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ABSTRACTBagging and boosting are well-known ensemble learning meth-ods. They ombine multiple learned base models with theaim of improving generalization performane. To date, theyhave been used primarily in bath mode, i.e., they requiremultiple passes through the training data. In previous work,we presented online bagging and boosting algorithms thatonly require one pass through the training data and pre-sented experimental results on some relatively small datasets.Through additional experiments on a variety of larger syn-theti and real datasets, this paper demonstrates that ouronline versions perform omparably to their bath ounter-parts in terms of lassi�ation auray. We also demon-strate the substantial redution in running time we obtainwith our online algorithms beause they require fewer passesthrough the training data.
1. INTRODUCTIONTraditional supervised learning algorithms generate a sin-gle model suh as a deision tree or neural network and useit to lassify examples.1 Ensemble learning algorithms om-bine the preditions of multiple base models, eah of whihis learned using a traditional algorithm. Bagging [3℄ andBoosting [4℄ are well-known ensemble learning algorithmsthat have been shown to be very e�etive in improvinggeneralization performane ompared to the individual basemodels. Theoretial analysis of boosting's performane sup-ports these results [4℄.In previous work [7℄, we developed online versions of thesealgorithms. Online learning algorithms proess eah train-ing instane one \on arrival" without the need for storageand reproessing, and maintain a urrent hypothesis that re-ets all the training instanes seen so far. Suh algorithmshave advantages over typial bath algorithms in situationswhere data arrive ontinuously. They are also useful with1In this paper, we only deal with the lassi�ation problem.
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very large data sets on seondary storage, for whih themultiple passes required by most bath algorithms are pro-hibitively expensive. In Setions 2 and 3, we desribe ouronline bagging and online boosting algorithms, respetively.Spei�ally, we desribe how we mirror the methods thatthe bath bagging and boosting algorithms use to gener-ate distint base models, whih are known to help ensembleperformane.In our previous work, we also disussed our theoretialresults and some empirial omparisons of the lassi�ationauraies of our online algorithms and the orrespondingbath algorithms on some relatively small datasets. In Se-tion 4, we review the previous experiments and further ex-plore the behavior of our online algorithms through experi-ments with larger datasets|both syntheti and real. Con-sistent with previous work, we run our online bagging andboosting algorithms with lossless online algorithms for de-ision trees and Naive Bayes lassi�ers|for a given trainingset, a lossless online learning algorithm returns a hypoth-esis idential to that returned by the orresponding bathalgorithm. Overall, our online bagging and boosting algo-rithms perform omparably to their bath ounterparts interms of lassi�ation auray. We also ompare their run-ning times. If the online base model learning algorithm isnot signi�antly slower than the orresponding bath algo-rithm, then the bagging and online bagging algorithms donot have a large di�erene in their running time in our tests.On the other hand, our online boosting algorithm runs sig-ni�antly faster than bath boosting. For example, on ourlargest dataset, bath boosting ran four times longer thanonline boosting to ahieve omparable lassi�ation au-ray.Sometimes our online boosting algorithm signi�antly un-derperforms bath boosting for a small number of trainingexamples. Even when the training set is large, our onlinealgorithm may underperform initially before �nally athingup to the bath algorithm. This harateristi is ommonwith online algorithms beause they do not have the luxuryof viewing the training set as a whole the way bath algo-rithms do. We experiment with \priming" online boostingby running it in bath mode for some initial subset of thetraining set and running in online mode for the remainderof the training set. In most of the experiments that we dis-uss in this paper, priming leads to improved lassi�ationperformane.We also ompare the base models' error rates on the train-



OnlineBagging(h; d)For eah base model hm, (m 2 f1; 2; : : : ;Mg) in h,Set k aording to Poisson(1).Do k timeshm = Lo(hm; d)Figure 1: Online Bagging Algorithm: h is the set of Mbase models learned so far, d is the latest training exam-ple to arrive, and Lo is the online base model learningalgorithm.ing set under bath and online boosting. This is an impor-tant omparison beause these errors are used to alulatethe weights of the training examples supplied to the di�er-ent base models. They are also used to assign weights tothe base models for use when lassifying a new example.The loser these errors are, the more similar the trainingexample weights and base model weights are in the two algo-rithms, leading to more similar lassi�ation performanes.The base model error rates exhibit similar trends in bathand online boosting, whih partly explains the similar las-si�ation auraies we have obtained so far.Our experiments with syntheti datasets are meant toompare bath and online boosting with base models hav-ing small, medium, and large errors. Our three synthetidatasets are of varying diÆulty for learning Naive Bayeslassi�ers. We show that boosting behaves di�erently onthese datasets and that online boosting mirrors these be-haviors.
2. ONLINE BAGGINGGiven a training dataset of size N , standard bath baggingreates M base models, eah trained on a bootstrap sam-ple of size N reated by drawing random samples with re-plaement from the original training set. Eah base model'straining set ontains K opies of eah of the original trainingexamples whereP (K = k) =  Nk!� 1N �k �1� 1N �N�kwhih is the Binomial distribution. As N ! 1, the dis-tribution of K tends to a Poisson(1) distribution: P (K =k) � exp(�1)k! . As disussed in [7℄, we an perform bag-ging online as follows: as eah training example is presentedto our algorithm, for eah base model, hoose the exampleK � Poisson(1) times and update the base model aord-ingly (see �gure 1). New instanes are lassi�ed the sameway in online and bath bagging|by unweighted voting ofthe M base models.Online bagging is a good approximation to bath bag-ging to the extent that their base model learning algorithmsprodue similar hypotheses when trained with similar dis-tributions of training examples. In past work [7℄, we provedthat if the same original training set is supplied to the twobagging algorithms, then the distributions over the trainingsets supplied to the base models in bath and online bag-ging onverge as the size of that original training set growsto in�nity. We further proved, for some very simple learn-ing algorithms (K-Nearest Neighbor and ontingeny-tablelearning), that the onvergene of the distributions over the

Initial onditions: �sm = 0; �swm = 0.OnlineBoosting(h;Lo; d)Set the example's \weight" �d = 1.For eah base model hm, (m 2 f1; 2; : : : ;Mg) in h,Set k aording to Poisson(�d).Do k timeshm = Lo(hm; d)If hm(d) is the orret label,then�sm  � �sm + �d�m  � �swm�sm+�swm�d  � �d � 12(1��m)�else �swm  � �swm + �d�m  � �swm�sm+�swm�d  � �d � 12�m �To lassify new examples:Return h(x) = argmax2CPm:hm(x)=y log 1��m�m .Figure 2: Online Boosting Algorithm: h is the set of Mbase models learned so far, d is the latest training exam-ple to arrive, and Lo is the online base model learningalgorithm.training sets leads to onvergene of the lassi�ation per-formane of online bagging to that of bath bagging. We areworking on tightly haraterizing the learning algorithms forwhih we obtain this type of onvergene.
3. ONLINE BOOSTINGOur online boosting algorithm is designed to orrespondto the bath boosting algorithm, AdaBoost.M1 [4℄. Ad-aBoost generates a sequene of base models h1; : : : ; hM us-ing weighted training sets suh that the training examplesmislassi�ed by model hm�1 are given half the total weightwhen generating model hm and the orretly lassi�ed ex-amples are given the remaining half of the weight.Our online boosting algorithm (Figure 2) is similar to ouronline bagging algorithm exept that when a base modelmislassi�es a training example, the Poisson distribution pa-rameter (�) assoiated with that example is inreased whenpresented to the next base model; otherwise it is dereased.Just as in AdaBoost, our algorithm gives the examples mis-lassi�ed by one stage half the total weight in the next stage;the orretly lassi�ed examples are given the remaining halfof the weight.One area of onern is that, in AdaBoost, an example'sweight is adjusted based on the performane of a base modelon the entire training set while in online boosting, the weightadjustment is based on the base model's performane onlyon the examples seen earlier. To see why this may be anissue, onsider running AdaBoost and online boosting on atraining set of size 10000. In AdaBoost, the �rst base modelh1 is generated from all 10000 examples before being testedon, say, the tenth training example.2 In online boosting, h1is generated from only the �rst ten examples before being2Reall that we test base model hm on the training exam-ples in order to adjust their weights before using them togenerate base model hm+1.



Table 1: The datasets used in our experiments. Forthe Soybean and Census Inome datasets, we havegiven the sizes of the supplied training and test sets.For the remaining datasets, we have given the sizesof the training and test sets in our �ve-fold ross-validation runs.Data Set Training Test Inputs ClassesSet SetPromoters 84 22 57 2Balane 500 125 4 3Soybean-Large 307 376 35 19Breast Caner [5℄ 559 140 9 2German Credit 800 200 20 2Car Evaluation 1382 346 6 4Chess 2556 640 36 2Mushroom 6499 1625 22 2Nursery 10368 2592 8 5Connet4 54045 13512 42 3Syntheti-1 80000 20000 20 2Syntheti-2 80000 20000 20 2Syntheti-3 80000 20000 20 2Census Inome 199523 99762 39 2Forest Covertype 464809 116203 54 7tested on the tenth example. Clearly, at the moment whenthe tenth training example is being tested, we may expetthe two h1's to be very di�erent; therefore, h2 in AdaBoostand h2 in online boosting may be presented with di�erentweights for the tenth training example. This may, in turn,lead to di�erent weights for the tenth example when gener-ating h3 in eah algorithm, and so on. Intuitively, we wantonline boosting to get a good mix of training examples sothat the base models and their normalized errors in onlineboosting quikly onverge to what they are in AdaBoost.The more rapidly this onvergene ours, the more similarthe training examples' weight adjustments will be and themore similar their performanes will be. In the next setion,we demonstrate, for some of our larger datasets, that thisappears to happen.
4. EXPERIMENTAL RESULTSIn this setion, we disuss some experiments that demon-strate the performane of our online algorithms relative totheir bath ounterparts. For deision trees, we have reim-plemented the lossless ITI online algorithm [8℄ in C++;bath and online Naive Bayes algorithms are essentially iden-tial. We ran these experiments on Dell 6350 omputershaving 600MHz Pentium III proessors and 2GB of mem-ory.
4.1 The DataWe tested our algorithms on several UCI datasets [2℄, twodatasets (Census Inome and Forest Covertype) from theUCI KDD arhive [1℄, and three syntheti datasets. We givetheir sizes and numbers of attributes and lasses in Table 1.All three of our syntheti datasets have two lasses. Theprior probability of eah lass is 0.5, and every attribute ex-ept the last one is onditionally dependent upon the lass

Table 2: P (Aa = 0jAa+1; C) for a 2 f1; 2; : : : ; 19g inSyntheti DatasetsP (Aa = 0) Aa+1 = 0 Aa+1 = 1C = 0 0.8 0.2C = 1 0.9 0.1and the next attribute. We set up the attributes this waybeause the Naive Bayes model only represents the prob-abilities of eah attribute given the lass, and we wanteddata that is not realizable by a single Naive Bayes lassi�erso that boosting is more likely to yield improvement. Theprobabilities of eah attribute exept the last one (Aa fora 2 f1; 2; : : : ; 19g) are as shown in Table 2.The only di�erene between the three syntheti datasetsis P (A20jC). In Syntheti-1, P (A20 = 0jC = 0) = 0:495 andP (A20 = 0jC = 1) = 0:505. In Syntheti-2, these probabili-ties are 0.1 and 0.8, while in Syntheti-3, these are 0.01 and0.975, respetively.
4.2 General ResultsFigures 3 and 4 are satterplots omparing the errors ofthe bath and online versions of bagging and boosting. Thefull paper [6℄ ontains a table with all the results. Eah pointin the �gures represents one dataset. To redue lutter, wedo not show error bars in our �gures, however we performedsigni�ane tests (t-test, � = 0:05) and disuss the resultslater in this paper. The bath algorithm auraies are aver-ages over ten runs of �ve-fold ross-validation for a total of50 runs, exept for the Soybean and Census Inome datasetswhere we performed ten runs with the supplied training andtest set. We tested our online algorithms with �ve randomorders of eah training set generated for the bath algorithms(order matters for online boosting, even with a lossless learn-ing algorithm) for a total of 250 runs (50 runs on the Soybeanand Census Inome datasets). We tested bagging and boost-ing with deision trees only on some of the smaller datasets(Promoters, Balane, Breast Caner, Car Evaluation) be-ause the lossless deision tree algorithm is too expensivewith larger datasets in online mode. Bagging and onlinebagging perform omparably in all our tests. Boosting andonline boosting perform omparably on all exept the verysmall Promoters dataset.The largest dataset for whih we ran the bagging andboosting algorithms with deision trees was the Car Evalu-ation dataset from the UCI Repository. Figure 5 shows thelearning urve. Bath and online bagging with deision treesperform almost identially (and always signi�antly betterthan a single deision tree). AdaBoost also performs sig-ni�antly better than a single deision tree for all numbersof examples. Online boosting struggles at �rst but performsomparably to AdaBoost and signi�antly better than singledeision trees for the maximum number of examples. Notethat online boosting's performane steadily beomes loserto that of AdaBoost as the number of examples grows, asone expets from an online algorithm when ompared to itsbath version.Figure 6 shows the learning urves for the Census Inomedataset. Bath and online boosting perform omparablyto eah other and signi�antly outperform a single modelfor all numbers of examples. On the other hand, bagging



and online bagging do not improve signi�antly upon a sin-gle Naive Bayes lassi�er. Bagging does not improve uponNaive Bayes on any of the datasets, whih we expeted be-ause of the stability of Naive Bayes [3℄, i.e., small hangesin the dataset do not signi�antly hange eah Naive Bayeslassi�er, so that almost all of the base models tend to votethe same way for a given example. Online bagging alwaysperforms omparably to bath bagging in our experiments;therefore, online bagging also does not improve upon NaiveBayes.
4.3 Priming the Online Boosting AlgorithmFigure 7 gives a satterplot similar to Figure 4 exeptthat the online boosting algorithm trains in bath mode withsome initial portion of the training set and online mode withthe remainder. In primed mode, bath training was donewith the lesser of the �rst 20% of the dataset or the �rst10000 training examples. Overall, primed online boostingimproves upon the unprimed version. Only in ase of thePromoters dataset with Naive Bayes lassi�ers did primingyield signi�ant improvement over unprimed online boost-ing. Nevertheless, we did ahieve some improvement throughpriming in all ases exept Promoters and Breast Canerwith deision trees, and Soybean, Car Evaluation, and For-est Covertype with Naive Bayes.As we disussed earlier, in the Car Evaluation dataset'slearning urves (Figure 5), online boosting signi�antly un-derperforms bath boosting for all but the maximumnumberof examples. Figure 8 displays the original bath boostingand online boosting learning urves along with primed on-line boosting with the �rst 200 training examples learnedin bath mode. Primed online boosting with deision treesperforms omparably to bath boosting for all numbers ofexamples, i.e., its performane gets lose to bath boosting'sperformane muh quiker.
4.4 Base Model ErrorsFigures 9 and 10 show the average errors on the train-ing sets of the onseutive base models in bath and onlineboosting with Naive Bayes for the seond syntheti datasetand Census Inome dataset, respetively (see the full pa-per [6℄ for more suh graphs). As mentioned earlier, theloser these errors are in bath and online boosting, theloser the behavior of these two algorithms. We depit theaverage errors for the maximum number of base models gen-erated by the bath boosting algorithm. For example, on theCensus Inome dataset, no run of bath boosting ever gen-erated more than 22 base models. This happens beauseif the next base model that is generated has error greaterthan 0.5, then the algorithm stops. Our online boosting al-gorithm always generates the full set of 100 base models be-ause, during training, we do not know how the base modelerrors will utuate; however, to lassify a new example, weonly use the �rst L base models suh that model L+ 1 haserror greater than 0.5.The base model errors of online and bath boosting arequite similar for Syntheti-2: the �rst base model performsquite well in both bath and online boosting. Both algo-rithms then follow the pattern of having subsequent basemodels perform worse, whih is typial beause subsequentbase models are presented with previously mislassi�ed ex-amples having higher weight, whih makes their learningproblems more diÆult. In the Census Inome dataset, the

performanes of the base models also follow this generaltrend, although more loosely.
4.5 Running TimesFigures 11 and 12 ontain the average running times ofNaive Bayes and the ensemble algorithms with Naive Bayesbase models for the Census Inome dataset and Forest Cover-type dataset, respetively. Both the online and bath ensem-ble algorithms use a learning algorithm for the Naive Bayesbase models that requires one pass through the training set.As the number of training examples inreases, we expet therate of growth of the running time to be less for our onlineensemble algorithms than for the bath algorithms. Our on-line algorithms require only one pass through the trainingset whereas bath bagging requires one pass per base model(to generate its training set and perform the training) andbath boosting requires two passes per base model (oneto generate the Naive Bayes lassi�er and one to test thenewly-generated lassi�er on the training examples to up-date their weights). However, for small numbers of trainingexamples, the running time may be greater for online learn-ing beause the greater number of passes required throughthe data strutures that represent the base models may out-weigh the greater number of passes required through thetraining set. Also, in ase of base models for whih onlinelearning takes muh more time than bath learning, the to-tal exeution time for the online ensemble algorithm wouldbe muh greater than for the bath algorithm. Additionally,our online boosting algorithm always generates and updates100 base models, whereas boosting often generates fewerbase models as disussed above.The running time for online boosting is substantially lessthan for bath boosting on both Census Inome (20 minutesvs. 7.1 hours on the entire dataset) and Forest Covertype(4.3 hours vs. 18.8 hours). Relative to the boosting al-gorithms, the running times of the bagging algorithms arenegligible.
5. CONCLUSIONSThis paper disusses online versions of the popular bag-ging and boosting algorithms. We have demonstrated thatthey mostly perform omparably to their bath ounterpartsin terms of lassi�ation auray. We experimented withpriming our algorithm by running an initial subset of thetraining set in bath mode and then proessing the remain-ing examples online and ahieved improvement by doing so.We also demonstrated the omparable performane of on-line boosting and bath boosting in more detail by examin-ing the errors of the base models on the training set, whihdiretly a�et the weights given to the training examplesin the di�erent stages of boosting. We have also shownthat, if the online base model learning algorithm has a run-ning time omparable to the orresponding bath algorithm,then the running time of online boosting an be muh lowerthan bath boosting, demonstrating the signi�ant savingsobtained by proessing the training set just one.In addition to ontinuing empirial work with large datasetsand di�erent base model learning algorithms, we are work-ing on several theoretial tasks inluding tightly harater-izing the lass of learning algorithms for whih onvergenebetween online and bath bagging an be proved and de-veloping an analytial framework for online boosting. Weare also investigating the ase of lossy online base model
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