
Algorithms for Inverse Reinforement LearningAndrew Y. Ng ang�s.berkeley.eduStuart Russell russell�s.berkeley.eduCS Division, U.C. Berkeley, Berkeley, CA 94720 USAAbstratThis paper addresses the problem of inversereinforement learning (IRL) in Markov de-ision proesses, that is, the problem of ex-trating a reward funtion given observed,optimal behaviour. IRL may be useful forapprentieship learning to aquire skilled be-haviour, and for asertaining the rewardfuntion being optimized by a natural sys-tem. We �rst haraterize the set of all re-ward funtions for whih a given poliy isoptimal. We then derive three algorithmsfor IRL. The �rst two deal with the asewhere the entire poliy is known; we handletabulated reward funtions on a �nite statespae and linear funtional approximation ofthe reward funtion over a potentially in�-nite state spae. The third algorithm dealswith the more realisti ase in whih the pol-iy is known only through a �nite set of ob-served trajetories. In all ases, a key issue isdegeneray|the existene of a large set of re-ward funtions for whih the observed poliyis optimal. To remove degeneray, we sug-gest some natural heuristis that attempt topik a reward funtion that maximally di�er-entiates the observed poliy from other, sub-optimal poliies. This results in an eÆientlysolvable linear programming formulation ofthe IRL problem. We demonstrate our algo-rithms on simple disrete/�nite and ontinu-ous/in�nite state problems.1. IntrodutionThe inverse reinforement learning (IRL) problem anbe haraterized informally as follows (Russell, 1998):Given 1) measurements of an agent's behaviour overtime, in a variety of irumstanes, 2) if needed,measurements of the sensory inputs to that agent;3) if available, a model of the environment.Determine the reward funtion being optimized.

We an identify two soures of motivation for thisproblem. The �rst arises from the potential useof reinforement learning and related methods asomputational models for animal and human learn-ing (Watkins, 1989; Shmajuk & Zanutto, 1997;Touretzky & Saksida, 1997). Suh models are sup-ported both by behavioural studies and by neurophys-iologial evidene that reinforement learning oursin bee foraging (Montague et al., 1995) and in song-bird voalization (Doya & Sejnowski, 1995). This lit-erature assumes, however, that the reward funtion is�xed and known|for example, models of bee forag-ing assume that the reward at eah ower is a simplesaturating funtion of netar ontent. Yet it seemslear that in examining animal and human behaviourwe must onsider the reward funtion as an unknownto be asertained through empirial investigation. Thisis partiularly true of multiattribute reward funtions.Consider, for example, that the bee might weigh netaringestion against ight distane, time, and risk fromwind and predators. It is hard to see how one oulddetermine the relative weights of these terms a pri-ori. Similar onsiderations apply to human eonomibehaviour, for example. Hene, inverse reinforementlearning is a fundamental problem of theoretial biol-ogy, eonometris, and other �elds.A seond motivation arises from the task of onstrut-ing an intelligent agent that an behave suessfully ina partiular domain. An agent designer (or indeed theagent itself) may have only a very rough idea of the re-ward funtion whose optimization would generate \de-sirable" behaviour, so straightforward reinforementlearning may not be usable. (Consider, for example,the task of \driving well.") One soure of informa-tion for learning is the behaviour of other \expert"agents, as used in imitation learning and apprentie-ship learning. In this setting, it is ommonly assumedthat the purpose of observation is to learn a poliy,i.e., a diret representation of a mapping from statesto ations. We propose instead to reover the expert'sreward funtion and to use this to generate desirablebehaviour. We suggest that the reward funtion of-ten provides a muh more parsimonious desription of



behaviour. After all, the entire �eld of reinforementlearning is founded on the presupposition that the re-ward funtion, rather than the poliy, is the most su-int, robust, and transferrable de�nition of the task.Hene, it seems likely that inverse reinforement learn-ing may, in some domains, provide an e�etive form ofapprentieship learning.To our knowledge, this omputational task has notbeen well-studied in omputer siene, ontrol theory,psyhology, or biology. The losest work is in eo-nomis, where the task of multiattribute utility assess-ment has been studied in depth|that is, how does aperson atually ombine the various attributes of eahavailable hoie when making a deision. The theoryis well-developed (Keeney & Rai�a, 1976), and the ap-pliations numerous. However, this �eld studies onlyone-shot deisions where a single ation is taken andthe outome is immediate. The sequential ase was�rst onsidered by Sargent (1978), who tried to aser-tain the e�etive hiring ost for labor by examining a�rm's hiring behaviour over time, assuming it to berational. In the last deade, the area of strutural es-timation of Markov deision proesses in eonometrishas grown rapidly (Rust, 1994). Some of the basiideas arry over to our setting. IRL also appearedbriey in ontrol theory: in the early 1960s, Kalmanposed the problem of reovering the objetive funtionfor a deterministi linear system with quadrati osts.It was reently solved as a semide�nite program (Boydet al., 1994).In this paper, we address the IRL problem in settingsmore familiar to the mahine learning ommunity, be-ginning with �nite Markov deision proesses (MDPs).Setion 2 gives formal de�nitions of MDPs and the IRLproblem; we fous initially on the setting in whih themodel is known and the omplete poliy is given. Se-tion 3 haraterizes the set of all reward funtions forwhih a given poliy is optimal. We demonstrate thatthe set ontains many degenerate solutions, inluding,for example, the reward funtion that is identiallyzero everywhere. We resolve this diÆulty via heuris-tis that attempt to identify a reward funtion thatmaximally di�erentiates between the observed poliyand other, sub-optimal poliies. This an be done eÆ-iently in the disrete ase using linear programming.Setion 4 deals with the ase of large or in�nite statespaes, for whih an expliit, tabular representation ofthe reward funtion would be infeasible. We show thatif the �tted reward funtion is represented as a linearombination of arbitrary, �xed basis funtions, thenthe IRL problem remains in the lass of linear pro-grams and an again be solved eÆiently. Setion 5deals with the more realisti ase in whih the poliyis known only through a �nite set of observed trajeto-ries; for this, we present a simple iterative algorithm.

The three algorithms we develop are then applied, inSetion 6, to some simple examples inluding both dis-rete and ontinuous stohasti navigation problems,and the \mountain{ar" problem. In all ases, we areable to reover a reward funtion that \explains" theobserved behavior fairly well. Finally, Setion 7 sum-marizes our �ndings and desribes diretions for futurework.2. Notation and Problem FormulationIn this setion, we introdue some notation, de�ni-tions, and basi theorems for Markov deision pro-esses. We then de�ne the version of the IRL problemthat we will address.2.1 Markov Deision ProessesA (�nite) MDP is a tuple (S;A; fPsag; ; R), where� S is a �nite set of N states.� A = fa1; : : : ; akg is a set of k ations.� Psa(�) are the state transition probabilitiesupon taking ation a in state s.�  2 [0; 1) is the disount fator.� R : S 7! R is the reinforement funtion,bounded in absolute value by Rmax.For simpliity in exposition, we have written rewardsas R(s) rather than R(s; a); the extension is trivial.A poliy is de�ned as any map � : S 7! A, and thevalue funtion for a poliy �, evaluated at any states1 is given byV �(s1) = E �R(s1) + R(s2) + 2R(s3) + � � � j��where the expetation is over the distribution of thestate sequene (s1; s2; : : : ) we pass through when weexeute the poliy � starting from s1. We also de�nethe Q-funtion aording toQ�(s; a) = R(s) + Es0�Psa(�) [V �(s0)℄(where the notation s0 � Psa(�) means the ex-petation is with respet to s0 distributed aord-ing to Psa(�)). The optimal value funtion isV �(s) = sup� V �(s) and the optimal Q-funtion isQ�(s; a) = sup� Q�(s; a).For disrete, �nite spaes, all these funtions an berepresented as vetors indexed by state, for whih weadopt boldfae notation. More preisely, �x some enu-meration from 1 to N of the �nite state spae S. Therewards may then be written as an N -dimensional ve-tor R, whose ith element is the reward at the ith state



of the MDP. Similarly, V � is a vetor whose ith ele-ment is the value funtion for � evaluated at state i.For eah ation a, we also let P a be the N -by-N ma-trix suh that its (i; j) element gives the probability oftransitioning to state j upon taking ation a in statei. Finally, we let the symbols � and � denote stritand non-strit vetorial inequality|i.e., x � y if andonly if 8i xi < yi.The goal of standard reinforement learning is to �nda poliy � suh that V �(s) is maximized. And indeed,it an be shown (see, e.g. (Sutton & Barto, 1998; Bert-sekas & Tsitsiklis, 1996)) that there does exist at leastone optimal poliy �� suh that V �(s) is simultane-ously maximized for all s 2 S by � = ��.2.2 Basi Properties of MDPsFor our solution to the IRL problem, we will need twoof the lassial results onerning MDPs (Sutton &Barto, 1998; Bertsekas & Tsitsiklis, 1996).Theorem 1 (Bellman Equations) Let an MDPM = (S;A; fPsag; ; R) and a poliy � : S 7! A begiven. Then, for all s 2 S; a 2 A, V � and Q� satisfyV �(s) = R(s) + Xs0 Ps�(s)(s0)V �(s0) (1)Q�(s; a) = R(s) + Xs0 Psa(s0)V �(s0) (2)Theorem 2 (Bellman Optimality) Let an MDPM = (S;A; fPsag; ; R) and a poliy � : S 7! A begiven. Then � is an optimal poliy for M if and onlyif, for all s 2 S,�(s) 2 argmaxa2A Q�(s; a) (3)2.3 Inverse Reinforement LearningThe inverse reinforement learning problem is to �nd areward funtion that an explain observed behaviour.We begin with the simple ase where the state andation spaes are �nite, the model is known, and theomplete poliy is observed. More preisely, then, weare given a �nite state spae S, a set of k ationsA = fa1; : : : ; akg, transition probabilities fPsag, a dis-ount fator , and a poliy �; the problem is to �ndthe set of possible reward funtions R suh that � isan optimal poliy in (S;A; fPsag; ; R). (We may thenwish to identify funtions within this set satisfying ad-ditional riteria.) By renaming ations if neessary, wewill assume without loss of generality that �(s) � a1.This trik is used only to simplify our notation.3. IRL in Finite State SpaesIn this setion, we give a simple haraterization ofthe set of all reward funtions for whih a given poliy

is optimal. We then show that the set ontains manydegenerate solutions and propose a simple heuristifor removing this degeneray, resulting in a linear pro-gramming solution to the IRL problem.3.1 Charaterization of the Solution SetOur main result haraterizing the set of solutions isthe following:Theorem 3 Let a �nite state spae S, a set of a-tions A = fa1; : : : ; akg, transition probability matriesfP ag, and a disount fator  2 (0; 1) be given. Thenthe poliy � given by �(s) � a1 is optimal if and onlyif, for all a = a2; : : : ; ak, the reward R satis�es(P a1 �P a) (I � P a1)�1R � 0 (4)Proof. Sine �(s) � a1, Equation (1) may be writtenV � = R+ P a1V �. Thus,1V � = (I � P a1)�1R (5)Substituting Equation (2) into (3) from Theorem 2,we see that � � a1 is optimal if and only ifa1 � �(s) 2 argmaxa2A Xs0 Psa(s0)V �(s0) 8 s 2 S,Xs0 Psa1(s0)V �(s0)�Xs0 Psa(s0)V �(s0) 8 s 2 S; a 2 A, P a1V � � P aV � 8 a 2 A n a1, P a1(I � P a1)�1R� P a(I � P a1)�1R 8 a 2 A n a1where the last impliation in this derivation usedEquation (5). This ompletes the proof. 2Remark. Using a very similar argument, it is easyto show (essentially by replaing all inequalities in theproof above with strit inequalities) that the ondi-tion (P a1 �P a) (I � P a1)�1R � 0 is neessary andsuÆient for � � a1 to be the unique optimal poliy.For �nite-state MDPs, this result haraterizes the setof all reinforement funtions that are solutions to theinverse reinforement learning problem. However, weimmediately see two problems: First, R = 0 (and in-deed any other onstant vetor) is always a solution|if1Here, I � P a1 is always invertible. To see this, �rstnote that P a1 , being a transition matrix, has all eigenval-ues in the unit irle in the omplex plane. Sine  < 1,this implies the matrix P a1 has all eigenvalues in the in-terior of the unit irle (and in partiular that 1 is not aneigenvalue). This means I�P a1 has no zero eigenvalues,and is thus not singular.



the reward is the same no matter what ation we take,then any poliy, inluding � � a1, is optimal. De-manding that � be the unique optimal poliy wouldalleviate this problem, but is not entirely satisfyingsine usually some reward vetors arbitrarily lose to0 would still be solutions. Seond, for most MDPs,it also seems likely that there are many hoies of Rthat meet the riteria (4). How do we deide whihone of these many reinforement funtions to hoose?The answer to these problems is not to be found inthe original statement of the IRL problem; but in thenext setion, we desribe some natural riteria thatwill suggest solutions to both of these problems.3.2 LP Formulation and Penalty TermsClearly, linear programming an be used to �nd a fea-sible point of the onstraints in Equation (4). But asdisussed in the previous setion, some of these pointsmay be less \meaningful" than others, and we desireto �nd some way to hoose between solutions satisfy-ing Equation (4). The proposals outlined in this se-tion were to a large extent hosen beause they an beinorporated into a linear program, but nonethelessshould seem fairly natural.One natural way to hoose R is to �rst demand that itmakes � optimal (and hene solves the IRL problem),and moreover to favor solutions that make any single-step deviation from � as ostly as possible. Thus, of allthe funtions R satisfying (4) (and, jR(s)j � Rmax 8s),we might hoose one so as to maximizeXs2S�Q�(s; a1)� maxa2Ana1Q�(s; a)� (6)In other words, we seek to maximize the sum of thedi�erenes between the quality of the optimal ationand the quality of the next-best ation. (Other ri-teria, suh as Ps2SPa2Ana1 Q�(s; a1) �Q�(s; a) arealso possible, but for the sake of onreteness, let usremain with (6) for now.)In addition, if we believe that, all other things beingequal, solutions with mainly small rewards are \sim-pler" and therefore preferable, we may optionally addto the objetive funtion a weight deay-like penaltyterm suh as��jjRjj1, where � is an adjustable penaltyoeÆient that balanes between the twin goals of hav-ing small reinforements, and of maximizing (6). Aside-e�et of using suh an `1-penalty term is that, forsuÆiently large �, R will often be nonzero in onlya few states, onsistent with our idea of a \simple"reward funtion. Moreover, while it is ommon pra-tie in many appliations to hand-tune penalty oef-�ients, it an also be shown (assuming the solutionis not already degenerate at � = 0) that as � is in-reased, there will be a phase transition at some point

�0, suh that the optimal R is bounded away from 0for � < �0, and R = 0 for � > �0. Thus, if we wantedto hoose � automatially, � = ��0 (a value just beforethe phase transition, perhaps found via binary searhon �) would be an appealing hoie, sine it is givesthe \simplest" R (largest penalty oeÆient) suh thatR is not zero everywhere (and in partiular so that Rdoes at least partially \explain" why � is optimal).Putting it all together, our optimization problem is:maximize PNi=1mina2fa2;::: ;akg f(P a1(i)�P a(i)) (7)(I � P a1)�1R	� �jjRjj1s:t: (P a1 �P a) (I � P a1)�1R � 08a 2 A n a1jRij � Rmax; i = 1; : : : ; Nwhere P a(i) denotes the ith row of P a. Clearly, thismay easily be formulated as a linear program andsolved eÆiently. Setion 6 reports on simple experi-ments using this algorithm.4. Linear Funtion Approximation inLarge State SpaesWe now onsider the ase of in�nite state spaes.Apart from some measure-theoreti assumptions andminor regularity onditions (whih we will ignore inthis paper), in�nite-state MDPs may be de�ned inmuh the same way as �nite-state MDPs were in Se-tion 2. For the sake of onreteness, we restrit our-selves to the ase of S = Rn . We will assume the avail-ability of a subroutine for approximating the value ofa poliy, V �, for any partiular MDP.In this setting, the reward funtion R is now a funtionfrom S = Rn into the reals, and a general solution toinverse reinforement learning would require workingwith this spae of all funtions Rn 7! R. While thealulus of variations does give us some tools for opti-mizing over this spae, it is often diÆult to work withalgorithmially. Hene, we hoose instead to use a lin-ear approximation for the reward funtion, expressingR aording toR(s) = �1�1(s) + �2�2(s) + � � �+ �d�d(s) (8)where �1; : : : ; �d are d �xed, known, bounded basisfuntions mapping from S into R, and the �i are theunknown parameters that we want to \�t."Sine R is again linear in the variables being optimized,it is no surprise that a linear programming formulationapplies here as well. Let V �i denote the value funtionof the poliy � in the MDP when the reward fun-tion is R = �i. By the linearity of expetations, thevalue funtion when the reward funtion R is given by



Equation (8) is thereforeV � = �1V �1 + � � �+ �dV �d : (9)Using this fat and Theorem 2, the reader may easilyverify (using essentially the argument in Theorem 3'sproof,) that for R to make the poliy �(s) � a1 opti-mal, the appropriate generalization of (4) is the on-dition thatEs0�Psa1 [V �(s0)℄ � Es0�Psa [V �(s0)℄ (10)for all states s and all ations a 2 A n a1. From Equa-tion (9), we know V �(s) is linear in the oeÆients �i.Hene, we have a set of linear onstraints on the �is.There are however two problems with the urrent for-mulation. The �rst is that, for in�nite state spaes,there are in�nitely many onstraints of the form inEquation (10), making it hard or impossible to hekthem all. Algorithmially, we irumvent this problemby sampling only a large but �nite subset S0 of thestates, and using this onstraint only at those statess 2 S0. The seond problem, whih is a more sub-tle one, is that sine we have restrited ourselves touse the linear funtion approximator in Equation (8)to express R, we may no longer be able to expressany reward funtion (other than the trivial R = 0) forwhih � is optimal. Nevertheless, even in this ase, wewould like to do as well as we an using the linear fun-tion approximator lass, and so as a ompromise, wemay be willing to relax some of the onstraints (10),paying a penalty when they are violated.Our �nal linear programming formulation is then:maximizePs2S0 mina2fa2;::: ;akgfp(Es0�Psa1 [V �(s0)℄� Es0�Psa [V �(s0)℄)gs:t: j�ij � 1; i = 1; : : : ; dwhere we remind the reader that V � is an impliitfuntion of the �is as given by Equation (9), and S0 isthe subsample of states. Here, p is given by p(x) = xif x � 0, p(x) = 2x otherwise, and penalizes viola-tions of the onstraints (10) (where 2 is penalty weightthat was heuristially hosen; this was a parameter towhih our results did not seem very sensitive, withmoderately larger values usually giving quite similarresults).5. IRL from Sampled TrajetoriesThis setion addresses the IRL problem for the morerealisti ase where we have aess to the poliy � onlythrough a set of atual trajetories in the state spae.For this, we also do not require an expliit model ofthe MDP, though we do assume the ability to �nd anoptimal poliy under any reward of our hoie.

We �x some initial state distribution D, and assumethat for the (unknown) poliy �, our goal is to �nd Rsuh that � maximizes Es0�D[V �(s0)℄ (where the sub-sript of the expetation denotes that the expetationis with respet to s0 drawn aording to D). To sim-plify notation, we'll assume that there is only one �xedstart state s0. (This is in fat w.l.o.g., sine s0 an bea \dummy" state whose next-state distribution underany ation is D.) As with the previous algorithm forin�nite state spaes, we assume R will be expressedusing a linear funtion-approximator lass.We assume that we have the ability to simulate tra-jetories in the MDP (from the initial state s0) underthe optimal poliy, or under any poliy of our hoie.For eah poliy we will onsider (inluding the opti-mal one), we will need a way of estimating V �(s0) forany setting of the �is. To do this, we �rst exeutem Monte Carlo trajetories under �. Then, for eahi = 1; : : : ; d, de�ne V̂ �i (s0) to be what the average em-pirial return would have been on these m trajetoriesif the reward had been R = �i. For example, if we takeonly m = 1 trajetories, and if that trajetory visitedthe sequene of states (s0; s1; : : : ), then we have:V̂ �i (s0) = �i(s0) + �i(s1) + 2�i(s2) + � � �In general, V̂ �i (s0) would be the average over the em-pirial returns of m suh trajetories.2 Then, for anysetting of the �is, a natural estimate of V �i (s0) is:V̂ �(s0) = �1V̂ �1 (s0) + � � �+ �dV̂ �d (s0) (11)As in the previous algorithm's derivation, this is jus-ti�ed by the fat that V �(s0) = �1V �1 (s0) + � � � +�dV �d (s0). We now desribe the algorithm.To start o� the algorithm, we �rst �nd value estimatesas desribed above for ��, and for the \base ase" pol-iy �1, whih is in our ase a randomly hosen poliy.The \indutive step" of the algorithm is as follows:We have some set of poliies f�1; : : : ; �kg, and wantto �nd a setting of the �is so that the resulting rewardfuntion (hopefully) satis�esV ��(s0) � V �i(s0); i = 1; : : : ; k (12)As in the previous algorithm, we modify the objetive2In pratie, we also trunate the trajetories after alarge but �nite number H of steps. Beause of disount-ing, this introdues only a small error into the approxima-tion; for example, if H = H� = log(�(1 � )=Rmax), the�-horizon time, then this trunation introdues at most �error into the estimates. If one is unhappy with this ap-proximation, there is also a way to exeute only a �nite-length trajetory of expeted length O(H�), but so thatwe still obtain an unbiased estimate of the true in�nite-horizon reward (Kearns et al., 1999); that method an alsobe used here.



1

2

3

4

5

5

4

3

2

1
0

0.2

0.4

0.6

0.8

1

True R

Figure 1. Top: 5x5 grid world with optimal poliy. Bottom:True reward funtion.slightly, so that the optimization beomes:maximize kXi=1 p�V̂ ��(s0)� V̂ �i(s0)�s.t. j�ij � 1; i = 1; : : : ; dwhere, as before, p(x) = x if x � 0, and p(x) = 2xif x < 0, so that violations of the onstraints (12) arepenalized (where 2 is, one more, a heuristially hosenparameter, to whih our results again did not seemextremely sensitive). Note that V̂ �i(s0) and V̂ ��(s0)above are just (impliit) linear funtions of the �isas given in Equation (11), and hene this problem iseasily solved via linear programming.The above optimization gives a new setting of the �isand hene a new reward funtion R = �1�1+ � � ��d�d.We then �nd a poliy �k+1 that maximizes V �(s0)under R, add �k+1 to the urrent set of poliies, andontinue (for some large number of iterations, until we�nd an R with whih we are \satis�ed").6. ExperimentsIn our �rst experiment, we used a 5� 5 grid worldwhere the agent starts from the lower-left grid square,and has to make its way to the (absorbing) upper-right grid square, whereupon it reeives a reward of1. The ations orrespond to trying to move in the
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Figure 2. Inverse RL on the 5� 5 grid. Top: � = 0. Bot-tom: � = 1:05.four ompass diretions, but are noisy and have a 30%hane of resulting in moving in a random diretioninstead. An optimal poliy is shown at top in Figure 1,together with the true reward funtion. The inversereinforement problem is that of reovering the rewardstruture given the poliy and problem dynamis.Running the algorithm desribed in Setion 3.2 withno penalty term, we obtain the reward funtion shownin Figure 2 (top). While it has learly reovered mostof the reward struture, it is still slightly \bumpy."Some of this bumpiness is hard to avoid, and omesfrom arbitrary symmetry-breaking in the hosen pol-iy. However, with the penalty oeÆient � set to avalue just below the phase transition as disussed ear-lier, we obtain the seond reward funtion in Figure 2,whih is very lose to the true reward.3Our next experiment was run on the well-known\mountain{ar" task, a artoon of whih is shown inFigure 3. The true, undisounted, reward is -1 per-step until we reah the goal at the top of the hill, andthe state is the ar's x-position and veloity. Sine thestate spae is ontinuous, we used the version of ouralgorithm desribed in Setion 4. We hose the fun-tion approximator lass for the reward to be funtions3Interestingly, intermediate values of � suh as 0:5 didnot give \smooth" looking funtions at all. In retrospet,this is not too surprising: small � results in many valuesnear �1; large � results in many values near 0; and inter-mediate � has a mix of the two.
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Figure 3. Cartoon of the mountain{ar problem. (Not tosale.)of the ar x-position only, with the lass onsisting ofall linear ombinations of 26 evenly spaed Gaussian-shaped basis funtions. Giving the optimal poliy4 toour algorithm, a typial reward funtion found by itis shown in Figure 4a. (Note the sale on the y-axis.)Clearly, the solution has nearly perfetly aptured theR = � struture of the reward.For a more hallenging problem, we also reran the ex-periment with the true reward hanged to be 1 in aninterval [-0.72, -0.32℄ entered around the bottom ofthe hill and 0 everywhere else, and  = 0:99. In thisproblem, the optimal poliy is to go as quikly as pos-sible to the bottom of the hill and park there. (Thisis not always possible beause if, for example, we arenear the top of the hill on the right and moving tooquikly, then we may shoot o� the right end of the hilland enter the absorbing state no matter how hard webraked.) Running our algorithm on this new problem,a typial solution is shown in Figure 4b. By and large,it has suessfully reovered the main struture of thereward being large and positive around the spei�edinterval; it also has an artifat on the right side, webelieve from the e�et of unavoidably \shooting o�"the right end sometimes. Nevertheless, we think thesolution shown is a fairly good one for the problem.Our �nal experiment applied the sample-based algo-rithm to a ontinuous version of the 5� 5 grid world.More preisely, the state was [0; 1℄� [0; 1℄, and the ef-fet of eah of the four ompass-diretion ations isto move the agent 0.2 in the intended diretion, afterwhih uniform noise in [�0:1; 0:1℄ is added to eah o-ordinate, and the state is �nally trunated if neessaryto keep it within the unit square. The true reward was1 in the (non-absorbing) square [0:8; 1℄� [0:8; 1℄, and0 everywhere else, and  = 0:9. The funtion approx-4This is as determined by a �ne 120x120 disretizationof the state spae. The funtions V �i , needed by the algo-rithm, were also found this way. To run the algorithm, weused a sample of states of size jS0j = 5000, not ountingstates that did not give nontrivial onstraints.
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Figure 4. Typial solutions found by IRL for themountain{ar. Top: Original problem (note sale on y-axis). Bottom: Problem of parking at bottom of hill.imator lass onsisted of all linear ombinations of a15�15 array of two-dimensional Gaussian basis fun-tions. The initial state distribution D was uniformover the state spae, and our algorithm was run usingm = 5000 trajetories, eah of 30 steps, to evaluateeah poliy. When needed (suh as to �nd the \op-timal" poliy for omparison), the MDP was solvedbased on a 50�50 disretization of the state spae.Running this experiment, the solution found by our al-gorithm was usually already reasonable after just 1 it-eration, and by about 15 iterations, the algorithm hadusually settled on fairly good solutions. We omparedthe �tted reward's optimal poliy with the true opti-mal poliy, alulating the fration of the state spaeon whih their ation hoies disagree (Figure 5, top).We found disrepanies typially between 3% and 10%;with many distint near-optimal poliies, suh varia-tion is to be expeted. Perhaps a more appropiatemeasure of our algorithm's performane is to omparethe quality of the �tted reward's optimal poliy withthe quality of the true optimal poliy. (Quality is ofourse measured using the true reward funtion!) Usu-ally by about 15 iterations of the algorithm, our evalu-ations (whih used 50000Monte Carlo trials of 50 stepseah) were unable to detet a statistially signi�antdi�erene between the value of the true \optimal pol-iy" (about 6.65) and the value of the �tted reward'soptimal poliy (Figure 5, bottom).
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Figure 5. Results on the ontinuous grid world, for 5 runs.Top: Fration of states on whih the �tted reward's opti-mal poliy disagrees with the true optimal poliy, plottedagainst iteration number. Bottom: The value of the �ttedreward's optimal poliy. (Estimates are from 50000 MonteCarlo trials of length 50 eah; negligible error-bars).7. Conlusions and Future workOur results show that the inverse reinforement learn-ing problem is soluble, at least for moderate-sized dis-rete and ontinuous domains. A number of open ques-tions remain to be addressed:� Potential-based shaping rewards (Ng et al., 1999)an produe reward funtions that make it dra-matially easier to learn a solution to an MDP,without a�eting optimality. Can we design IRLalgorithms that reover \easy" reward funtions?� In real-world empirial appliations of IRL, theremay be substantial noise in the observer's mea-surements of the agent's sensor inputs and a-tions; moreover, the agent's own ation seletionproess may be noisy and/or suboptimal. Finally,there may be many optimal poliies, of whih onlya few are observed. What are appropriate metrisfor �tting suh data?� If behaviour is strongly inonsistent with optimal-ity, an we identify \loally onsistent" rewardfuntions for spei� regions in state spae?
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