
Online Bagging and Boosting
Nikunj C. Oza and Stuart RussellComputer Siene DivisionUniversity of CaliforniaBerkeley, CA 94720-1776foza,russellg�s.berkeley.eduAbstratBagging and boosting are well-known ensem-ble learning methods. They ombine multi-ple learned base models with the aim of im-proving generalization performane. To date,they have been used primarily in bath mode,and no e�etive online versions have beenproposed. We present simple online baggingand boosting algorithms that we laim per-form as well as their bath ounterparts.1 IntrodutionTraditional supervised learning algorithms lassifyexamples1 based on a single model suh as a deisiontree or neural network. Ensemble learning algorithms,of whih there are many varieties, ombine the predi-tions of multiple base models, eah of whih is learnedusing a traditional algorithm. Bagging [3℄ and Boost-ing [8℄ are well-known ensemble learning algorithmsthat have been shown to be very e�etive in improv-ing generalization performane ompared to individ-ual base models [1℄. Theoretial analysis of boosting'sperformane supports these results [9℄.In this paper, we develop online versions of these algo-rithms. Online learning algorithms proess eah train-ing instane one \on arrival" without the need forstorage and reproessing, and maintain a urrent hy-pothesis that reets all the training instanes seenso far. Suh algorithms have advantages over typi-al bath algorithms in situations where data arriveontinuously. They are also useful with very largedata sets on seondary storage, for whih the multi-ple passes required by most bath algorithms are pro-hibitively expensive.1In this paper, we only deal with the lassi�ationproblem.

Bath ensemble algorithms typially use a bath learn-ing algorithm, whih we shall all Lb, to generate eahbase model. The �rst requirement of an online en-semble algorithm is an online learning algorithm forbase models, whih we shall all Lo. Online variantsof many learning algorithms are available. A losslessonline algorithm is one whose output hypothesis for agiven training set is idential to that of the orrespond-ing bath algorithm. Lossless online algorithms areavailable for deision trees [14℄, Naive Bayes models,and nearest-neighbor lassi�ers, among others. We uselossless online algorithms for deision trees and NaiveBayes models in our experiments.Produing online versions of bagging and boosting alsorequires a way to mirror their spei� tehniques forgenerating multiple distint base models. The diÆ-ulty is that both algorithms appear to require fore-knowledge of the size of the training set, whih is un-available (or meaningless) in the online ontext. Forexample, bagging works by resampling the originaltraining set of size N to produe M bootstrap train-ing sets of size N , eah of whih is used to train a basemodel. Our online version trains M base models on-line. It simulates the bootstrap proess by sending Kopies of eah new example to update eah base model,where K is a suitable Poisson random variable. Thissimple trik yields learning behavior similar to that ofbath bagging. We desribe the online bagging algo-rithm and give theoretial results in Setion 2; empir-ial results are provided in Setion 4.Boosting is a somewhat more omplex proess thatgenerates a series of base models h1; : : : ; hM . Eahbase model hm is learned from a weighted training setwhose weights are determined by the lassi�ation er-rors of the preeding model hm�1. Spei�ally, theexamples mislassi�ed by hm�1 are given more weightin the training set for hm, suh that the weights ofall the mislassi�ed examples onstitute half the totalweight of the training set. As with bagging, this typeof \normalization" appears to require foreknowledge



of the omplete training set. Again, we use a Poissonsampling proess to approximate the reweighting al-gorithm. The online boosting algorithm is desribedin detail in Setion 3. Empirial results are given inSetion 4.The topi of online bagging and boosting has reeivedvery little attention in the literature. In [5℄, an ensem-ble of three neural networks was trained using boost-ing in an online fashion; the method proposed thereinoften disards substantial amounts of data in the pro-ess of drawing the desired distribution of data for itsbase models. More reently, a \bloked" online boost-ing algorithm has been proposed [4℄ that trains severalbase models using onseutive subsets of training ex-amples of some �xed size; this proess also disards afration of the data reeived. Neither of these algo-rithms is diretly omparable to our approah, whihfouses on reproduing the advantages of bagging andboosting in an online setting. In [7℄, an online bag-ging algorithm is proposed; it attempts to simulatethe bootstrap proess by sending eah new trainingexample to update eah base model with some prob-ability that the user �xes in advane. In experimentswith various suh probabilities, their online bagging al-gorithm never performed better than a single deisiontree. The same paper also proposes an online boostingalgorithm that is an online version of Ar-x4 [3℄, i.e.,eah example is given weight 1 + m4 to update eahbase model, where m is the number of previous basemodels that urrently mislassify that example. Thealgorithm was applied to the branh predition prob-lem from omputer arhiteture. The results suggestthat, given limited memory, a boosted ensemble witha greater number of smaller deision trees is generallysuperior to one with fewer large trees.Potentially interesting parallels an be drawn betweenour approah and the Winnow [11℄ and Weighted Ma-jority [12℄ algorithms. These algorithms use a �xedset of base models that are trained online and om-bined using weights that depend on the training setperformane of eah base model. Their performanean be shown to be almost as good as that of thebest omponent model for any training sequene. Onthe other hand, ensemble algorithms generally performbetter than all of their omponent models. Comparingthem to online bagging or boosting, we see that theysend idential training sequenes to eah base model;hene, base model diversity, whih is known to aidensemble performane [13℄, must be built in a priorirather than emerging from the data itself. One animagine hybrid approahes; it may also be the asethat amortized analysis tehniques an be applied toour algorithms.

2 Online BaggingGiven a training dataset of size N , standard bathbagging reates M base models,2 eah trained on abootstrap sample of sizeN reated by drawing randomsamples with replaement from the original trainingset. In the following pseudoode, T is the originaltraining set of N examples and M is the number ofbase models to be learned.:Bagging(T ,M)� For eah m 2 f1; 2; : : : ;Mg,{ Tm = Sample With Replaement(T;N){ hm = Lb(Tm)� Return fh1; h2; : : : ; hMgEah base model's training set ontains eah of theoriginal training examples K times whereP (K = k) = �Nk�� 1N �k �1� 1N�N�kwhih is the binomial distribution. As N ! 1, thedistribution of K tends to a Poisson(1) distribution:K � exp(�1)k! . This suggests that we an perform bag-ging online as follows: as eah training example is pre-sented to our algorithm, for eah base model, hoosethe example K � Poisson(1) times and update thebase model aordingly. In the pseudoode below, his the set of M base models learned so far and d is thelatest training example to arrive.OnlineBagging(h; d)For eah base model hm, (m 2 f1; 2; : : : ;Mg) inthe ensemble,� Set k aording to Poisson(1).� Do k timeshm = Lo(hm; d)New instanes are lassi�ed the same way in onlineand bath bagging|by unweighted voting of the Mbase models.Online bagging is a good approximation to bath bag-ging to the extent that their base model learning algo-rithms produe similar hypotheses when trained withsimilar distributions of training examples. We �rstprove that if the same original training set is suppliedto the two bagging algorithms, then the distributions2The number of base models is normally hosen by trialand error but sometimes a validation set is used [6℄.



over the training sets supplied to the base models inbath and online bagging onverge as the size of thatoriginal training set grows to in�nity.De�ne �mb to be a vetor of length N where the ithelement represents the number of times that the ithoriginal training example is inluded in the bootstraptraining set of the mth base model under bath bag-ging. Sampling with replaement in the bath baggingalgorithm is done by performing N trials where eahtrial yields one of the N training examples, all of whihhave equal probability 1N of being drawn. Therefore,�mb � Multinomial(N; 1N ), where all the training ex-amples have equal \suess probability" 1N . De�ne�mo to be the online bagging version of �mb . We men-tioned earlier that, under online bagging, eah train-ing example is hosen a number of times aording toa Poisson(1) distribution. Sine there are N trainingexamples, there are N suh trials; therefore, the totalnumber of examples drawn has a Poisson(N) distribu-tion. Beause eah example has an equal probabilityof being drawn, we an reast sampling in the onlinebagging algorithm as performing N 0 � Poisson(N)trials where eah trial yields one of the N trainingexamples, all of whih have equal probability 1N of be-ing drawn. Therefore, �o � PNt=0 P (Poisson(N) =t)Multinomial(t; 1N ).Theorem As N !1, P (�b) onverges in distributionto P (�o).Proof The probability generating funtion [10℄ forthe bath bagging algorithm's sampling distribution,Multinomial(N; 1N ), isGMult(N; 1N )(x1; : : : ; xN ) = � 1N (x1 + : : :+ xN )�N :The generating funtion for a Multinomial(1; 1N ) dis-tribution isGMult(1; 1N )(x1; : : : ; xN ) = 1N (x1 + : : :+ xN ):The generating funtion for a Poisson(N) distribu-tion is GPoi(N)(s) = exp(N(s � 1). Online bag-ging's sampling algorithm involves performing N 0Multinomial(1; 1N ) trials; therefore, the generatingfuntion for online bagging's sampling distribution isGPoi(N)(GMult(1; 1N )(x1; : : : ; xN )) =exp�N� 1N (x1 + : : :+ xN )� 1��:Furthermore, it is a standard result [10℄ thatlimN!1GMult(N; 1N )(x1; : : : ; xN ) =limN!1�1 + �x1 + : : :+ xN �NN �N� =exp�N� 1N (x1 + : : :+ xN )� 1��:

The onvergene of the generating funtions impliesthe onvergene of the probabilities for every possible �vetor; therefore, the two sampling methods onvergein distribution.�De�ne Resample(�; T ) to be a funtion that takes asinput the original training set T and a vetor � whihhas the same length as T and whose ith element is thenumber of times that the ith training example from Tis inluded in the bootstrap training set. This fun-tion returns the atual bootstrap training set induedby � and T . We assume that the N examples in T aredrawn randomly and independently from a �xed distri-bution. The sampling distributions of bath and onlinebagging indue distributions over the base hypothesesP�bLb(Resample(�b; T )) and P�oLo(Resample(�o; T )),respetively. A bath-bagged ensemble onsists ofM independent and identially distributed (i.i.d.)draws from P�bLb(Resample(�b; T )). An online-bagged ensemble onsists of M i.i.d. draws fromP�oLo(Resample(�o; T )). We would like to show thatP�oLo(Resample(�o; T )) ! P�bLb(Resample(�b; T )).Clearly, this is not true for all learning algorithms Lband Lo. Suppose that Lo and Lb return some null hy-pothesis unless the training set has exatly N exam-ples: Lb is always given N examples, but as N ! 1,the probability that Lo reeives N examples tends to0. Intuitively, we need a learning algorithm that is\well-behaved," in the sense that, as N ! 1, havinga few more or few less examples in the bootstrappedtraining set should not make a signi�ant di�erene inthe learning algorithm's output.Loal learning algorithms suh as K-Nearest-Neighborare learly well-behaved in this sense. A K-NearestNeighbor base model returns a lassi�ation for a newtest example x based on the K nearest neighborswithin its bootstrap training set. It an be shown eas-ily that the distribution over the K nearest neighborsfor bath bagging onverges to that of online baggingas N !1.Simple ontingeny-table learning is also well-behaved.For every lass , we have P (C = jx) = P (x; )=P (x),Sine the denominator is the same for all , we an justonsider P (x; ) for the purpose of lassi�ation. De-�ne px; to be the fration of examples within T of theform (x; ), i.e., having attribute values x and lass .Bath bagging draws bootstrap training sets aordingto �b �Multinomial(N; 1N ), whih means it performsN i.i.d. trials in whih the probability of hoosing anexample (x; ) is px;; therefore, P�b(x; ) = px;. On-line bagging draws bootstrap training sets aordingto �o �PNt=0 P (Poisson(N) = t)Multinomial(t; 1N ),whih involves performing t i.i.d. trials in whih theprobability of hoosing an example (x; ) is px;; there-



AdaBoost(f(x1; y1); : : : ; (xN ; yN)g; Lb;M)� Initialize D1(n) = 1=N for all n 2 f1; 2; : : : ; Ng.� Do for m = 1; 2; : : : ;M :{ 1. Call Lb with the distribution Dm.{ 2. Get bak a hypothesis hm : X ! Y .{ 3. Calulate the error of hm : �m =Pn:hm(xn)6=yn Dm(n). If �m > 1=2 then setM = m� 1 and abort this loop.{ 4. Set �m = �m1��m .{ 5. Update distribution Dm:Dm+1(n) = Dm(n)Zm �� �m if hm(xn) = yn1 otherwisewhere Zm is a normalization onstant hosenso that Dm+1 is a probability distribution.� Output the �nal hypothesis: hfin(x) =argmaxy2Y Pm:hm(x)=y log 1�m :Figure 1: AdaBoost.M1 algorithm from [8℄fore, P�o(x; ) =NXt=0 P (Poisson(N) = t)P�2Mult(t; 1N )(x; ) = px;:Sine P�b(x; ) = P�o(x; ) for all examples (x; ), theexpeted ounts in eah entry of the ontingeny tablesare the same under online and bath bagging; there-fore, the lassi�ations of new examples have the sameexpetation under online and bath bagging.We are working on desribing a larger set of learningalgorithms that are well-behaved.3 Online BoostingOur online boosting algorithm is designed to or-respond to the bath boosting algorithm, Ad-aBoost.M1 [8℄. We give the pseudoode for AdaBoostin Figure 1, where the inputs are a set of trainingexamples f(x1; y1); : : : ; (xN ; yN )g, base learning algo-rithm Lb, and the number of base modelsM to be gen-erated. As explained earlier, AdaBoost.M1 generatesa sequene of base models h1; : : : ; hM using weightedtraining sets suh that the training examples mislas-si�ed by model hm�1 are given half the total weightfor model hm and the orretly lassi�ed examples aregiven the remaining half of the weight.In our online boosting algorithm pseudoode (Fig-ure 2), hM is the set of M base models learned so

OnlineBoosting(hM ; OnlineBase; d)� Set the example's \weight" �d = 1.� For eah base model hm, (m 2 f1; 2; : : : ;Mg) inthe ensemble,{ 1. Set k aording to Poisson(�d).{ 2. Do k timeshm = OnlineBase(hm; d){ 3. If hm(d) is the orret label,� then� �sm  � �sm + �d� �d  � �d � N2�sm �� else� �swm  � �swm + �d� �d  � �d � N2�swm �To lassify new examples:� For eah m 2 f1; 2; : : : ;MgCalulate �m = �swm�sm+�swm and �m = �m1��m� Return h(x) = argmax2CPm:hm(x)=y log 1�m .Figure 2: Online Boosting Algorithmfar, d is the latest training example to arrive, andOnlineBase is the inremental learning algorithm thattakes a urrent hypothesis and training example as in-put and returns an updated hypothesis. Our onlineboosting algorithm is similar to our online bagging al-gorithm exept that when a base model mislassi�esa training example, the Poisson distribution parame-ter (�) assoiated with that example is inreased whenpresented to the next base model; otherwise it is de-reased. For example, in Figure 3, in the upper leftorner (point \a" in the diagram) is the �rst trainingexample. This example updates the �rst base modelbut is still mislassi�ed after training, so its weightis inreased (the retangle \b" used to represent it istaller). This example with its higher weight updatesthe seond base model and then orretly lassi�es it,so its weight dereases (retangle \"). Just as in Ad-aBoost, our algorithm gives the examples mislassi�edby one stage half the total weight in the next stage;the orretly lassi�ed examples are given the remain-ing half of the weight.3 We an see this by examiningthe adjustments to �d shown in Figure 2 item 3 asfollows. Suppose that �sm is the sum of the � valuesfor the examples that were lassi�ed orretly by thebase model at stage m and �swm is the same sum for3We disuss a aveat to this point at the end of thissetion.
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Figure 3: Illustration of online boosting in progress. Eah row represents one example being passed in sequene toall the base models for updating; time runs down the diagram. Eah base model (depited as a tree) is generatedby updating the base model above it with the next weighted training example. Eah retangle represents atraining example|the height of the retangle represents its weight.inorretly lassi�ed examples. For the next stage ofboosting, we want these two sums to be saled to thesame value, just as in AdaBoost;4 therefore, we wantto �nd the fators f m and fwm that sale �sm and �swmto half the total weight, respetively. The sum of allAdaBoost weights is one; therefore, the sum of all the�s for our online algorithm is N , whih is the numberof examples seen so far. Therefore, we get:�smfm = N2 =) fm = N2�sm�swm fwm = N2 =) fwm = N2�swm :Note that we expet that �sm > N=2 and �swm < N=2and, therefore, that f m < 1 and fwm > 1, whih means4In AdaBoost terminology, the examples' weights wouldatually be �d=N , but sine our algorithm works with the� values, we treat them as weights.

that the weights of orretly lassi�ed examples willderease, and the weights of inorretly lassi�ed ex-amples will inrease, as desired.One area of onern is that, in AdaBoost, an exam-ple's weight is adjusted based on the performane ofa base model on the entire training set while in on-line boosting, the weight adjustment is based on thebase model's performane only on the examples seenearlier. To see why this may be an issue, onsider run-ning AdaBoost and online boosting on a training setof size 10000. In AdaBoost, the �rst base model h1 isgenerated from all 10000 examples before being testedon, say, the tenth training example. In online boost-ing, h1 is generated from only the �rst ten examplesbefore being tested on the tenth example. Clearly, wemay expet the two h1's to be very di�erent; therefore,h2 in AdaBoost and h2 in online boosting may be pre-sented with di�erent weights for the tenth example.This may, in turn, lead to very di�erent weights for
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Figure 4: Learning urves for Car-Evaluation datasetthe tenth example when presented to h3 in eah algo-rithm, and so on. Intuitively, we want online boostingto get a good mix of training examples so that thenormalized error of eah base model in online boost-ing quikly onverges to what it is in AdaBoost. Themore rapidly this onvergene ours, the more similarthe weight adjustments will be and the more similartheir performanes will be.4 Experimental ResultsIn this setion, we disuss some experiments thatdemonstrate that our online algorithms perform morelike their bath ounterparts as the number of train-ing examples inreases. We have implemented onlinebagging and online boosting with deision trees andNaive Bayes lassi�ers as the base models. For de-ision trees, we have reimplemented the lossless ITIonline algorithm [14℄; bath and online Naive Bayesalgorithms are essentially idential.To illustrate the onvergene of bath and online learn-ing, we experimented with the Car Evaluation datasetfrom the UCI Mahine Learning Repository [2℄. Thedataset has 1728 examples, of whih we retained 346(20%) as a test set and used 200, 400, 600, 800, 1000,1200, and all the remaining 1382 examples as trainingsets. We ran eah algorithm (exept deision trees) tentimes with eah number of training examples to a-ount for the randomness in the ensemble algorithms.The results are shown in Figure 4.The �gure shows bath and online bagging with de-ision trees performing identially (and always signif-iantly better than a single deision tree). AdaBoostalso performs signi�antly better than a single dei-sion tree for all numbers of examples. Online boost-ing struggles at �rst but performs omparably to Ad-aBoost and signi�antly better than single deision

trees for the maximum number of examples. Notethat online boosting's performane steadily beomesloser to that of AdaBoost as the number of examplesgrows, as one expets from an online algorithm whenompared to its bath version.We tested our algorithms on several UCI datasets [2℄with varying sizes and numbers of attributes (see Ta-ble 1). The auraies of our algorithms are given inTable 2 and Table 3 in inreasing order of dataset size.Boldfae entries represent ases when the ensemble al-gorithm signi�antly (t-test, � = 0:05) outperformeda single model while italiized entries represent aseswhen the ensemble algorithm signi�antly underper-formed relative to a single model. The bath algo-rithm auraies are averages over ten runs of �ve-fold ross-validation. We tested our online algorithmswith �ve random orders of eah training set generatedfor the bath algorithms. (Order matters for onlineboosting, even with a lossless learning algorithm.) Wetested bagging and boosting with deision trees onlyon some of the smaller datasets beause the ITI algo-rithm proved too expensive with larger ones. Even forthe very small Promoters dataset, the AdaBoost algo-rithm ran in around 30 seonds while online boostingneeded about 15 hours. This ompares to around 1seond for online boosting with Naive Bayes.With deision trees, online boosting performed signi�-antly worse than AdaBoost on the Promoters dataset,signi�antly better on Balane, and omparably onthe remaining datasets. Bagging and online baggingperformed notieably better than single deision treeson all exept the Breast Caner dataset. With NaiveBayes, bagging and online bagging never performednotieably better than Naive Bayes, whih we ex-peted beause of the stability of Naive Bayes [3℄.Boosting and online boosting performed omparablyto eah other on all but the relatively small Promot-ers dataset and their performanes relative to a sin-gle Naive Bayes lassi�er onsistently improved as thesizes of the datasets grew. On the Balane and Soy-bean datasets, the boosting algorithms performed sig-ni�antly worse than Naive Bayes. On the Breast Can-er dataset, AdaBoost performed signi�antly worseand online boosting performed marginally worse. Onthe Car Evaluation and Chess datasets, AdaBoost andonline boosting performed signi�antly better thanNaive Bayes. On the Nursery dataset, AdaBoost per-formed signi�antly better and online boosting per-formed marginally better.5 ConlusionsThe paper has desribed online versions of the popu-lar bagging and boosting algorithms and has shown,



Table 1: Sizes of the UCI datasets used in our experiments.Data Set Training Test Inputs ClassesSet SetPromoters 86 20 57 2Balane 500 125 4 3Soybean-Large 307 376 35 19WI. Breast Caner 559 140 9 2German Credit 800 200 20 2Car Evaluation 1382 346 6 4Chess 2556 640 36 2Mushroom 6499 1625 22 2Nursery 10368 2592 8 5Table 2: Results (fration orret): bath and online algorithms (with Deision Trees) on UCI DatasetsDataset Deision Tree Bagging Online Bagging AdaBoost Online BoostingPromoters 0.75 0.82 0.845 0.935 0.77Balane 0.792 0.8128 0.8032 0.7408 0.7664WI Breast Caner 0.9786 0.9714 0.9714 0.9729 0.9679Car Evaluation 0.9537 0.9673 0.9679 0.9664 0.9639through experiment, that these online versions typi-ally perform omparably to their bath ounterparts.The algorithms have low overhead and are quite suit-able for pratial appliations. Our urrent empirialwork fouses on testing with large, ontinuously arriv-ing data streams. We have also shown that bath andonline bagging are idential for large datasets providedthat the base learning algorithm is well-behaved in aertain sense. Theoretial tasks inlude harateriz-ing more tightly the lass of learning algorithms forwhih onvergene between online and o�ine baggingan be proved and developing an analytial frameworkfor online boosting. We are also investigating the aseof lossy online learning and its e�et on ensemble per-formane.Aknowledgements We would like to thank LeoBreiman, Bin Yu, Mihael Jordan, Joe Hellerstein, andKagan Tumer for useful disussions on this work. Partof this work was done while the �rst author was atNASA Ames Researh Center.Referenes[1℄ Eri Bauer and Ron Kohavi. An empirial omparisonof voting lassi�ation algorithms: Bagging, boost-ing, and variants. Mahine Learning, 36:105{139, Sep.1999.[2℄ C. Blake, E. Keogh, and C.J. Merz. UCI repos-itory of mahine learning databases, 1999. (URL:http://www.is.ui.edu/�mlearn/MLRepository.html).

[3℄ L. Breiman. Bias, variane and aring lassi�ers.Tehnial Report 460, Department of Statistis, Uni-versity of California, Berkeley, 1996.[4℄ L. Breiman. Pasting small votes for lassi�ation inlarge databases and on-line. Mahine Learning, 36:85{103, 1999.[5℄ H. Druker, R. Shapire, and P. Simard. Improvingperformane in neural networks using a boosting algo-rithm. In S.J. Hanson, J. D. Cowan, and C. L. Giles,editors, Advanes in Neural Information ProessingSystems-5, pages 42{49. Morgan Kaufmann, 1993.[6℄ Harris Druker. Boosting using neural networks. InA. J. C. Sharkey, editor, Combining Arti�ial Neu-ral Nets: Ensemble and Modular Multi-Net Systems,pages 51{77. Springer-Verlag, London, 1999.[7℄ Alan Fern and Robert Givan. Online ensemble learn-ing: An empirial study. In Proeedings of the Seven-teenth International Conferene on Mahine Learning,pages 279{286. Morgan Kaufmann, 2000.[8℄ Y. Freund and R. Shapire. Experiments with a newboosting algorithm. In Proeedings of the ThirteenthInternational Conferene on Mahine Learning, pages148{156, Bari, Italy, 1996. Morgan Kaufmann.[9℄ Yoav Freund and Robert E. Shapire. A deision-theoreti generalization of on-line learning and an ap-pliation to boosting. Journal of Computer and Sys-tem Sienes, 55(1):119{139, 1997.[10℄ G. R. Grimmett and D. R. Stirzaker. Probability andRandom Proesses. Oxford Siene Publiations, NewYork, 1992.



Table 3: Results (fration orret): bath and online algorithms (with Naive Bayes) on UCI DatasetsDataset Naive Bayes Bagging Online Bagging AdaBoost Online BoostingPromoters 0.8774 0.8354 0.8401 0.8455 0.7483Balane 0.9072 0.9062 0.9067 0.8686 0.8747Soybean-Large 0.7497 0.7487 0.7471 0.7184 0.7315WI Breast Caner 0.9679 0.9698 0.9692 0.9501 0.9533German Credit 0.7410 0.7437 0.7437 0.7318 0.7110Car Evaluation 0.8569 0.8532 0.8547 0.9017 0.8967Chess 0.8757 0.8759 0.8749 0.9517 0.9476Mushroom 0.9966 0.9966 0.9966 0.9999 0.9987Nursery 0.9061 0.9029 0.9027 0.9163 0.9118[11℄ N. Littlestone. Learning quikly when irrelevant at-tributes abound: A new linear-threshold algorithm.Mahine Learning, 2:285{318, 1988.[12℄ N. Littlestone and M. Warmuth. The weightedmajority algorithm. Information and Computation,108:212{261, 1994.[13℄ Kagan Tumer. Linear and Order Statistis Combinersfor Reliable Pattern Classi�ation. PhD thesis, TheUniversity of Texas, Austin, TX, May 1996.[14℄ P.E. Utgo�, N.C. Berkman, and J.A. Clouse. Dei-sion tree indution based on eÆient tree restrutur-ing. Mahine Learning, 29(1):5{44, 1997.


