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ANALOGY BY SIMILARITY

In this paper I discuss the relative merits of the logical and similarity-based approaches to reasoning by analogy.

Although recent work by Davies and the author has shown that, given appropriate background knowledge, analogy

can be viewed as a logical inference process, I reach the conclusion that pure similarity can provide a probabilistic

basis for inference, and that, under certain assumptions concerning the nature of representation, a quantitative theory

can be developed for the probability that an analogy is correct as a function of the degree of similarity observed.

This theory also accords with psychological data (Shepard), and together with the logical approach promises to form

the basis for a general implementation of analogical reasoning.

1. THE LOGICAL APPROACH

Analogical reasoning is usually defined as the argument from known similarities between two things to the existence

of further similarities. Formally, I define it as any inference following the schema

P (S, A), P (T, A), Q(S, B)
anal
−→ Q(T, B)

where T is the target, about which we wish to know some fact Q (the query); S is the source, the analogue from

which we will obtain the information to satisfy Q by analogy; P represents the known similarities given by the shared

attribute values A. P and Q can be arbitrary predicate calculus formulae, and A and B stand for arbitrary tuples

of objects.

An innumerable number of inferences have this form but are plainly silly; in other words, the form does not

distinguish between good and bad analogical inferences. For example, both today and yesterday occurred in this

week (the known similarity), yet we do not infer the further similarity that today, like yesterday, is a Friday. The

traditional approach to deciding if an analogy is reasonable, apparently starting with Mill (1843), has been to say that

each similarity observed contributes some extra evidence to the conclusion; this leads naturally to the assumption

that the most suitable source analogue is the one which has the greatest similarity to the target; presumably, one

can take into account differences in the same way. Thus similarity becomes a measure on the descriptions of the

source and target. However one defines the similarity measure, it is trivially easy to produce counterexamples to this

assumption. Moreover, Tversky’s studies (1977) show that similarity does not seem to be the simple, two-argument

function this näıve theory assumes. One can convince oneself of this by trying to decide which day is most similar

to today.
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In the philosophical literature on analogy, several authors have noted the inadequacy of ‘similarity-counting’

arguments as the basis for analogy, particularly since many analogies are extremely convincing. One approach to

logical justification proposes that knowledge of the rule ∀x[P (x, A) ⇒ Q(x, B)] is needed for an analogy to be sound,

but such knowledge would render the analogue S logically superfluous. Keynes (1957), Uemov (1964), Anderson

(1969) and Nagel (1961) all pointed out this possibility for justified analogy, and all stated that no other possibility

existed. The ‘trivial’ nature of such analogies may have led Greiner (1985) to define analogy as necessarily non-

logical. Hesse (1966) noted the importance of relevance of the known similarities to the inferred similarities. The

theory of determinations (Davies, 1985; Russell, 1986c; Davies & Russell, 1987; Davies, this volume) gives a first-

order definition to the notion of relevance.* Given that the known similarities are (partially) relevant to the inferred

similarities, the analogical inference is guaranteed to be (partially) justified. The fact that P is relevant to Q is

encoded as a determination, written as P (x, y) � Q(x, z) and defined as

∀wxyzP (w, y) ∧ P (x, y) ∧ Q(w, z) ⇒ Q(x, z).

When the reasoner has this kind of background information available, attention can be directed to those similarities

that are relevant to the problem at hand, and the justification of the conclusion is logical in nature; the overall degree

of similarity no longer plays a part in the process.

I am thus proposing that at least one aspect of a successful analogical reasoning system consists of a knowledge-

based, deductive process (or, in the case of partial determinations, a probabilistic process). Determinations seem to

be a common and useful form of knowledge, and we can ascribe to determinations the same epistemological status

and heuristic utility as we do to the typical universally-quantified rules in a rule-based expert system. It would be

interesting to perform psychological experiments to ascertain subjects’ knowledge of determinations, and to design

knowledge engineering methods for eliciting them from experts. In (Russell, 1986c) I give methods for inductive

acquisition of determinations and for their use in a logical inference system. The crucial argument for the value of

determination-based analogy is that determinations represent that class of regularities whose extrapolation takes the

form of analogical reasoning; without the ability to detect and use determinations, a system is simply impoverished

in its inferential power. The question remains as to whether other forms of analogy have a rational justification,

particularly in the light of the common conception of analogy as only a plausible inference process, or as a learning

method. The phrase ‘learning by analogy’ appears repeatedly — in fact, the study of analogy is almost universally

classified as a subfield of machine learning in conferences and textbooks. In the next section we examine how this

* Goodman (1955) also identified this class of formulae in his work on induction, calling them ‘overhypotheses’.
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widespread belief can be reconciled with our theory.

2. LEARNING AND ANALOGY

Analogical inference using determinations does not constitute learning in the strict sense of acquisition of new

knowledge, whether the determinations are deductive or probabilistic. There is no ‘learning at the knowledge level’

(Dietterich, 1986) occurring when an analogical conclusion is reached in this way; the perception of analogy as

learning may simply have arisen because the determination premise is not immediately obvious to introspection.

The idea behind the phrase ‘learning by analogy’ is that similarity, in and of itself, should be enough to suggest

new information that may be usefully conjectured. The ‘creative’ nature of analogy is often stressed. Yet no one

would deny that however creative or interesting a conjecture may be, the only way we can decide whether or not

to make that conjecture is to have some idea of how likely it is to be true. For otherwise, we might just as well

select hypotheses at random from the space of all expressible conjectures. Words such as ‘plausible’ and ‘conjectural’

often seem to be ways of putting off the realization that ultimately we are just talking about probabilistic inference,

whether the probabilities be high or low. Under this ‘hard-nosed’ view, we have separated learning and inference.

We can instead take the ‘soft-nosed’ position, which is perhaps preferable, and say that all inference to unobserved

conclusions in empirical domains is necessarily probabilistic, just as inductive generalization is probabilistic. Then

the distinction might be made between inferences that extrapolate regularities to new cases and those, which we

might call ‘learning’, that postulate new regularities or generate new beliefs by some means other than extrapolation.

Analogy by similarity has been the candidate for this last possibility. In the same sense that Goodman says that

our best inductive practice is a good enough justification for an inductive inference, it is possible that a refined

procedure for analogy by similarity may form a primitive constituent of our inferential apparatus, in need of no

further justification. However, until this step is shown to be necessary, as in the case of induction, it seems preferable

not to take it.

Thus, in strict terms, the phrase ‘learning by analogy’ may be somewhat misleading, if analogical inference is

just the extrapolation of a previously detected regularity (the determination). Again, it is possible that the analogy

process may use unfounded, syntactic heuristics to produce its conclusions. The only syntactic inference rules we

are allowed to use willy-nilly are those based ultimately on the semantics of the representation language, i.e., the

rules relating syntax to truth. For example, Modus Ponens is based on the Tarskian semantics for predicate calculus.

Syntactic rules of the type exemplified by the ‘analogy by similarity’ heuristic appear to be justifiable only empirically,

by showing that they tend to work. Even then, one is left with the (in some cases insurmountable) problem of showing
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that the results are not influenced by some special features in the form or content of the knowledge base. We will

now see how this might work, in a couple of different ways.

3. REPRESENTATIONAL JUSTIFICATION OF SIMILARITY HEURISTICS

In this section we give the first intimations, in a very simplistic fashion, of one possible direction that might be

explored as a way of justifying a form of analogy by similarity.

Recall that the commonality between two ‘objects’ may be expressed by giving a common formula P holding

for both. According to the traditional view, the ‘size’, measured in some way, of this common formula is the basis

for analogical transfer. Suppose we define a meta-linguistic predicate Large, indicating that its argument is, in this

sense, a large formula. Then, very loosely, analogy by similarity corresponds to the axiom

∀P, Q[Large(P ) =⇒ [P (x, y) � Q(x, z)]].

Such heuristics could exist at the top of a hierarchy of determinations, to be used when no more specific knowledge is

available. The justification for the use of such heuristics can rest on their empirical success. However, it is not hard

to imagine knowledge bases and representations for which the heuristic fails miserably. Because the heuristic works

only at the syntactic level, we can always construct consistent knowledge bases such that the use of the heuristic is

actually deleterious. In other words, the use of the heuristic contains an implicit restriction on the possible conditions

obtaining in the universe of discourse.

To remain coherent, such syntactic theories should include the representational and epistemological assump-

tions that allow them to work correctly, and motivate those assumptions. Such assumptions might be, for example,

that only facts about certain types of object will be included, or that only certain relations are explicitly stated,

or that inferential goals will tend to be of a certain type. These assumptions can be justified using a theory de-

scribing that part of the system responsible for acquiring the vocabulary and content of the knowledge base, and its

relationship to the world.

Humans (and computers) could in fact possess a general-purpose similarity heuristic (possibly dependent on

the things compared) which works well for the ‘average’ query. Let us consider an example of such a representational

assumption. Psychological attunement theories regarding the way in which representations, as well as their contents,

evolve to reflect underlying regularities in the environment may be one source of such heuristics. Thus, humans do in

fact seem to record only the ‘important’ features of their experiences; what has come to be important must depend

on the use to which experiences are normally put, and evolutionarily speaking those uses have been in deciding
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such things as edibility, dangerousness, running speed and other gross physical properties of the objects in our world.

Thus, biasing similarity metrics towards simple, observable, constant, physical features is a justifiable policy for early

man. Unfortunately, similar justifications have not been made for any of the similarity metrics used in AI theories

of analogy. There is a large amount of work to be done before we can begin to understand fully the ways in which a

system can take advantage of representational regularities in order to achieve inferential shortcuts.

4. A QUANTITATIVE ANALYSIS OF ANALOGY BY SIMILARITY

I now propose a second approach to the analysis of analogy by similarity, one that yields more quantitative results.

We start from the case in which we are trying to solve some problem by analogy, but we know no applicable

determination for the query at hand, i.e., we have no idea which of the known facts might be relevant. In this case,

the theory of determinations does not apply. However, it still seems plausible that the most similar source is the

best analogue; certainly, in the absence of any other information, it seems perverse to choose an analogue that is

demonstrably less similar. What has been lacking in previous theories of analogy by similarity is any attempt to

justify this assumption; the analysis in this section hopes to rectify this situation. Since an inference by analogy is

still an inference, the justification must take the form of an argument as to why a conclusion from similarity is any

better than a random guess; better still, the theory should be able to assign a probability to the conclusion given

the truth of the premises. The object of this section is thus to compute (or at least sketch) the relationship between

the measure of similarity between two objects, and the probability that they share a further, specified similarity.

The principal problems which need to be solved before such a theory can be constructed are:

1) A reasonable way must be found to circumscribe the source and target descriptions. Without this, the

sets of facts to be compared are essentially without limit.

2) A similarity measure must be defined in such a way as to be (as far as possible) independent of the way

in which the source and target are represented.

3) We must identify the assumptions needed to relate the similarity measure to the desired probability.

The precise similarity measure itself is not important; in fact, it is essentially meaningless. If we have a different

similarity measure, we simply need to relate it in a different way to the probability of correctness of the analogy.

Thus I will not be attempting to define a similarity measure that is more plausible than those proposed previously.

The essence of our approach is to show that analogy to a maximally similar source can be justified in the

absence of any usable determination by showing that such a source is the most likely to match the target on the

properties which are relevant to the query even though the identity of these properties is unknown. The intuition
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on which the analysis is based is the following: in situations where the system is extremely ignorant, there will be

many determinations (causal factors) of which it is unaware. Thus some facts could be relevant to the query even

if we have no direct reason to believe them so. In this case, a larger similarity serves to increase the likelihood that

such factors will be taken into account, by increasing the likelihood that the relevant features will be included in the

commonality.

If a source matches the target on all relevant features, an analogy from that source is assumed to be correct.

For the query to be soluble at all, we require that all the features relevant to the query appear somewhere in the

description of the target to be matched against the source. This is equivalent to saying that the formula describing

the target is a sufficient determinant for the query; conversely, when a determination is known for a query its left-

hand side can be used to circumscribe the facts needed in the description of the target and source for the purposes

of matching. When these match completely, we have complete similarity on the relevant features and the limiting

case is thus the same as the logical approach. When the match is not complete, the theory we are about to describe

allows a probabilistic conclusion. Thus even a highly overconstrained determination, whose left-hand side is far too

specific (i.e., contains too many features) to offer a reasonable chance of achieving the match needed for a sound

analogy, is still useful for constraining the object descriptions used in similarity matching.

I first calculate the probability of a match on the relevant attributes for the simple case of an attribute-value

representation where a match on any attribute is equally likely a priori, and I assume a fixed number of relevant

features. Subsequent sections relax these assumptions to allow the theory to apply to the general case, in the process

revealing the representational assumptions that underlie my analysis.

4.1 The simple model

A simplified model for analogy in a database is this: we have a target T described by m attribute-value pairs, for

which we wish to find the value of another attribute Q. We have a number of sources S1 . . . Sn (analogues) which

have values for the desired attribute Q as well as for the m attributes known for the target.

Define the similarity s as the number of matching attribute values for a given target and source. The difference

d = m − s. Assume that there are r attributes relevant to ascertaining the value of Q.

Define p(d, r) to be the probability that a source S, differing from the target on d attributes, matches it on

the r relevant attributes. The assumption of no relevance information means that all attributes are equally likely to

be relevant. We can thus calculate p(d, r) using a simple combinatoric argument:

Let Nm be the number of choices of which attributes are relevant such that S matches T on those attributes.

6



Let N be the total number of choices of which attributes are relevant.

p(d, r) = Nm/N

=

(

m − d

r

)/(

m

r

)

(r ≥ 1)

For any r, this function drops off with d (= m-s), monotonically and concavely, from 1 (where d=0) to 0 (where d >

m-r). Thus the most similar analogue is guaranteed to be the most suitable for analogy. Figure 1 shows p(d, r) for

values of r of 1, 3, 5, 10, 20 with the total number of attributes m = 30. As we would expect, the curve narrows as

r increases, meaning that a higher number of relevant attributes necessitates a closer overall match to ensure that

the relevant similarities are indeed present.

Fig. 1 p(d, r) for r = 1,3,5,10,20.

4.2 Allowing r to vary

The assumption of a fixed value for the number of relevant features seems rather unrealistic. The most general

assumption we can make is that r follows a probability distribution qQ(r) which depends on the type of the query
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Q. Thus, for example we could assume that there are equally likely to be any number of relevant features, or that

three or four seems reasonable whilst 25 is unlikely. Although this introduces an extra degree of freedom into the

theory, we find that the results are almost independent of what we assume about q. We calculate the probability of

successful analogy now as a function of the source-target difference d only:

p(d) =

m
∑

r=0

q(r)p(d, r)

using the above formula for p(d, r). For any reasonable assumption about the shape of q(r), the variation of p(d)

with d remains approximately the same shape.

For q(r) = constant, p(d) ∼ 1/(d + 1)

For q(r) ∝ e−r, p(d) ∼ e−d for low d, larger for high d

For q(r) ∝ re−r, p(d) ∼ e−d except at large d

For q(r) = Normal(µ = 4, σ = 2), p(d) ∼ e−d

q(r) = constant q(r) ∝ e−r q(r) ∝ re−r q(r) = N(4, 2)

Fig. 2 p(d) given various assumptions about q(r).

In figure 2 we show values of p(d) (plotted as dots) computed using these four assumptions of q(r), with a simple

exponential decay (p(d) ∝ e−d, solid line) superimposed.

4.3 Generalizing the model

We can make the simple model analyzed above applicable to any analogical task simply by allowing the ‘attributes’

and ‘values’ to be arbitrary predicate calculus formulae and terms. The assumption that a match on any of these

new ‘attributes’ is equally likely, a priori, is no longer tenable, however. In this section we will discuss some ways in
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which the similarity measure might be modified in order to allow this assumption to be relaxed. The idea is to reduce

each attribute to a collection of uniform mini-attributes; if the original assumptions hold for the mini-attributes, our

problem will be solved. Unfortunately, the task is non-trivial.

The first difficulty is that we can only assume equal relevance likelihood if the a priori probabilities of a match

on each attribute value are equal; in general, this will not be the case. In the terms of Carnap (1971), the widths of

the regions of possibility space represented by each attribute are no longer equal. Accordingly, the simple notion of

similarity as the number of matching attributes needs to be revised. If the cardinality of the range of possible values

for the ith attribute is ki, then the probability pi of a match (assuming uniform distribution) is 1/ki. Although k will

vary, we can overcome this by reducing each attribute to log
2
k mini-attributes, for which the probability of a match

will be uniformly 0.5. If the original distribution is not uniform (for example, a match on the NoOfLegs attribute

with value 2 is much more likely than a match with value 1), a similar argument gives the appropriate contribution

as − log2 pi mini-attributes. This refinement may underlie the intuition that ‘unusual’ features are important in

metaphorical transfer and analogical matching (Winston, 1978; Ortony, 1979). A generalization of this idea would

deal with arbitrary probability distributions for the values of p, incorporating the inexact match idea of the following

paragraph.

In the logical approach, the notion of one attribute value ‘almost matching’ another is expressed as a common-

ality by defining a more coarse-grained attribute, such that the two ‘close’ values are mapped onto the same value

for the new attribute. A representation should be chosen such that determinations are expressed using the ‘broadest’

attributes possible, thus precise attributes are grouped into equivalence classes appropriate to the task for which

we are using the similarity. In the current situation, however, we will not know what the appropriate equivalence

classes are, yet we still want to take into account inexact matches on attribute values; for example, in heart disease

prognosis a previous case of a 310-lb man would be a highly pertinent analogue for a new case of a 312-lb man. If

the weight attribute was given accurate to 4 lbs instead of 1lb, these men would weigh the same; thus in general an

inexact match on a scalar attribute corresponds to an exact match on less fine-grained scale, and the significance of

the ‘match’ is reduced according to the log of the accuracy reduction (2 bits in this case).

A consequence of this view of the significance of an attribute leads to a constraint on the possible forms of

q(r): if we assume that the relevant attributes must contain at least as much information as the attribute Q whose

value they combine to predict, then we must have q(r) = 0 if r is less than the significance value of Q. Here r, as

well as the total ‘attribute count’ m and the similarity s, are all measured on a scale where a one-bit attribute has a

significance of 1. At first sight, it seems that we have succeeded in breaking down our complex features into uniform
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elements, all of which are equally likely to be relevant, so all the earlier results should still apply.

However plausible this may seem, it is simply false. The base of the logarithms chosen is of course totally

arbitrary — we would still have uniform mini-attributes if we had used log
4
. This would mean halving our values

for m, r and s; but the formula for p(d, r) contains combinatoric functions, so it will not scale linearly. Hence our

predicted probability will depend on the base we choose for the logarithms! This is clearly unsatisfactory. What

we have done is to neglect an important assumption made in using the combinatorial argument, namely that the

relevant information consisted of a set of whole features. If we allow it to consist of a collection of sub-elements of

various features, then clearly there are many more ways in which we can choose this set. The plausibility of the

simple model rests in our unstated assumption that the attributes we use carve up the world in such a way as to

correctly segment the various causal aspects of a situation. For example, we could represent the fact that I own a

clapped-out van by saying

OwnsCar(SJR, 73DodgeSportsmanV anB318)

using one feature with a richly-structured set of values; but for most purposes a reasonable breakdown would be

that I own a van (for other people’s moving situations), that it’s very old (for long-distance trip situations), that it

can seat lots of people (for party situations), that it’s a Dodge (for frequent repair situations) and that it’s virtually

worthless (for selling situations). Few situations would require further breakdown into still less specific features. In

some sense, therefore, we will require a theory of natural kinds for features as well as for objects.

If it is the case that humans have succeeded in developing such well-tuned representations, then it is indeed

reasonable for us to assume that the relevant information, which corresponds to the part of the real-world situation

which is responsible for determining the queried aspect, will consist of a set of discrete features corresponding to the

various possible causal factors present. This of course raises a vast throng of questions, not least of which is that of

how an AI system is to ensure that its representation has the appropriate properties, or even how it can know that

it does or doesn’t. The subject of the semantic implications of using a particular representation is also touched upon

in the concluding section of this paper.

5. EMPIRICAL DATA ON STIMULUS GENERALIZATION

A crucial test of whether the representational assumptions used in the above quantitative analysis are reasonable

is to compare its predictions to actual human and animal performance. Psychological experiments on stimulus

generalization are essentially measuring the subject’s ability to do analogy by similarity. In these experiments, a
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(human or animal) subject is given an initial stimulus, to which it makes a response. If necessary, the correct

response is confirmed by reinforcement. This original stimulus-response pair is the source in our terms. Then a

second stimulus is given, which differs from the original. This represents the target situation, for which the subject

must decide if the original response is still appropriate. The empirical probability that the subject makes the same

response (generalizes from the original stimulus) is measured as a function of the difference between the stimuli. This

probability is essentially what we are predicting from rational grounds in the above analysis.

Early results in the field failed to reveal any regularity in the results obtained. One of Shepard’s crucial

contributions (1958) was to realize that the similarity (or difference) between the stimuli should be measured not in

a physical space (such as wavelength of light or pitch of sound) but in the subject’s own psychological space, which

can be elicited using the techniques of multi-dimensional scaling (Shepard, 1962). Using these techniques, Shepard

obtained an approximately exponential stimulus generalization gradient for a wide variety of stimuli using both

human and animal subjects. Typical results, reproduced, with kind permission, from Shepard’s APA presidential

address (1981), are shown in figure 3.

His own recent theory to explain these results appears in (Shepard, 1984), and has a somewhat similar flavour

to that given here, although it is designed for continuous-valued stimuli. The empirical verification of the theory by

Shepard’s results is extremely good, in the sense that it shows that humans and animals possess a rational ability to

judge similarity which has evolved or been learned, presumably, because of the optimal performance of its predictions

given the available information. Shepard’s explanation of the results and our own are somewhat complementary in

that he deals with unanalyzed stimuli whereas our model assumes a breakdown into features. This is well-suited for

our purpose of constructing a computational theory of analogy and a generally useful analogy system for AI; this is

the subject of the next section.

6. COMBINING THE LOGICAL AND SIMILARITY-BASED APPROACHES

There seems little doubt that, given a suitable determination, determination-based analogical reasoning (DBAR) is

the preferred mode of analogical reasoning, especially given the sharp fall-off in probability of correctness for the

similarity-based method as the similarity decreases. We intend to further verify the similarity theory by performing

analogies in an AI database of general knowledge (Lenat’s CYC system; see (Lenat et al., 1986)), which will also

give us an empirical form for q(r). A further goal is to integrate analogy by similarity with the determination-based

analogical reasoning theory to provide an analogy capablity for a general reasoning program. The integration rests

on the following principles:
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Fig. 3 Plots of analogical response probability (S) against source-target difference (D), for various data, from

(Shepard, 1981).

1) For either type of reasoning, we must find a determination for the given query; this may be already

known, or found inductively or deductively from background knowledge.

2) If the determination is too specific to allow an exact matching source to be found, it can be used to point

out broad classes of potentially relevant features; we then reason by similarity within these constraints;

3) Probabilistic determinations can add specific weights to the contributions of individual attributes to the

overall similarity total;

4) Blind statistical search for new determinations is combinatorially explosive; observation of an unexpect-

edly high similarity can initiate a more focused search for a hitherto unknown regularity to be encoded
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as a new determination.

7. SUMMARY

Although correct analogical reasoning requires knowledge of determinations, two other approaches show promise

for the justification of analogy by similarity. The first is based on assumptions about the form and content of the

system’s representation of the world. Attunement in humans and animals seems to suggest that in constrained

environments this approach to analogy may have promise, but it must await a better theory of representation before

it can be useful. A second approach, using the idea of unidentified relevant features, seems to correspond well to

the traditional idea of analogy. A quantitative relationship is developed between the degree of similarity and the

probability of correctness of an analogy; the similarity measure used goes some way towards being representation-

independent. When intelligent systems embodying full theories of limited rationality are built, an ability to perform

analogical reasoning using both determinations and similarity will be essential in order to allow the system to use its

experience profitably. Analogy by similarity also seems extremely well suited to the task of producing reliably fast,

plausible answers to problems, particularly in a parallel environment.

The analysis in this paper revealed a reliance on a strong assumption about the nature of representation,

namely that each attribute corresponds to an atomic ‘causal factor’ in the actual world. There is an echo here of the

concept of entrenchment that Goodman uses in describing our inductive practice — only well-entrenched terms, that

have frequently been involved in successful inductive hypotheses before, can be used in new inductive hypotheses.

Entrenchment can be codified logically (Russell, 1986a), but a similar analysis does not yet seem possible for the

representation conditions for analogy by similarity.

Entrenchment and the ‘atomic causal factor’ assumption are two examples of conditions on the representation of

knowledge that can be ensured by the use of an appropriate language evolution mechanism. Given such a mechanism,

inference methods that are unsound on the surface can be used reliably and efficiently, since they do not have to

work with an arbitrary knowledge base. Their operation is justified by the semantics of the presence of the terms in

the language. This is an example of what Kuhn has called lexically-embodied knowledge. The use of linguistic biases

such as the least disjunction principle (Utgoff, 1986) in concept learning systems is another example of a syntactic

inference method, but one whose logical basis has not yet been examined. A fourth, simple example is the use of the

Unique Names assumption in database theory.

A first step in the process of unravelling this relationship between language and inference might be to perform a

logical analysis of a given language evolution mechanism and to generate its associated syntactic inference procedure.
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At present, we have very little idea how much the use of human-derived concepts in AI systems (other than pure

deductive systems) contributes to their success. Consequently, we have no idea how to assure the same degree of

success for an autonomous, self-evolving system. Imagining a language none of whose terms embody any knowledge

is perhaps the hardest part of knowing what it is like to be a computer.
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