
Tracking many objects with many sensorsHanna Pasula and Stuart RussellComputer Science DivisionUniversity of California, Berkeleyfpasula,russellg@cs.berkeley.edu Michael Ostland and Ya'acov Ritov�Statistics Dept.University of California, Berkeleyfostland,ritovg@stat.berkeley.eduAbstractKeeping track of multiple objects over timeis a problem that arises in many real-worlddomains. The problem is often complicatedby noisy sensors and unpredictable dynamics.Previous work by Huang and Russell, draw-ing on the data association literature, provideda probabilistic analysis and a threshold-basedapproximation algorithm for the case of multi-ple objects detected by two spatially separatedsensors. This paper analyses the case in whichlarge numbers of sensors are involved. We showthat the approach taken by Huang and Rus-sell, who used pairwise sensor-based appear-ance probabilities as the elementary probabilis-tic model, does not scale. When more thantwo observations are made, the objects' intrin-sic properties must be estimated. These pro-vide the necessary conditional independenciesto allow a spatial decomposition of the globalprobability model. We also replace Huang andRussell's threshold algorithm for object iden-ti�cation with a polynomial-time approxima-tion scheme based on Markov chain MonteCarlo simulation. Using sensor data from afreeway tra�c simulation, we show that thisallows accurate estimation of long-range ori-gin/destination information even when the in-dividual links in the sensor chain are highly un-reliable.1 IntroductionThe problem of tracking multiple objects over timehas long been studied in the literature on data asso-ciation [Bar-Shalom and Fortmann, 1988; Bar-Shalom,1992]. The problem is de�ned as that of associating a setof current observations with a set of existing \tracks" orobject trajectories, creating new tracks as needed. Radartracking of multiple aircraft is the canonical application.In AI, the problem of object identi�cation is essentially�Permanent address: Statistics Dept., Hebrew Universityof Jerusalem.

the same: deciding if some newly observed object is thesame as some previously observed object. Solving thisproblem is essential for any intelligent agent that rea-sons about individual objects. Huang and Russell [1997;1998] provide a fairly general formulation of the prob-lem and describe an application to tra�c surveillance.Other possible applications range from removing \dupli-cate" entries from databases to re-recognizing locationsduring exploratory map-building.The object identi�cation problem is di�cult becausesensors are noisy, objects look similar, and object be-haviors are unpredictable. This leads to a large numberof possible assignments specifying identities among ob-served objects. For example, in the tra�c surveillanceapplication studied by Huang and Russell, the sensorsare cameras at various locations on a freeway networkand the objects are vehicles. Many thousands of ve-hicles pass each camera, and the system must decidewhether each vehicle is a new vehicle or the same asone previously observed at a di�erent location. Overtime, these decisions give rise to hypothetical vehicletrajectories. Deriving a set of trajectories is the �rststep of many tra�c surveillance applications, such asthe average link travel time between locations or origin-destination counts along di�erent routes through the sys-tem. Moreover, sudden changes in these quantities canbe indicators of highway incidents, such as accidents orbreakdowns.Adopting the notation used by Huang and Russell, let!2
 denote an assignment placing pairs (or, more gen-erally, sets) of observed objects into equivalence classes,where each class represents an existing object, and let Odenote all observations made to date. Then the poste-rior probability that two objects a and b are the same isgiven byP (a= bjO)= X!2
P (a= bj!;O)P (!jO)= X! 2
:(a;b)2!P (!jO) (1)In evaluating terms such as P (!jO), we will make useof the fact that the prior P (!) can be assumed uniform.



This is because the probability of an assignment !, inthe absence of observations linking the objects, must beinvariant under renaming of the objects. This it theexchangeability assumption of Huang and Russell.Other quantities can also be calculated by summingover !. For example, in freeway surveillance, ! speci-�es the correspondence between vehicles observed at up-stream and downstream sensor locations. For a given!, the average link travel time LTT (!) between the twolocations can be calculated directly if the observationsinclude the arrival time at each location. Then the pos-terior expectation of the link travel time isE(LTT jO) = X! 2
LTT (!)P (!jO):This paper addresses the two principal di�culties thatarise in putting such equations into practice.Section 2 deals with the computation of the P (!jO)terms|in particular their decomposition into tractablelocal models that can be estimated from data. We showthat the decomposition proposed by Huang and Rus-sell using appearance probabilities, while adequate for thecase of two sensor locations, does not scale up to handlethe decomposition of a global model for many sensors.In fact, this appears to require the estimation of intrinsicparameters of the observed objects, which render succes-sive observations conditionally independent.Section 3 deals with the intractability of the summa-tion in Eq. (1), which includes an exponential numberof terms. Whereas Huang and Russell describe a heuris-tic scheme that seems to work well in practice, we ap-ply the Markov chain Monte Carlo (MCMC) method, ageneral-purpose approximation algorithm for probabilis-tic inference that can be shown to converge in polyno-mial time for the speci�c inference problem involved inobject identi�cation. Furthermore, the algorithm canbe adapted easily to incorporate online updating of theprobability models required for computing P (!jO). Theoverall scheme is in fact an online EM algorithm withMCMC as an approximate E-step.1Section 4 describes an application of the new approachto data extracted from a freeway simulation. We showthat the estimation of intrinsic parameters, as describedin Section 2, successfully handles some multi-camera sce-narios for which the appearance probability models ofHuang and Russell are not applicable. We also showthat the MCMC method allows accurate estimation oflong-range origin/destination information even when theindividual links in the sensor chain are highly unreliable.2 Scaling up to multiple sensorsAs mentioned in the Section 1, calculation of assignmentprobabilities P (!jO) is crucial for object identi�cation.The calculation will be done using probability modelsthat, in some way, capture the properties of the sensors1The use of MCMC with EM is well-known in statis-tics [Wei and Tanner, 1990]; to our knowledge, its use foronline learning and for object identi�cation is novel.

A B CFigure 1: Schematic diagram showing three consecutivecamera sites, A, B, and C, and three vehicle trajectories.and the behavior of the objects being tracked. We hopeto �nd models that allow decomposition of the globalassignment probability in much the same way that localcausal models allow decomposition of joint probabilitiesin Bayesian networks.We begin by describing the models used by Huang andRussell, explaining how they work only for two sensor lo-cations. We then describe an alternative approach basedon estimation of intrinsic properties of objects.2.1 Problems with appearanceprobabilitiesWe begin with the case of two consecutive cameras Aand B as considered by Huang and Russell. Let theobservations at each be OA = foA1 ; : : : oAmg and OB =foB1 ; : : : oBn g, and let !AB be an assignment pairing upobjects observed at A with objects observed at B.2 ThenP (!ABjO) = P (!ABjOA;OB)= �P (OB jOA; !AB)P (!ABjOA)= �P (OB jOA; !AB)� � Y(a;b)2!ABP (oBb joAa ; a= b) (2)where � is, again, a normalizing constant. Theterm P (!ABjOA) is dropped by exchangeability|conditioning on the initial observations provides no in-formation about matching with the subsequent objects.The approximate equality in the last line arises from theassumption of approximate independence among vehicletrajectories.3In Eq. (2), the terms P (oBb joAa ; a= b) are called appear-ance probabilities since they describe \how an object canbe expected to appear at subsequent observations givenits current appearance" [Huang and Russell, 1997]. Theappearance probability models for freeway vehicles arecomposed of factors such as the arrival time at B giventhe arrival time at A, the measured colour at B giventhe measured colour at A, and so on. Huang and Rus-sell show how these models can be estimated online from2Since in general m 6= n and conservation of objects is notassumed, !AB may include unpaired objects from either orboth sensors.3Trajectory independence is a reasonable assumption onlyif the individual models are conditioned on some global con-text variables such as the current link travel time.



matched vehicles in a very straightforward way, avoidingthe need for camera calibration.Let us now extend this approach to three cameras,using the scenario of (Figure 1) as an example. An as-signment !ABC now speci�es sequences of three obser-vations that belong to a single object, and can be de-composed into two pairwise assignments !AB and !BC .As in Eq. (2), we can apply Bayes' rule and eliminateP (!ABC jOA); then we can apply the chain rule:P (!ABC jO) = �P (OB;OC jOA; !ABC)P (!ABC jOA)= �P (OC jOA;OB ; !ABC)P (OBjOA; !ABC)= �P (OC jOA;OB ; !ABC)P (OBjOA; !AB) (3)where !ABC is replaced in the last line by !AB becauseassignments of vehicles at C carry no information aboutA and B. Now the last term on the RHS of Eq. (3) canbe written as the product of appearance probabilitiesbetween A and B, as in Eq. (2). However, the �rst termcannot be simpli�ed to give the appearance probabilitiesbetween B and C; that is,P (!ABC jO) 6= �P (OC jOB ; !BC)P (OB jOA; !AB)To see why, consider the extreme case in which cam-eras A and C can read the license plate of each vehicle,but camera B is broken. Then the posterior distribu-tion for assignments should have all its mass on assign-ments !ABC that correctly match up vehicles at A andC; whereas both the pairwise models will be uninforma-tive and hence will fail to propagate information from Ato C.Two possible �xes are 1) use multicamera models,e.g., P (OC jOA;OB ; !ABC), and 2) estimate models forall camera pairs, e.g., P (OC jOA; !AC). The �rst �xenlarges the model dimension and scales exponentiallywith the number of cameras. The second �x requires aquadratic number of models; moreover, it is unclear howto combine the predictions of these models. In summary,it seems that, despite their many advantages, appearanceprobability models apply only to the two-camera case.2.2 Spatial decomposition via intrinsicpropertiesThe example of the broken camera at B raises the fol-lowing problem: we wish to propagate information be-tween nonadjacent sensors, yet we do not want to have toemploy nonlocal probability models, since such modelsresult in a combinatorial explosion in the number of pa-rameters to be estimated. The solution is, essentially, tolet the objects themselves carry the necessary informa-tion. As with Kalman �lters and hidden Markov models,hidden state variables can render current observationsconditionally independent of previous observations. Thisprovides a decomposition of the global model.Let Hl represent the hidden state of the objects ob-served at location l, and let hl range over possible valuesof Hl. Notice that, given the hidden state, the observa-tions at a camera are independent of all the other ob-servations. More formally, P (Oj jOk;Hj) = P (Oj jHj)
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ABFigure 2: Graphical model for object identi�cation in-ference, showing two objects at two sensor locations.for all j and k. Now, we can introduce hidden state intoEq. (3) by summing over hA, hB, and hC and simpli-fying using conditional independence, to yield a nestedsum exactly as in the derivation of the forward equationsfor HMMs. The only signi�cant di�erence is that the re-lationship between successive hidden state variables isonly meaningful if we condition on the assignment so weknow which vehicle is which:P (!ABCjO) =�XhA P (hA)P (OAjhA)XhB P (hBjhA; !AB)P (OB jhB)XhC P (hC jhB; !BC)P (OC jhC) (4)Thus, the introduction of hidden state solves the problemof Section 2.1. Unlike Eq. (3), Eq. (4) calls only fortwo-camera models. Moreover, these models need beestimated only for neighbouring camera pairs.As with appearance probabilities, we can decomposethe expressions in Eq. (4) into models for individual ve-hicles by making the appropriate independence assump-tions (again, assuming the models depend on some globalcontext variables). The models we obtain are the transi-tion models such as P (hBb jhAa ; a= b) and the sensor mod-els such as P (oAa jhAa ). As with HMMs, these models canbe learned online using EM [Dempster et al., 1977], aswe show below. The process is complicated by the factthat we must simultaneously estimate both the hiddenstate variables of the observed objects and the globalassignment saying which object is which.For tra�c surveillance and many other applications,some aspects of the hidden state do not change over time.



We call these intrinsic variables; for tra�c surveillance,these include colour, length, width, and so on. Intrin-sic variables have no transition model but often havevery noisy sensor models, speci�c to each sensor loca-tion. Dynamic variables such as lane, speed, and arrivaltime must be tracked as the vehicle progresses throughthe freeway network. Often they have relatively noise-less sensor models. Thus, the hidden variables h can bedivided into the intrinsic variables, �, and the dynamicvariables, �. Similarly, the observed variables O can bedivided into i, observations of �, and d, observations of �.Figure 2 illustrates all the independence assumptions wehave made. It is relatively easy to augment this model toinclude dependencies between, for example, vehicle sizeand lane.3 Approximate inference and onlinemodel updatingAs mentioned in Section 1, the expressions for the proba-bility of identity (Eq. 1) and other quantities involve ex-ponentially many terms. It can be shown that the infer-ence problem is equivalent to computing the permanentof a matrix and hence is #P-complete. It is possible tocompute the most probable assignment for n vehicles inO(n3) time using the Hungarian algorithm [Cox and Hin-gorani, 1994]; as Huang and Russell point out, however,this assignment may be of little interest if the individualmatches therein are highly unreliable. They developed aheuristic \leave-one-out" algorithm with runtime O(n4)that alleviates this problem and works well in practice.The algorithm identi�es individual matches that exceeda reliability threshold and then treats those matches asif true. The matches are used to compute link traveltime and to update the appearance probability models.A major drawback of this approach is that the if thefraction of reliably matched vehicles on each link is sig-ni�cantly below 100%, as often happens, the number ofvehicles that can be tracked across a multi-link freewaynetwork is vanishingly small [Huang and Russell, 1998].In this section, we describe an alternative approachto the inference problem based on Markov chain MonteCarlo (MCMC). Roughly speaking, MCMC approxi-mates sums of probabilities such as Eq. (1) by samplinga small number of high-probability terms; thus, for ob-ject identi�cation, it considers a small number of likelyassignments and likely values for the hidden state vari-ables. Given any particular assignment and set of val-ues for the hidden variables, estimating the transitionand sensor models is trivial because the data is com-plete. This suggests an online EM scheme for learningthe models, as shown in Figure 3.3.1 Introduction to MCMC inferenceMCMC inference is a general-purpose method for ap-proximating E�(f(x)), the expected value of the func-tion f when its argument x is drawn from a probabilitydistribution �. Typically, �(x) = P (xje), a posteriordistribution over x given evidence e.

For each newly detected vehicleAugment Markov chain state to include the vehicleRepeat until models convergeE: Run MCMC, sampling from 
 and HM: Update models from sampled valuesFigure 3: The overall inference scheme: online EM usingMCMC for the E-step and updating the models directlyfrom the states sampled by MCMC.Ideally,E�(f(x)) can be approximated simply by sam-pling from �; if each sample can be drawn in con-stant time, then from Cherno� bounds we will have apolynomial-time approximation method. For general �,we know this cannot exist; sampling from an arbitrarydistribution in constant time is not always possible.MCMC inference [Metropolis et al., 1953; Gilks etal., 1996] provides a general method to generate sam-ples from � by de�ning a Markov chain whose states arethe objects x and whose stationary distribution is �(x).Samples are produced by simulating the Markov chainand selecting states from among those visited.In the Metropolis-Hastings method, transitions in theMarkov chain are constructed in two steps:� Given the current state x, a candidate next stateis sampled from the proposal distribution q(x0jx),which may be (more or less) arbitrary.� The transition to x0 is not automatic, but occurswith an acceptance probability de�ned by�(x0jx) = min�1; �(x0)q(xjx0)�(x)q(x0jx) �Notice that to use this rule we need only be ableto compute ratios �(x0)=�(x), which convenientlyavoids the need to normalize �.Provided q is de�ned in such a way that the chain is er-godic, this transition mechanism de�nes a Markov chainwhose stationary distribution is �(x), and hence the av-erage value of f over the sampled states will converge tothe desired value E�(f(x)).The complexity of the original inference problem isreected in the mixing rate of the Markov chain, whichdetermines the speed at which the sample average con-verges. Jerrum and Sinclair [1997] have shown that aMarkov chain de�ned on assignments, as described be-low, yields a fully randomized approximation scheme forestimating expectations over the probability distributionon assignments. This means that, if we want to approxi-mate some such function f to within ratio 1+� in a worldwith n objects, the chain will run in time polynomial inn and 1=� to approximate f with probability > 0:75.The probability may be boosted to > (1 � �) by run-ning the chain O(log ��1) times and taking the medianvalue. Of course, this assumes that proposals and accep-tance probabilities can be computed in time constant inn, which we show below. Therefore, MCMC provides ane�cient approximation scheme for object identi�cation.



3.2 Application to tra�c surveillanceAs we have seen in Section 1, tra�c surveillance, asde�ned here, involves taking the expected value of aquantity f over all assignments !, given the obser-vations O. The calculation of this expected value,EP (!jO)(f(!)), can be approximated by sampling froman ergodic Markov chain with state space 
 and station-ary distribution P (!jO). The quantities to be estimated,which include LTTs and origin destination counts, arevery simple to derive for any given assignment !. Anassignment speci�es trajectories through the sensor net-work with known times at each sensor location, enablingus to read o� the desired quantity directly.The transitions in the Markov chain may be set upin many ways, as long as ergodicity is ensured. In ourapproach, each transition is simply a swap between twoassignment pairs across one pair of sensors. For example,in Figure 4 observed object w at sensor j is originallymatched with observed object y at sensor j + 1, whileobject x at j is matched with z at j + 1. A transitionleads to w being matched with z, and x with y. The
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Figure 4: Figure demonstrating a single transition fromone assignment with four trajectories to another.observation pairs to be switched are suggested in a verysimple manner. The algorithm cycles through all pairsof adjacent sensors, and all matched pairs currently ateach sensor. For each such pair, a plausible second pairto swap with is then chosen uniformly at random. Sucha chain is provably ergodic.Once a pair is chosen, it is accepted or rejected basedon the acceptance probability as Eq. (3.1). This involvesthe computation of the ratioP (!0jO)q(!j!0)P (!jO)q(!0j!)Because of the simple form of the swapping proposals,the q values are trivial to compute. We can also derivea general expression for P (!jO), which will permit us to

simplify the P (!0jO)=P (!jO) ratio and make its calcu-lation more e�cient. Let us demonstrate this using thetransition in Figure 4.Generalizing Eq. (4) for the observation sequenceO1;O2 : : :Ok, we express P (!1:::kjO) as a nested sumP (!1:::kjO) = �Xh1 P (h1)P (O1jh1) � : : : (5): : :�Xhj+1 P (hj+1jhj; !j;j+1)P (Oj+1jhj+1) � : : :: : :�Xhk P (hkjhk�1; !k�1;k)P (Okjhk)As was noted in Section 2.2, the hidden variables canbe divided into dynamic variables �, which changeover time, and intrinsic variables �, which do not.The observed variables are analogously divided into dand i. Here, we assume that all the dynamics canbe observed reliably. Thus, assuming that � and �are mutually independent, P (hj+1jhj; !j;j+1) becomesP (�j+1j�j; !j;j+1)P (�j+1j�j; !j;j+1), and P (Ojjhj) be-comes P (ijj�j)P (djj�j). Now, we can make use of theassumption that the intrinsic variables remain constantacross all sensors to discard the P (�j+ij�j; !j;j+1) terms.Similarly, since we assume that dynamic variables areobserved with perfect reliability, we can replace �s withds. The P (djj�j) terms can then be dropped. So, givenour assumptions, Eq. (6) simpli�es as follows:P (!1:::kjO) = �X�1 P (�1)P (i1j�1)P (d1)� : : : (6): : :�X�j+1 P (dj+1jdj; !j;j+1)P (ij+1j�j+1) � : : :: : :�X�k P (dkjdk�1; !k�1;k)P (ikj�k)Finally, note that the only hidden variables we are sum-ming over now are the intrinsics �. Moreover, � is thesame across all cameras by assumption, so we can com-bine all the summations. The P (djjdj�1; !j�1;j) termsare independent of �, and so can be moved outside thesummationP (!1:::kjO)= �P (d1)P (d2jd1; !1;2) : : :P (dkjdk�1; !k�1;k)X� P (�)P (i1j�)P (�)P (i2j�) : : :P (ikj�)= �P (d1)0@k�1Yj=1P (dj+1jdj; !j;j+1)1AX� P (�)0@ kYj=1P (ijj�)1A (7)We can now use trajectory independence to factor thisequation into separate terms, one for each trajectory. Letthe variable t represent a trajectory within a speci�ed !and let �t represent the hidden intrinsic variables for the



putative object that follows trajectory t. De�ne it anddt analogously.Eq. (7) may now be factored into a product of proba-bilities for individual trajectories:P (!1:::kjO) = �Yt2! S(t)P (d1t ) k�1Yj=1P (dj+1t jdjt ; !j;j+1)whereS(t) =X�t P (�t) kYj=1P (ijt j�t)We can now evaluate the ratio P (!0jO)=P (!jO) in a sim-pli�ed form. As shown in Figure 4, each Markov chaintransition a�ects only two trajectories, those that in-clude w, x, y, and z. Clearly, the probabilities alongthe remaining trajectories remain unchanged. Thus,P (!0jO) and P (!jO) will share many common factors.All these factors, including the normalization constant�, cancel out. If we let xy signify the trajectory whichincludes x and y, the ratio simpli�es toP (dzjdw; z=w)P (dyjdx; y= x)S(wz)S(xy)P (dyjdw; y=w)P (dzjdx; z= x)S(xz)S(wy)This ratio can be computed in time proportional to thelongest network trajectory, which is constant for anygiven network. Note that the bottleneck of the com-putation is the evaluation of the S(t)s, integrals overproducts of intrinsic noise models. Currently, all of thesemodels are Gaussian, and so the products are Gaussianand integration is not di�cult. However, some care isrequired when introducing other models, to ensure thatthe computation is still e�cient. Similar problems maybe introduced if the assumption of noise-free dynamicsis abandoned. Without this assumption, we will need tointegrate over the P (dj�)s as well as over the P (ijj�)s.This can still be e�cient, as long as the models are cho-sen well.3.3 Model updatingThe dynamic variable models at each link and the intrin-sic variable models at each sensor are all learnt using EM.A model update is performed whenever a new object isobserved at a sensor, and the MCMC process has beengiven time to converge. Each EM iteration proceeds asfollows.The E-step requires computing joint expectations forthe hidden variables ! and I; with MCMC, this isapproximated by sampling ! from the Markov chainand extending each sample by calculating E(Ij!;O).Again, the fact that all our intrinsic models are Gaus-sian yields a relatively straightforward calculation thatrequires time proportional to trajectory length. For ex-ample, consider a sequence of vehicle length measure-ments with a uniform prior and a sequence of Gaussiannoise models with a common variance. In this situa-tion, the expected true vehicle length is just the meanof all the observations. If other, non-Gaussian, mod-els are used, the computation may become much more

complicated|in which case, sampling over I as well asover ! may be the best approach.The M step is exact. It uses the ! and I values ofeach sample as if they were observed variables to performconventional parameter learning.Running EM to its convergence requires a Markovchain run for each EM iteration, and we run EM when-ever a new observation is made, resulting in manyMarkov chain runs. In practice, the chain converges veryquickly, as the models change only slowly with each in-coming observation. We are currently investigating theuse of online EM, where only a single iteration is per-formed for each new available data point. Nowlan [1991]has proved that this approach should lead to locallymax-imum likelihood estimates in the limit, and our prelimi-nary experimental results are encouraging.4 Experimental resultsWe have performed two experiments comparing our ap-proach to that of Huang and Russell. Our data sets werecreated using a freeway simulator [Forbes et al., 1995]that allowed us to control road con�gurations, cameracharacteristics, and complex vehicle behaviour. Each setincluded the observations generated by approximatelyone hundred cars, and the models used in the exper-iments had been learnt by our EM-MCMC algorithmusing data generated with the same parameter settings.4.1 Overcoming faulty sensorsIn this experiment, the algorithms were applied to athree-camera network such as that in Figure 1, set up ina manner analogous to the license-plate example of Sec-tion 2.1. The only intrinsic attribute used was colour,and every car had a unique colour. The outer two cam-eras, A and C, measured colour exactly. Gaussian noisewas added to the measured colour at B. Thus, thedata set contained enough data for a complete matchingbetween cameras A and C, but a pairwise appearance-based model could be expected to lose accuracy due toits hasty independence assumptions.The results of the experiment, averaged over threeruns, can be seen in Figure 5. The y{axis requires alittle explanation. In the case of the Huang and Russellalgorithm, which results in discrete matches, it showssimply the percentage of correct A to C matches: in thecase of the MCMC, it shows the average percentage ofcorrect matches across all the samples drawn. The ad-vantage of MCMC is clear: hidden feature estimationhelps to maintain an almost constant degree of accu-racy, whereas the pairwise approach is highly sensitiveto sensor noise.4.2 Estimating origin/destination countsHere, we compare the algorithms in the slightly morerealistic setting shown in Figure 6. The aim is to esti-mate the origin-destination counts between the two entrypoints and the three exit points. This requires trackingeach object across the entire network. In this task, the



20

30

40

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800

%
 c

or
re

ct
 v

eh
ic

le
 m

at
ch

es

Variance in colour noise at camera B

MCMC
Huang and Russell

Figure 5: The vehicle matching accuracy of two algo-rithms as a function of the variance in the Gaussian noiseat the central sensor.greater number of sensors should be a liability to thepairwise algorithm, as each pair of neighbouring sensorscan make its own mistakes independently of the others.Our algorithm, on the other hand, should bene�t fromthe ability to observe each object several times to esti-mate intrinsics more reliably.The colour variance was manipulated as before, butat all nine cameras simultaneously. Figure 7 shows thepercentage accuracy of the origin-destination counts asa function of the colour noise variance. As expected, theMCMC algorithm substantially outperforms the Huang-Russell algorithm, holding up well even for levels of noisethat essentially wipe out the colour altogether. On theother hand, Figure 8 shows that both methods are un-able to �nd exact matches accurately for high levelsof noise. The ability of the MCMC algorithm to re-cover reasonable counts despite the failure of individualmatches suggests that its samples contain a reasonableamount of information about the ensemble behaviour ofthe vehicles.5 Summary and future workWe have described an improved approach to object iden-ti�cation based on the estimation of the intrinsic prop-erties of objects and the use of Markov chain MonteCarlo to approximate the posterior probabilities e�-ciently. We have shown that this approach works oncomputer-generated data, and that its computational re-quirements are not prohibitive. We believe that this ap-proach should be applicable in many data associationapplications.We are currently working towards applying our ap-proach in the real world. To this end, we have extendedthe approach to handle realistic problems such as missingobservations. In the near future, we will receive data onvehicle observations made by cameras placed above theI-80 freeway as part of the Berkeley Roadwatch project.
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Figure 6: Schematic diagram of simulated freeway net-work with nine cameras.
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Figure 7: The origin-destination count accuracy of thetwo algorithms as a function of the colour noise variance.
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Figure 8: The origin-destination vehicle matching accu-racy of the two algorithms as a function of the colournoise variance.



Solving the tracking and data association problems forindividual vehicles is only the �rst part of the solution forlarge, complex applications such as tra�c surveillance.The next step is to connect these low-level computationsto high-level, aggregated models, which will permit pre-diction and control for large networks containing hun-dreds of thousands of vehicles.References[Bar-Shalom and Fortmann, 1988] Yaakov Bar-Shalomand Thomas E. Fortmann. Tracking and Data As-sociation. Academic Press, New York, 1988.[Bar-Shalom, 1992] Yaakov Bar-Shalom, editor. Mul-titarget multisensor tracking: Advanced applications.Artech House, Norwood, Massachusetts, 1992.[Cox and Hingorani, 1994] I. J. Cox and S. L. Hingo-rani. An e�cient implementation and evaluation ofReid's multiple hypothesis tracking algorithm for vi-sual tracking. In Proceedings of the 12th IAPR In-ternational Conference on Pattern Recognition, vol-ume 1, pages 437{442, Jerusalem, Israel, October1994.[Dempster et al., 1977] A. Dempster, N. Laird, andD. Rubin. Maximum likelihood from incomplete datavia the EM algorithm. Journal of the Royal StatisticalSociety, 39 (Series B):1{38, 1977.[Forbes et al., 1995] Je� Forbes, Tim Huang, KeijiKanazawa, and Stuart Russell. The BATmobile: To-wards a Bayesian automated taxi. In Proceedingsof the Fourteenth International Joint Conference onArti�cial Intelligence (IJCAI-95), Montreal, Canada,August 1995. Morgan Kaufmann.[Gilks et al., 1996] W.R. Gilks, S. Richardson, and D.J.Spiegelhalter, editors. Markov chain Monte Carlo inpractice. Chapman and Hall, London, 1996.[Huang and Russell, 1997] Tim Huang and Stuart Rus-sell. Object identi�cation in a Bayesian context. InProceedings of the Fifteenth International Joint Con-ference on Arti�cial Intelligence (IJCAI-97), Nagoya,Japan, August 1997. Morgan Kaufmann.[Huang and Russell, 1998] Tim Huang and Stuart Rus-sell. Object identi�cation: A Bayesian analysis withapplication to tra�c surveillance. Arti�cial Intelli-gence, 103:1{17, 1998.[Jerrum and Sinclair, 1997] M. Jerrum and A. Sinclair.The Markov chain Monte Carlo method. In D. S.Hochbaum, editor, Approximation Algorithms for NP-hard Problems. PWS Publishing, Boston, 1997.[Metropolis et al., 1953] N. Metropolis, A. Rosenbluth,M. Rosenbluth, A. Teller, and E. Teller. Equations ofstate calculations by fast computing machines. Jour-nal of Chemical Physics, 21:1087{1091, 1953.[Nowlan, 1991] S. J. Nowlan. Soft Competitive Adapta-tion: Neural Network Learning Algorithms based onFitting Statistical Mixtures. PhD thesis, School ofComputer Science, Carnegie Mellon University, 1991.
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