
The BATmobile:
Towards a Bayesian Automated Taxi

Jeff Forbes, Tim Huang, Keiji Kanazawa, Stuart Russell
Computer Science Division

University of California
Berkeley, CA 94720, USA

jforbes,tthuang,kanazawa,russell@cs.berkeley.edu

Abstract

The problem of driving an autonomous vehicle in
normal traffic engages many areas of AI research
and has substantial economic significance. We de-
scribe work in progress on a new approach to this
problem that uses a decision-theoretic architecture
using dynamic probabilistic networks. The archi-
tecture provides a sound solution to the problems of
sensor noise, sensor failure, and uncertainty about
the behavior of other vehicles and about the effects
of one’s own actions. We report on advances in
the theory of inference and decision making in dy-
namic, partially observable domains. Our approach
has been implemented in a simulation system, and
the autonomous vehicle successfully negotiates a
variety of difficult situations.

1 The BAT Project
Several government agencies and corporations in Europe,
Japan, and the US are currently undertaking research in IVHS
(Intelligent Vehicle and Highway Systems) with the aim of
substantially reducing congestion and accidents, which cost
$500 billion/year and 100,000 lives/year, respectively. In the
near future, several research projects expect to demonstrate
prototype systems for automated highways in which vehi-
cles travel in segregated lanes under centralized control using
inter-vehicle negotiation and only minimal sensing. For ex-
ample, PATH (Partners for Advanced Transit and Highways),
an agency of the State of California, has designed a “pla-
tooning” scheme in which large groups of automated vehicles
travel together with minute inter-vehicle spacing, thereby qua-
drupling highway capacity. This scheme forms the basis for
a nationwide consortium funded by the US Government.

The BAT (Bayesian Automated Taxi) project, although
funded by PATH, takes an entirely different approach. The
aim is to introduce autonomous vehicles into normal highway
traffic. On the one hand, this approach:

� Eliminates the need for extensive highway rebuilding.
� Allows a gradual, evolutionary shift to fully automated

highways.
� Eliminates the risk of widespread system failure.
� Improves integration with urban surface streets.

Vision
system

Geographical
 model

BAT

Physical Simulator

Low−level
 control

Decision
 module

 Real Time
 Animation
(SmartPATH)

General
 traffic
 model

Figure 1: The basic components of the BAT project.

On the other hand, whereas driving in a restricted, in-
strumented lane is primarily a problem in control theory,
driving in normal traffic on an uninstrumented highway
is more difficult and engages many areas of AI research.
This is either a disadvantage or an advantage, depend-
ing on one’s viewpoint. Because the necessary low-level
capabilities such as visual vehicle monitoring [Huang et
al., 1994] and lane-following [Dickmanns and Zapp, 1987;
Pomerleau, 1993] are reaching maturity, we have decided to
confront this challenge.

The first phase of the project is a feasibility study to es-
tablish the computational and sensing requirements for driv-
ing and to investigate the nature of the necessary decision
algorithms. We use a 2-D physical simulation that generates
moderately realistic 3-D rendered video output (SmartPATH),
which is passed to the BAT (see Figure 1). Using this infor-
mation, the BAT must understand the current traffic situation,
select high-level actions such as braking, accelerating, and
lane changing, and implement those actions using low-level
control.

The AI problems involved in driving are legion: the BAT
must make decisions in real-time; its sensors are noisy—
position errors are significant, and some vehicles may not be
detected, especially at night or in poor weather conditions;
sensor inputs must be integrated, and some sensors may fail
altogether; the world is only partially observable—vehicles
may be occluded, and other drivers’ intentions are invisible;

and the BAT has only a stochastic model of the results of its
own actions. Finally, successful deployment requires a critical
error rate below 1 in 108 seconds, i.e., it must perform at least
as well as a good driver. These considerations mean that the
BAT must, at least at “compile time,” weigh up quantitative
risks and benefits. The only “safe” policy is to stay in one’s
garage.

Although there are dozens of projects worldwide with sim-
ilar goals, descriptions of which can be found in the proceed-
ings of many IVHS conferences, almost none have started
from the premise that sensors and actuators are noisy and
error-prone—a fact that has resulted in several deaths dur-
ing testing of “Advanced Intelligent Cruise Control” (AICC)
systems. One exception is the work of Niehaus and Sten-
gel [Niehaus and Stengel, 1991], who have recently incor-
porated a somewhat ad hoc form of probabilistic reasoning
into their rule-based driving controller. Since their system
assumes worst-case outcomes in looking ahead, and does not
integrate percepts over time in assessing the current state, its
performance is limited.

The BAT decision making architecture is multi-level, with
a high level component in charge of overall trip planning and
parameters such as desired cruising speed, which it passes
down to a driving module in charge of the concrete task of
driving the vehicle in traffic in real-time. This paper focuses
on the latter task. The driving problem can be modelled for-
mally as a POMDP (partially observable Markov decision
process). In a POMDP, the optimal decision is a function of
the current belief state—the joint distribution over all possi-
ble actual states of the world.1 The problem can be divided
into two parts: updating the current belief state, and making
a decision based on that belief state. We begin this paper
by showing how we use dynamic probabilistic networks to
represent and update the belief state, and introduce tempo-
rally invariant networks and stochastic sampling as efficient
methods for updating in real-time. We then describe three
methods for making decisions: lookahead planning, explicit
policy representations, and machine learning. Finally, we il-
lustrate the effectiveness of an implemented BAT controller
in a variety of scenarios designed to test the BAT’s ability to
make fast, effective decisions in difficult situations.

2 Maintaining the Current Belief State
In order to make appropriate control decisions, an agent must
have accurate information about its own state and the state of
its environment. For example, the BAT must know its own
position, velocity, and intentions, and it must monitor those
of its neighboring vehicles. It must also monitor road and
weather conditions, since they may significantly affect the
BAT’s ability to drive.

The state of the BAT’s environment is only partially ob-
servable. Sensor information for variables such as vehicle
positions and velocities may be incomplete and noisy, while
driver intentions and road conditionsmay not be directly mea-
surable at all. Thus, the BAT cannot make decisions based

1Because the belief state should reflect the integration of percepts
over time in order to assess such unobservables as driver intentions,
approaches such as Pomerleau’s ALVINN that are based on feedfor-
ward neural networks cannot solve the full driving problem.

merely upon the latest sensor readings. Rather, it must main-
tain estimates for the random variables that together represent
the state of the world, and it must make its decisions based
upon the joint probability distributionover all those variables.
In the rest of this section, we outline our approach to main-
taining the current belief state.

2.1 Dynamic probabilistic networks
To maintain the BAT’s current belief state, we employ dy-
namic probabilistic networks (DPNs). Probabilistic networks
are directed acyclic graphs in which nodes represent random
variables (typically discrete) and arcs represent causal con-
nections among the variables [Pearl, 1988]. Associated with
each node is a CPT (conditional probability table) that pro-
vides conditional probabilities of the node’s possible states
given each possible state of its parents (or the prior probabili-
ties if the node has no parents). Probabilistic networks offer a
mathematically sound basis for making inferences under un-
certainty. The conditional probability tables provide a natural
way to represent uncertain events, and the semantics of the
updated probabilities are well-defined. Knowledge of causal
relationships among variables is expressed by the presence or
absence of arcs between them. Furthermore, the conditional
independence relationships implied by the topologyof the net-
work allow the joint probability distribution of all the variables
in the network to be specified with exponentially fewer prob-
ability values than in the full joint distribution. When specific
values are observed for some of the nodes in a probabilistic
network, posterior probability distributions can be computed
efficiently for any of the other nodes using a variety of infer-
ence algorithms [Pearl, 1988]. The extension to continuous
variables is straightforward, and stochastic sampling provides
a simple way to perform inference with such variables.

DPNs allow for reasoning in domains where variables take
on different values over time [Dean and Kanazawa, 1988].
Figure 2 shows the general structure of a DPN. Typically,
observations are taken at regular ‘time slices,’ and a given
network structure is replicated for each slice. DPNs model
their domains as partially observable Markov processes, so
nodes can be connected not only to other nodes within the
same time slice but also (and only) to nodes in the immedi-
ately preceding or immediately following slice. The Markov
property states that:

P(Statet+1jStatet, Statet�1, Statet�2, . . .) = P(Statet+1jStatet)

In other words, the future is independent of the past given
the present. As long as the BAT’s representation of the world
conforms to this property, the BAT need not maintain the
history of its percepts to predict the next state since the ac-
cumulated effect of its observations is captured in its current
belief state.

The CPTs for the set of arcs proceeding from one time slice
to the next form the BAT’s state evolution model. This model
quantifies how the BAT believes the actual state of the system
will evolve over time. The CPTs for the set of arcs proceeding
into nodes whose values are typically observed at each time
slice form the BAT’s sensor model. This model quantifies the
likelihood of making a set of observations of the world given
the actual state of the world.

Since a given variable may be measured by more than one
sensor, the BAT must be able to integrate multiple sensor

State Evolution Model

Sensor Model

Sense.t−1 Sense.t Sense.t+1 Sense.t+2

State.t−1 State.t State.t+1 State.t+2

Figure 2: The structure of a dynamic probabilistic network. The
ovals denote sets of state nodes or sensor nodes. The arcs going
from one slice to the next form the state evolution model, and the
arcs going into the sensor nodes form the sensor model. The shaded
ovals denote observations available when predicting the state at time
t + 1.

readings in computing its estimate of the variable’s value.
Because sensors are usually conditionallyindependent of each
other given the variable that they measure, Bayesian updating
within a probabilistic network easily fuses the readings from
several sensors, automatically returning an updated posterior
probabilitydistribution for the value of the measured variable.

2.2 Efficient Updating
As an agent goes about the world, performing actions, gaining
sensor readings and going forward in time, it must efficiently
update its model of the world. With DPNs, the agent must go
through a constant process of incorporating percepts, adding
new time slices at the “leading edge” of the network, and
discarding old time slices at the “trailing edge” to avoid a
blow-up in the DPN structure.

Because of the Markov property, time slices corresponding
to the past can be removed as new slices are added to the
network. Before a past slice is removed, its influence must be
absorbed into the remaining part of the network by revising
probability tables for nodes in the slice immediately following
the slice to be removed. By rolling up the network in this
fashion, evidence accumulated over time is always integrated
into the current probabilistic network model. In general, the
model for the current time slice along with the current percepts
completely determines the current belief state.

Clearly, real-time temporal inference requires efficient
rollup. Any exact method for rolling up one slice of a network
is equivalent to performing a sequence of node eliminations
[Kjaerulff, 1992]. Node elimination may introduce additional
links into the network; thus the network structure may change
as a result of rollup. This complicates maintaining the be-
lief state in three ways. First, different node elimination
sequences can result in drastically different connectivity in
the resulting networks. Connectivity in turn affects the time
needed for inference using a network. Second, modification
of the network structure may force some inference algorithms,
such as those based on junction trees, to perform expensive
computations to modify or completely recreate internal data
structures. Third, modification requires more complex and
computation-intensive code to manipulate the network.

To address these issues, we have developed twomethods for
efficient rollup: temporally invariant networks and stochas-
tic simulation. We first introduce the temporally invariant
network, and then briefly describe our approach to stochas-

(a) (b)

X2

Y2

Z2

X0

Y0

Z0

Y1

Z1

X1 X2

Y2

Z2

X0

Y0

Z0

Y1

Z1

X1

Y1

X2

Y2

Z2Z1

X1

Y1

Z1

X2

Y2

Z2

X1

Figure 3: (a) A temporally invariant network: its structure is pre-
served after rollup. (b) A temporally variant network: its structure
is altered after rollup.

tic simulation in DPNs, which is described in more detail in
[Kanazawa et al., 1995].

Temporally Invariant Networks

A temporally invariant network is a DPN for which there exists
a node elimination sequence which induces the same struc-
ture as the original network. Figure 3(a) shows a temporally
invariant network. Although we do not have the space for a
full exposition of the node elimination operations involved, it
is easy to see that in this network, all information about a time
slice is conveyed to a single node, the top node, in the next
slice. Thus, intuitively, rollup should affect only this top node
and not affect the other parts of the network.

By contrast, Figure 3(b) shows a temporally variant net-
work. In this network, information about each slice is con-
veyed to the next slice through two nodes. Effectively, this
means that those two nodes become dependent on each other,
since knowing something about one of them implies some-
thing about the past, which in turn implies something about
the other. Thus, after rollup, the new leading edge slice con-
tains an arc joining the two nodes.

A temporally invariant network has obvious advantages for
real-time temporal inference. Since the rollup operations are
known in advance, there is no need to perform a potentially
expensive run-time search for an elimination order. This can
be done offline, as can open-coding of the CPT computations
performed in the rollup.

One thing to notice is that in Figure 3(b), we could have
added the arc introduced by rollup to every slice from the
beginning. Then the resulting network would have been tem-
porally invariant. Thus, we can take a temporally variant
network and convert it into a temporally invariant one. There
is a cost associated with this conversion. While the exam-
ple only involves the addition of one arc, this arc also makes
every slice completely connected. In fact, it is easy to show
that a network with completely connected nodes in each slice
is always temporally invariant. However, a network with
completely connected subcomponents may be very expensive
to represent and to compute with, and it lacks many of the
advantages of using probabilistic networks in the first place.

For a given temporally variant network, finding an optimal
conversion that adds a minimal cost set of edges to create
a temporally invariant network is likely to be an expensive
operation. Nevertheless, by precompiling it into a temporally
invariant network, and by devoting significant resources to
finding a good node elimination sequence, we may ease the
run-time computation requirements of the network.

Stochastic Simulation in DPNs
In much of our past work, we have taken advantage of a com-
mercial implementation of the exact clique tree algorithm (the
HUGIN system). In our applications, we have found that the
clique tree algorithm is too expensive and that exact probabil-
ities are not needed. Furthermore, DPNs seldom conform to
the structural requirements required for the clique tree to han-
dle continuous variables. We have therefore investigated the
use of stochastic simulation algorithms, which often provide
fast approximations to the required probabilities and can be
used with arbitrary combinations of discrete and continuous
distributions. Even more importantly, the use of stochastic
simulation makes unnecessary the expensive CPT manipula-
tions involved in exact rollup.

In the context of DPNs, stochastic simulation methods at-
tempt to approximate the current belief state using a collection
of samples representing “simulated realities,” each describing
one possible evolution of the environment. Because the sam-
ples are a complete representation of our estimate of the joint
distribution, there is no need to recompute CPTs. The sample
population and associated weighting factors integrate and re-
flect all available evidence, and they are all we need to form
the estimate of any marginal or joint probability in a DPN.

The simplest simulation algorithm is logic sampling [Hen-
rion, 1988]. Logic sampling stochastically instantiates the
network, beginning with the root nodes and using the ap-
propriate conditional distributions to extend the instantiation
through the network. Because logic sampling discards tri-
als whenever a variable instantiation conflicts with observed
evidence, it is ineffective for DPN-based monitoring where
evidence is observed throughout the temporal sequence.

Likelihood weighting [Shachter and Peot, 1989] attempts
to overcome the general problem with logic sampling. Rather
than discarding trials that conflict with evidence, each trial is
weighted by the probability it assigns to the observed evidence.
Probabilities on variables of interest can then be calculated
by taking a weighted average of the values generated in the
population of trials. It can be shown that likelihoodweighting
produces an unbiased estimate of the required probabilities.

The use of likelihood weighting in DPNs reveals some
problems that require special treatment. The difficulty is that
a straightforward application generates simulations that sim-
ply ignore the observed evidence and therefore become in-
creasingly irrelevant. Consider a simple example: tracking a
moving dot on a 2-D surface. Suppose that the state evolution
model is fairly weak—for example, it models the motion as a
random walk—but that the sensor is fairlyaccurate with a very
small Gaussian error. Figure 4 illustrates the difficulty. The
samples are evolved according to the state evolution model,
spreading out randomly over the surface, whereas the object
moves along some particular trajectory that is unrelated to the
sample distribution. The weighting process will assign ex-
tremely low weights to almost all of the samples because they
disagree with the sensor observations. The estimated distribu-
tion will be dominated by a very small number of samples that
are closest to the true state, so the effective number of samples
diminishes rapidly over time. This results in large estimation
errors. All this occurs despite the fact that the sensors can
track the object with almost no error! In the case of traffic
monitoring, we have discovered that a naive application of
likelihood weighting results in a sample population of more

or less imaginary traffic scenes that bear no relation to what
is actually happening on the road.

Figure 4: A simple 2-D monitoring problem. An object starts
in the centre of the disc and follows the path shown by the solid
line. Sensor observations are shown by crosses. The small circles
show a snapshot of the population of samples generated by a naive
application of likelihood weighting. Snapshots for t = 2 and t = 7
are shown.

We have developed two methods that use the current sensor
values to reposition the sample population closer to reality
rather than allowing it to evolve as if no sensor values were
available. The problems with likelihood weighting typically
arise in situations (such as often happens with DPNs) where
nodes representing observed evidence have parents. Evidence
reversal is a method that restructures each time slice of a DPN
so that evidence nodes have no unobserved parents. This
method ensures that the sample population remains close to
reality when extending it using the current evidence. Survival
of the fittest sampling is a method that uses the likelihood
weights to preferentially propagate the most likely samples.
This is related to genetic algorithms (except that there is no
crossover). Our experimental results confirm that our methods
perform better than likelihood weighting in DPN-monitoring
applications. The best results are obtained by combining both
methods [Kanazawa et al., 1995].

2.3 Network structure
As implemented, the BAT monitors each vehicle tracked by
the sensor system with a separate DPN. Each network contains
nodes for sensor observations, such as vehicle position and
velocity, as well as nodes for predicting driver intentions,
such as whether the driver intends to make a lane change or
to slow down.

Like a Kalman filter, each network computes probability
distributions for a vehicle’s position and velocity based on
both its latest observations and its previous state estimate
(which reflects the influence of all previously observed evi-
dence). Unlike a Kalman filter, which is limited to Gaussian
distributions, the network predictions can be arbitrarily dis-
tributed. For example, if a vehicle were approaching some
debris directly in front of it, the network could predict that
the vehicle would move either to the right or to the left (but
not straight) in order to avoid the debris. Also, the network
could easily incorporate additional sensor information. If the
sensor system recognized that a vehicle was flashing its right
turn signal, the network could make predictions that biased
the vehicle’s position towards the right.

An alternate, perhaps preferable, approach to vehicle moni-
toring wouldutilize one large scene network for all relevant ve-

Time Slice 0 Time Slice 1
Back
Speed
 Diff

Back
Speed
 Diff

Back
Close,
Fast

Xdot

Front
Close,
Slow

Front
Clear

Front
Speed
 Diff

Back
Clear

Stopped
 Time

 Left
Clear

Right
Clear

Xpos

Ypos

Ydot

Front
Clear

Front
Speed
 Diff

Back
Clear

 Left
Clear

Right
Clear

Lateral
Action

Engine
Status

Sensor
 Valid

Xpos

Xdot

Ypos

Ydot

 Turn
Signal

 Left
Clear

Right
Clear

Lateral
Action

Engine
Status

Sensor
 Valid

Xpos

Xdot

Ypos

Ydot

 Turn
Signal

Stopped
 Time

 Fwd
 Action

 Fwd
 Action

Figure 5: Dynamic probabilistic network for one vehicle, including
inter-slice arcs. The smaller nodes with thicker outlines denote
sensor observations.

hicles. Because this greatly increases the computational com-
plexity of inference operations and requires run-time modi-
fications to the network structure, we chose to use separate
networks for each vehicle. To incorporate the influence of
nearby vehicles, each network contains nodes corresponding
to those vehicles. For example, the Front Clear and Front Speed
Diff nodes in Figure 5 refer to “the space between this vehicle
and the vehicle in front,” and “the speed difference between
this vehicle and the vehicle in front,” respectively. Since the
vehicle in front of or behind a given vehicle may change,
these indexical nodes do not correspond to a specific vehicle.
Instead, a preprocessing step using sensor data determines
the spatial relationships among the vehicles and then sets the
node states accordingly. Figure 5 shows an example vehicle
network for one time slice, along with the inter-slice links to
the next time slice.

2.4 Sensor models and sensor failure
Since adverse weather, road conditions, and extended use may
cause the BAT’s sensor systems to degrade or fail, it must be
able to dynamically estimate the reliability and accuracy of its
sensors. By quantifying a sensor’s expected performance
under various operating conditions, we have been able to
construct belief networks for sensor validation.

Figure 6 shows an example of a network for monitoring
the state of a single sensor (such as a video camera) based
on observations for two cars. The Sensor Status node at each
time slice specifies whether the sensor is performing well,
performing at a degraded level, or completely inoperative.
The CPT for each observation node specifies a distribution for
the observation of a variable given its actual value and given
the operating mode of the sensor. As the variation between
predicted values and observed values increases, the sensor

Car 1
Ypos

Car 1
Ypos

Car 1
 Ydot

Car 1
Xpos

Car 1
Xpos

Car 1
 Xdot

Car 1
 Xdot

Time Slice 0 Time Slice 1

Car 1
Ypos

Car 1
Xpos

Car 1
Xpos

Car 1
 Xdot

Car 1
 Xdot

Car 1
Ypos

Weather Weather
Car 1
 Ydot

.

.

.

.

.

.

Car 1
 Ydot

Car 1
 Ydot

Sensor
 Status

Sensor
 Status

Figure 6: An example sensor validation network. Sensor readings
are entered at observation nodes, the smaller nodes with thicker
outlines. The Sensor Status node can take on one of several different
values to indicate whether the sensor is broken or is operating in some
degraded mode. Increased variance between predicted values and
observed values may increase the belief that the sensor is performing
less reliably, perhaps due to adverse weather conditions.

validation network will correspondingly change its estimate
of the sensor’s reliability and accuracy, perhaps attributing it
to adverse weather conditions. Very high variance between
observed and predicted values or no observed values at all
may increase the belief that the sensor has failed completely.
Finally, the link going from the sensor status node in one slice
to its instantiation in the next slice allows quantification of the
persistence of the various sensor operating modes.

3 Decision Making in the BAT
In this section, we describe our approach to real-time BAT
decision making. As we noted earlier, the decision problem
corresponds to a POMDP. Computing the policy for POMDPs
is PSPACE-complete, and exact solutions can be obtained only
for tiny state spaces. Our approach to real-time BAT decision
making is to find approximate solutions. We are undertaking
three separate approaches. They are (1) bounded lookahead
using dynamic decision networks, which incorporate action
nodes and an explicit utility function; (2) hand-coded, explicit
policy representations, such as decision trees, that take as input
the joint probability distribution encoded in the DPN; and (3)
supervised learning and reinforcement learning methods for
solving the POMDP, in which we learn a policy representation,
a utility function on belief states, or an action-value function
on belief-state/action pairs.

3.1 Dynamic decision networks
Decision networks (or influence diagrams) extend probabilis-
tic networks by including distinguishednode types for actions
and utility functions. They are solved to obtain optimal de-
cisions by maximizing the utility function over the possible
instantiations of the action nodes,given the available evidence.
Dynamic decision networks (DDNs) resemble DPNs, but have

an action node for each time slice. If the utility function is
time-separable (that is, the utility of a sequence of states can be
computed by combining separate rewards for each state in the
sequence), then the DDN can include a reward node with each
slice. For example, the reward function might include pos-
itive components for progress made towards the destination
and negative components for jerky motions, illegal actions,
crashes, etc. A DDN can represent a finite-horizon decision
problem by projecting forward the appropriate number of time
steps, or can approximate an infinite-horizon problem (such
as driving) by projecting up to an artificial horizon and then
using an approximate utility function on the final state to esti-
mate the expected reward for the rest of time. In this respect,
DDNs are similar to algorithms used in game-playing. In
Figure 7, we show a generic DDN with a three-step horizon.
The sensor model in a DDN is similar to that in a DPN; the
state evolution model, on the other hand, now includes the
action node as a parent, and therefore represents the effects
of the agent’s actions. Note also that we do not show the
“informational links” that are used in influence diagrams to
show the evidence available to the agent when each decision
is made. Instead, we enforce the convention that a decision
at time t is made with all evidence gained up to and including
time t, and we identify a particular set of the chance nodes as
evidence nodes that will be instantiated at each time step.

Sense.t Sense.t+1 Sense.t+2 Sense.t+3

U.t+3D.tD.t−1 D.t+1 D.t+2

State.t State.t+1 State.t+2 State.t+3

Figure 7: A generic dynamic decision network (DDN).

Tatman and Shachter [Tatman and Shachter, 1990] provide
an algorithm for computing the policy for a DDN. In the case
of driving, which is a partially observable problem, only a sub-
set of the variables in a given time slice will be instantiated as
evidence. This means that as well as maximizing over action
sequences, the algorithm must average over all possible per-
cept sequences as well. Although this enables generation of
intelligent policies such as “moving over a bit to look around
the car in front,” it is expensive. It is possible to avoid generat-
ing an explicit representation of the policy (which resembles
an enormous “conditional plan”), but the time complexity
still makes the process infeasible for a real-time agent using
current hardware. Using metalevel control and adjusting the
horizon can mitigate this to some extent, and some success
has been achieved in simple environments. Currently, how-
ever, we envisage using DDN lookahead mainly for offline
generation of optimal actions in large sets of training exam-
ples. The belief-state/action pairs can then be generalized
using inductive methods to provide an efficiently executable
policy representation.

3.2 Decision tree policy representation
Our second approach combines the DPN state evolution model
with a decision tree. The decision tree is a tree of binary if-

then-else constructs where the test predicates are computed
from the joint distribution computed by the DPN. Each leaf
of the tree is a decision. This obviously yields an effec-
tive, real-time policy, but constructing the decision tree is
a difficult task. Other researchers, for example Lehner and
Sadigh [Lehner and Sadigh, 1993], have examined the cre-
ation of decision trees from influence diagrams, but only for
static problems. In such cases, the decision tree nodes test
fully determined evidence variables. If this method is applied
to dynamic problems, one may be forced to test the entire
percept sequence.

Our approach involves testing the current belief state in-
stead. Although this is potentially much smaller, optimality
in a POMDP requires that the tests define regions in the joint
probability space rather than regions in the marginal proba-
bility space for each variable. We have found this extremely
unintuitive, and so have used tests on marginals of individ-
ual variables as an approximation. To date, this has been
reasonably effective. We have implemented several hand-
constructed decision trees, which have the following general
structure (each “predicate” here is actually a complex set of
probability thresholds on specific variables, and each “action”
a subsidiary decision tree):

if changing lane
if safe to continue

Continue lane change
else

Abort lane change
else if not in target lane and can change to target lane

Initiate lane change to target lane
else if vehicle in front

Maintain safe following or Pass
else

Maintain target speed

Figure 8: General decision-tree structure.

Experimental results with our current decision tree are de-
scribed later on.

3.3 POMDP Policy Learning
The last approach to decision making takes advantage of an
observation we made earlier, namely, that the POMDP policy
is a function from the current belief state to the optimal action,
and that the current belief state is encoded in the DPN. In
the preceding section, we proposed decision trees over the
DPN distribution as one possible function to approximate the
POMDP policy. Here, we briefly describe how to learn the
optimal value function for each action directly.

Assume that the world is represented as a temporally in-
variant DPN. In the DPN, the belief state is determined by
the CPTs, evidence values, and topology of the current slice.
However, since the topology and some of the CPTs are fixed
due to temporal invariance, we need pay attention only to the
time-varyingCPTs and the evidence when learning the action-
value function. The time-varying CPT entries are identified
during the compilation of the temporally invariant network.
In this way, we can project down the complete joint probabil-
ity space onto a much smaller subspace in which to learn the

action-value function. Since the decision problem is Markov
in this subspace, we can use standard reinforcement learning
techniques such as Q-learning to learn a generalized action-
value representation. The details of this technique are de-
scribed in a forthcoming paper.

4 Scenarios and Results

In this section, we describe the result of testing the decision-
tree-based BAT controller on several sample traffic scenarios.
We have built a working simulator to test various decision
making modules for the BAT. For each test, the simulator
reads a scenario description file, which describes the volume
of traffic and the behaviors of other vehicles traveling along
the highway. At each simulator "clock tick", the simulator
determines the trajectories of all the vehicles until the next
tick; it passes current state information in the form of sensor
readings (adding noise as necessary using sensor models) to
each vehicle’s controller, which in turn outputs its decision
for the current time step. The simulator uses the vehicle’s
decision and a physical model to plot trajectories and to detect
collisions and other significant events.

We have predefined a set of controllers for vehicles other
than the BAT (called “drones”) that engage in a variety of be-
haviors simulating good drivers, antisocial, incompetent, and
unsafe drivers, stalled vehicles, and so on. These controllers
are configurable in terms of when and how often they un-
dertake such behaviors, their speed, and so on; furthermore,
the system is easily extensible to add more types of driving
behavior.

In the results described here, the system is limited to hav-
ing only one BAT at a time. This is due largely to the current
inference architecture, which uses the HUGIN belief network
system. Although our networks are not very large (the to-
tal number of nodes is on the order of 300), they are highly
connected, which slows down the HUGIN system. A newer,
implemented system uses stochastic simulation which is con-
siderably faster for our problem, and we plan to have multiple
BATs driving at the same time.

The goal of the BAT controller is to maintain a target speed
in a target lane. When other vehicles interfere, the con-
troller makes appropriate acceleration/deceleration and lane-
changing maneuvers. We show five such situations: passing
a slow-moving vehicle (Figure 9), reacting to unsafe drivers
(Figure 10), avoiding a stalled car (Figure 11), aborting a lane
change maneuver (Figure 12), and merging into another lane
(Figure 13). We show the situations as discrete sequences of
2-D pictures, although of course they are actually continuous
3-D video sequences. In the figures, the BAT is the shaded
vehicle.

5 Summary and future work

We have described the overall structure and early theoretical
and practical results of a long-term project on intelligent ve-
hicles. In a short paper we cannot do full justice to either type
of result, but we hope to have given something of the flavour
of the AI problems involved and their solutions. Specific
contributions include the following:

Figure 9: Passing a slower car: This scenario demonstrates the
BAT’s ability to pass slow cars. As the BAT approaches a slower
vehicle, it decides to pass to the left so that it can maintain its
target speed. Because of another vehicle in that lane, the BAT first
maintains a safe following distance behind the slower car until the
left lane is clear and then performs a left lane change maneuver and
accelerates back to its target speed.

Figure 10: Reacting to unsafe drivers: This scenario shows the
BAT’s ability to deal with aggressive and unsafe drivers. A car cuts
in front of the BAT and proceeds to slow down. When the probability
of the other car making a lane change passes a threshold, the BAT
initiates a defensive lane change even before the other car is fully in
the BAT’s lane. The BAT first slows down to avoid the car and then
accelerates back to its target speed.

� The use of dynamic probabilistic networks (DPNs) to
solve the problems of noise and partial observability that
arise in driving.

� The decomposition of the overall DPN into separate ve-
hicle networks linked by indexical variables in order to
improve performance.

� Automatic diagnosis and accommodation of sensor
degradation and failure.

� The use of temporally invariant networks and stochastic
simulation to achieve real-time updating.

� The use of decision trees based on current belief state,
and their successful application in a variety of difficult
driving scenarios.

Clearly, much remains to be done. We are currently inves-
tigating the application of new learning algorithms to con-
struct DPNs automatically from time series data [Russell et
al., 1995]. Combined with our computer vision subsystem,
this will allow the construction of human driver models from
videotapes. In our network representation, we are working to
incorporate continuous variables, thereby avoiding the combi-
natorial explosion caused by discretization. One topic requir-
ing significant empirical research is the design of appropriate
utility functions. Even if the assumptions of time-separability

+ + ++

Figure 11: Avoiding a stalled car: This scenario demonstrates the
BAT’s ability to avoid a stalled car. The BAT detects a stalled car in
front based on the difference in their forward velocities. The BAT
realizes that the car is stalled, rather than stuck in traffic, because
there are no cars in front of it. However, the lane to the left of the
BAT is not clear, so the BAT slows down. Once it determines that
the left lane is clear, it initiates a lane change and begins accelerating
up to its target speed.

Figure 12: Aborting a lane change: This scenario describes an
aborted lane change. Initially, the BAT is changing lanes to the left
lane, but at the same time a car two lanes over tries to change lanes to
the right. When the BAT detects this by thresholding the probability
that the other car is changing lanes, it decides to abort its own lane
change by slowing down and going back to its original lane.

and additivity are appropriate, we still need to assess relative
weights of the various components. Such research can of
course be done independently of any specific design for a ve-
hicle controller and will be of use in all such projects. Finally,
one of the most important topics in intelligent vehicle design
is the question of validation—demonstrating that the vehicle
will be sufficiently safe for deployment in the real world. As
well as improving and assessing the verisimilitude of our sim-
ulation, we need to gather a vast library of real-world video
footage to test the BAT’s response to real situations.

References

[Dean and Kanazawa, 1988] T. Dean and K. Kanazawa.
Probabilistic temporal reasoning. In Proceedings AAAI-
88, pp. 524–528. Minneapolis.

[Dickmanns and Zapp, 1987] E. D. Dickmanns and A. Zapp.
Autonomous high speed road vehicle guidance by com-
puter vision. In R. Isermann, editor, Automatic Control—
World Congress, 1987, pp. 221–226, Munich.

[Henrion, 1988] M. Henrion. Propagation of uncertainty in
Bayesian networks by probabilistic logic sampling. In Un-

Figure 13: Merging into traffic: This scenario shows the BAT
entering the flow of traffic as its own lane ends. It first slows down
and waits for an opening in the traffic before accelerating and changes
lanes to the left.

certainty in Artificial Intelligence 2, pp. 149–163. Elsevier,
Amsterdam.

[Huang et al., 1994] T. Huang, D. Koller, J. Malik, G. Oga-
sawara, B. Rao, S. Russell, and J. Weber. Automatic sym-
bolic traffic scene analysis using belief networks. In Pro-
ceedings AAAI-94. Seattle.

[Kanazawa et al., 1995] K. Kanazawa, D. Koller, and
S. J. Russell. Stochastic simulation algorithms for dynamic
probabilistic networks. Submitted for publication.

[Kjaerulff, 1992] U. Kjaerulff. A computational scheme for
reasoning in dynamic probabilistic networks. In Proceed-
ings UAI-92, pp. 121–129. Stanford.

[Lehner and Sadigh, 1993] P. Lehner and A. Sadigh. Two
procedures for compiling influence diagrams. In Proceed-
ings UAI-93. Washington, D. C..

[Niehaus and Stengel, 1991] A. Niehaus and R. F. Stengel.
Rule-based guidance for vehicle highway driving in the
presence of uncertainty. In Proceedings of ACC, volume 3,
pp. 3119–24. Boston.

[Pearl, 1988] J. Pearl. Probabilistic Reasoning in Intelligent
Systems: Networks of Plausible Inference. Morgan Kauf-
mann, San Mateo, California.

[Pomerleau, 1993] D. Pomerleau. Neural Network Percep-
tion for Mobile Robot Guidance. Kluwer, Dordrecht, The
Netherlands.

[Russell et al., 1995] S. J. Russell, J. Binder, D. Koller, and
K. Kanazawa Adaptive probabilistic networks. To appear,
IJCAI-95.

[Shachter and Peot, 1989] R. D. Shachter and M. A. Peot.
Simulation approaches to general probabilistic inference
on belief networks. In Proceedings UAI-89. Windsor, On-
tario.

[Tatman and Shachter, 1990] J. A. Tatman and R. D.
Shachter. Dynamic programming and influence diagrams.
IEEE Transactions on Systems, Man and Cybernetics,
20(2):365–379.

