x be the size of the functional expression (i.e. the number of nodesin the
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CONDITIONING-ALLOCATION
for each Q;, € [Q;..Qy] do
for each T' € [T},..Ty] do
Qmaz < 0
Tmaz <— 0
forr+ 0to7T step e
t«T—r
ADJUST-PP(r)
APPLY-LOCAL-COMPILATION(e, )
Q «— Qout(@ina <7ﬂ|t1a L) tnfm»
if Q> Qe thendo
Qmaz < Q
Aopt — (’I“|t1, ceey tn—m)
T[Qm, T] — Aopt

P OoO~NOOTh, WNPE

Y
WNERO

Figure 16: Time alocation with pre-determined time to repeated subexpressions

corresponding DAG), and let 7 = T,,... /¢ be the maxima number of discrete time unitsto
be allocated. The complexity of the algorithm is then O(k*log7). Thisis due to the fact
that for each search resolution s, the algorithm needs to find the optimal pair of modulesfor
trading time. Thisis donein O(x?) by considering every possible pair. This step repeats
only a constant number of times. Finding the expected quality of the output is performed
in O(x) and the number of time resolution stepsis O(logT).

4.4.2 Pre-Determined Allocation to Repeated Subexpressions

The second method, CONDITIONING-ALLOCATION, is based on fixing the allocation to each
repeated subexpression before computing the allocation to the other components. The
allocation to the other components is determined based on standard local compilation.
Time alocation is made only once to al the copies of each repeated subexpression. Once
that allocation is decided, the complete expression is treated as a tree rather than a DAG
and the efficient local compilation schemeis used.

Let ¢ be a functional expression of size n. Assume that ¢ has only one repeated
subexpression ¢’ that appears m > 1 timesin e. The copiesof ¢’ aredenoted by ¢/, ..., ¢/

m-*

Let (r|ty,...,t,_m)) represent alocation of r time unitsto ¢!, ..., e/, and ¢, ..., t,_,, to the

Y m

remaining n — m modules. Figure 16 shows the time allocation algorithm. Its central
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idea is to reserve a certain amount of time r, out of the total allocation ¢, for evaluating
a single copy of the repeated subexpression ¢’. All the other copies “enjoy for free” the
result of this evaluation. The fact that » time units are reserved for ¢’ is communicated
to the local compilation process by adjusting the performance profile of ¢’. The new
performance profile is a step function that returns quality Q.. (r) at zero time and provides
no further improvement of quality. Since no improvement of quality is possible, an optimal
schedule would not alocate time to any of the copies and hence standard local compilation
is guaranteed to allocate the remaining time optimally to the other components. The
algorithm performs a search to find the best pre-determined reserved time r for which the
output quality is maximal.

If the conditional performance profiles of al the components of e satisfy the input
monotonicity assumption, then any optimal schedule has the following property:

Lemma 4.8 Any optimal schedule for the evaluation of ¢ allocates time to a single copy of

e

Proof: Suppose that there is an optimal schedule in which more than one copy of ¢’ is
evauated. Let rq,..., 7, be the alocations to the m copies, and let » = Y r;. By the
monotonicity of the performance profile of ¢', the quality achieved by alocating r time
unitsto asinglecopy isgreater than any of the qualitiesachieved with allocationsr, ..., r,,.
Hence, by substituting the result of that single copy for al the copies without changing the
allocation to the other components, and by the monotonicity of the conditional performance
profiles, it isapparent that the output quality would increase. This contradictsthe optimality
of the original schedule. Therefore, time must be alocated to a single copy only. O

CONDITIONING-ALLOCATION can be viewed as a two phase optimization process. Its
first phase determines the optimal » and its second phase finds the optimal allocation to the
other components. Having established the fact that any optimal schedule must activate ¢’
only once, we can conclude the global optimality of this method:

Theorem 4.9 Optimality of CONDITIONING-ALLOCATION: Let e bea functional expression
withasinglerepeated subexpression e’, then CONDITIONING-ALLOCATIONreturnsaglobally
optimal schedule for evaluating e.

Proof: Animmediate result of Lemma 4.8 and the optimality of local compilation.

Complexity. Again, let x be the size of the functional expression and let 7 = T,,,.../¢ be
the maximal number of time units to be allocated. The complexity of the algorithm isthen
O(r7?). Thisisdue to the fact that the complexity of the search for the optimal value of r
isO(7) and the most complicated step inside theloop islocal compilation with complexity
O(kT?).
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TRADING-ALLOCATION
for each Q;, € [Q;..Qy] do
for each T' € [T},..Ty] do
r«20
repeat
t«T—r
SHIFT-PP(r)
APPLY-LOCAL-COMPILATION(e, )
Letr,.., r, bethedlocationstoey,...,e,,
r < r + max{r;}
0 until 7, =0
TQin, T < (r|t1, ..., tn)

P OoO~NOOThE, WNE

=
=

Figure 17: Learning the allocation to repeated subexpressions

To extend this method to work with p different repeated subexpressions, the algorithm
must consider any possible pre-determined alocation to (single copies of) each repeated
subexpression. The complexity of thisstepis O(r7) when p < 7. The overall complexity
becomes O (k7 (P+2)),

4.4.3 LearningtheAllocation to Repeated Subexpressions

The third method, TRADING-ALLOCATION, is based on learning the allocation to repeated
subexpressions through standard local compilation. To be able to apply local compilation,
the algorithm first ignores the repetition of subexpressions and uses standard local com-
pilation. Then it applies a series of performance profile adjustments followed by local
compilation. The process converges on asingle allocation to each repeated subexpression.

Again, let e be a functional expression. As with CONDITIONING-ALLOCATION, we
consider first the case where e has only one repeated subexpression ¢’ with copiese], ..., e/, .
Figure 17 shows the time allocation algorithm. It learns the alocation r to a single copy
of ¢/. Starting with » = 0, the algorithm repeatedly increases » until local compilation
allocates no additional time to the copies of ¢’. In each iteration, the current value of r
is used to determine how much time to reserve for evaluating ¢’. The fact that r time
units are reserved for ¢’ is communicated to the local compilation process by adjusting the
performance profile of ¢’. The time origin of the performance profile is shifted » units to

the right. Standard local compilation is then applied and the optimal alocation to all the
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components is computed. Suppose that, based on the adjusted performance profile, the
allocationsto them copiesof ¢’ arery, ..., r,,,. Then, themaximal allocation among thoseis
used to increase the value of . Thisprocessisrepeated until no additional timeisallocated
to any of the copies beyond the reserved time allocation . Thistime allocation algorithm
does not guarantee global optimality [36].

Complexity. Using the same notation as above, the complexity of the agorithmis O(x73).
This is due to the fact that the complexity of the search for » is O(7) (since » may be
incremented by 1 unit of timein each iteration). The most complicated step inside the loop
islocal compilation with complexity O(x72). Note that in practice the convergence of the
search for r is much faster than O(r).

The extension to multiplerepeated expressionsis straightforward. The algorithm needs
to maintain a sequence of reserved allocations for each repeated subexpression. The rest
of the algorithm remains the same. The advantage of TRADING-ALLOCATION is that its
complexity grows only linearly with the number of repeated subexpressions, p. Thisis
due to the fact that asingle loop is used to update all the reserved allocations to repeated
subexpressions and the worst case complexity of that loopisonly O(p7). Hencethe overall
complexity in the general caseis O(kpt?).

Summary

We have examined three time allocation algorithms designed to cope with the difficulty of
compiling general functional expressions. HILL-CLIMBING-ALLOCATION has a complexity
O(r3logr) and finds only local optimum. CONDITIONING-ALLOCATION has complexity
O(rk7P*2)) and TRADING-ALLOCATION O(kp7?). When x < 7 the first algorithm is the
most efficient one. The second method guarantees optimality, but its complexity grows
exponentially with the number of repeated subexpressions. To address this problem, the
last method can be used. Its complexity grows only linearly with the number of repeated
subexpressions but it does not guarantee global optimality. By using local compilation
to determine the allocation to the rest of the components, TRADING-ALLOCATION iS more
likely to converge on the global optimum than HiLL-CLIMBING-ALLOCATION.

5 Conclusion

This paper examines the possibility of extending the advantages of anytime agorithms
to the construction of complex real-time systems. The first results on this vital problem
show that amodular composition of anytime algorithms can be implemented efficiently. In
particular, we show that:



1. The performance profile of a composite system can be derived automatically and
efficiently by off-line compilation techniques. The compilation process optimizes
the overal quality of the system as a contract algorithm.

2. The resulting system can be made interruptible with only a small, constant penalty.

3. Our approach separates two central aspects of system development, namely the
construction of the performance components and the optimization of performance.
In real-time system construction this separation isolates each module from the time
constraintsthat it must satisfy. Asaresult, our compilation mechanism simplifiesthe
design of real-time systems and allows for modularity and abstraction to be applied.

4. The resulting real-time system is machine-independent in the sense that it can adapt
itsinternal time allocation to the available computational resources.

The main contribution of the paper includes: (1) Formalizing the compilation problem
and solving it for the case of functional composition; (2) Making the interruptible/contract
distinction that facilitates a two-step solution to the compilation problem; and (3) Formal-
izing the notion of conditional performance profiles that allow us to solve a large part of
the problem off-line.

Further work in this area is currently aimed at: (1) Developing larger applications to
further evaluate the components of the model; (2) Extending the scope of compilation by
studying the compilation of additional programming structures; (3) Extending the scope
of anytime agorithms to include anytime sensing and anytime action; and (4) Building a
programming environment to support anytime a gorithm development. Our ultimate goal
IS to construct robust rea-time systems in which perception, deliberation and action are
governed by a collection of anytime algorithms.
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