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Abstract

We introduce the concept of a multi-principal assistance game (MPAG),
and circumvent an obstacle in social choice theory — Gibbard’s theorem
— by using a sufficiently “collegial” preference inference mechanism. In an
MPAG, a single agent assists 𝑁 human principals who may have widely
different preferences. MPAGs generalize assistance games, also known as
cooperative inverse reinforcement learning games. We analyze in particular
a generalization of apprenticeship learning in which the humans first per-
form some work to obtain utility and demonstrate their preferences, and
then the robot acts to further maximize the sum of human payoffs. We show
in this setting that if the game is sufficiently collegial — i.e., if the humans
are responsible for obtaining a sufficient fraction of the rewards through
their own actions — then their preferences are straightforwardly revealed
through their work. This revelation mechanism is non-dictatorial, does not
limit the possible outcomes to two alternatives, and is dominant-strategy
incentive-compatible.

1 Introduction

The growing presence of AI systems that collaborate and coexist with humans in society
highlights the emerging need to ensure that the actions of AI systems benefit society as a
whole. This question is formalized as the value alignment problem in the AI safety literature
[1], which emphasizes the need to align the increasingly powerful and autonomous systems
with those of their human principal(s). However, humans are prone to misspecify their
objectives which can lead to unexpected behaviors [1]; hence research in value alignment
has focused on deriving preferences from human actions. In the body of research in value
alignment and human robot interaction, the majority of the work involves scenarios with one
human and one AI system. It is an appealing setting because the robot and the human share
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the same goal. Therefore, methods in this setting such as inverse reinforcement learning
[2, 3, 4], inverse reward design [5], and LILA [6] revolve around how an AI system can
optimally learn the preferences of the human and apply these results to novel environments.
Similarly, the human’s incentive is to optimally teach the robot its own preferences. The
combination of a learning AI system and a teaching human yields the assistance game (also
known as the cooperative inverse reinforcement learning game) [7].
However, AI systems in the real world do not fit this one human, one AI paradigm. Recom-
mendation systems, autonomous vehicles, and parole algorithms do not exist in a vacuum—
they often influence and are influenced by multiple humans. Hence, we consider a variation
on assistance games where a robot acts on behalf of multiple humans, which we call the
multi-principal assistance game (MPAG). The key difference between this and the scenario
with only one human is that, in general, different humans have different preferences, so it
is impossible to align the AI to perfectly match the preferences of everyone. The problem
of aggregating individual preferences for making collective decisions has been studied by
economists and philosophers for more than two hundred years and constitutes the heart of
social choice theory [8].
Even with a given aggregation method, however, the inference process itself is challenged
by the presence of selfish agents. While the robot acts to optimize the aggregate of utili-
ties, each human acts to optimize their own utility. Therefore, unlike the single-principal
assistance game, the multi-principal assistance game is no longer fully cooperative. This
creates a problem for existing value alignment algorithms. These algorithms work under
the assumption that the demonstrations and information provided are truly representative
of the human’s preferences. However, the misalignment between the AI system and each
human’s preferences yields a perverse incentive for the humans: can they misrepresent their
preferences to gain a more desirable outcome?
In this work we introduce the alignment problem of an AI system with multiple princi-
pals and establish a strong connection with results in computational social choice theory
and mechanism design. We consider a subclass of MPAGs that generalizes apprenticeship
learning [3]. In multi-principal apprenticeship learning, the robot observes trajectories from
multiple humans and then produces a trajectory that maximizes a social aggregate of the
inferred rewards.
Our contributions are as follows:

• We introduce the problem of learning from multiple strategic demonstrators with
possibly wildly divergent reward and formulate an impossibility result in this con-
text.

• We introduce an algorithm that manipulates feature-matching Learning From
Demonstration (LfD) algorithm in polynomial time, thus challenging the fact that
computational hardness can be a barrier to manipulation in this context.

• We relate this problem to a real-world example, emphasizing the need to push
research towards this direction.

• We propose a collegial mechanism to circumvent the impossibility result in this
context. Specifically, a collegial mechanism exploits the fact that when collected in
the field, demonstrations can have consequences for their demonstrators that are
independent of the behavior of the AI system.

1.1 Related Work

Value Alignment. The need for AI systems to align with the preferences of humans is
well documented in AI safety literature [1]. A first line of work formulates goal inference
as an inverse planning problem [9]. For example, Inverse Reinforcement Learning (IRL)
computes a reward such that the observed trajectory is optimal in the underlying Markov
Decision Process (MDP) [2] [10]. A common assumption of inverse planning methods is
that the robot does not influence the decision-making of the human. However, previous
work has shown that the presence of a robot has a significant influence on humans [11] [12].
Furthermore, it has been shown that the robot can benefit from interacting with the human
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to infer the goal. For example, Hadfield-Menell et al. have shown that if we formulate goal
inference as a game between the human and the robot, observing the optimal trajectory of
the human is not a Nash equilibrium of the game in general [7]. Our work extends this idea
to the multi-agent setting: we show that when a robot acts on behalf of multiple humans
using LfD tools for single-agent alignment, the best strategy of the humans depends on the
strategy of the other humans. This motivates the need for developing LfD tools specifically
for multi-agent alignment.

Computational Social Choice. Social Choice Theory (SCT) is a branch of Economics
that studies the aggregation of individual preference towards a collective choice and encom-
passes many real-world scenarios like voting, fair allocation and auctions. A famous result
of SCT is Gibbard’s impossibility theorem which loosely states that any non-trivial1 process
of collective decision is subject to manipulation [13]. Much effort in the Computational
Social Choice and Mechanism Design communities has been focused on identifying situation
where Gibbard can be circumvented and develop computational tool against manipulation
[14]. A first line of work exploits the fact that there are some restrictions on the domain
of preferences such that Gibbard doesn’t hold anymore. Two widely studied domain re-
strictions are the single-peaked preferences in the voting literature [15], requiring the utility
functions to be uni-modal, and the quasi-linear utilities in the auction literature [16], re-
quiring money transfer between the users and the system to be applicable to the real world.
Yet real-world demonstrations usually come from multi-modal reward function and we don’t
consider money transfer between the AI system and the users here, thus this restrictions
are not applicable in our context. A second line of work exploits the fact that it might be
computationally hard to manipulate a system. Yet we show that it is not hard to manipulate
the value alignment methods we are considering in this paper by proposing an algorithm
that computes a best-response in polynomial time. In this work we propose a natural way
to circumvent Gibbard when learning from demonstration: collecting demonstrations that
are meaningful for the demonstrator.

Cost of Lying. As we will see, collegial mechanisms incur a natural cost of lying to the
demonstrator. Cost of lying has been introduced in many different scenarios, eg. guilt
aversion [17], altruism [18] and reciprocity [19]. A widely studied model in economics is the
model of partial verification, where the system can detect a lie when it is too far from the
truth [20], in that case inflicting an infinite cost to the liar. Our model can be seen as a
soft version of partial verification [21]. A line of work in the voting literature is interested
in costly voting, where voters can pay more or less to express the degree of their preferences
[22]. Yet it is hard to link the utility to the willingness to pay, especially when voters have
unequal wealth.

Learning from multiple demonstrators. Few works have been interested in learning a
single-agent task from multiple demonstrators. Castro et al. introduce a maximum margin
algorithm that exploit the fact that the multiple demonstrators have different known levels
of expertise [23]. Noothigattu et al. show that feature matching algorithms recover a good
policy when the demonstrators are optimal with respect the a random perturbation of the
same underlying reward [24]. In contrast, we show that feature matching algorithms are
easily manipulable by a strategic demonstrator. None of these works consider strategic
demonstrators.

Human-Robot Team Robot evolving in a multi-human environment has already been
studied by the Human-Robot Interaction community. Much work has focused on trust
building and resource allocation [25]. A common assumption is that the robot and the
humans have a common payoff known to the robot. Our work generalize this setting to
general-sum payoffs possibly unknown to the robot.

1A process is non-trivial when it is neither dictatorial nor limiting the possible outcome to two
options only.
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2 Impossibility Result for Multi-Agent LfD Methods

2.1 Application of Gibbard’s Theorem to LfD

We consider a finite Markov Decision Process without reward (𝑆, 𝐴, 𝑃 , 𝜇0, 𝑇 ) where:

• 𝑆 is a finite set of states.
• 𝐴 is a finite set of actions.
• 𝑃 ∶ 𝑆 × 𝐴 × 𝑆 → [0, 1] is a stochastic transition function.
• 𝜇0 is a initial state distribution
• 𝑇 is a finite horizon

In IRL, an AI system observes an expert trajectory 𝜏 ∈ (𝑆 × 𝐴)𝑇 and computes a reward
𝑅 ∶ 𝑆 × 𝐴 → ℝ that makes this trajectory optimal [2]. Apprenticeship Learning (AL)
methods uses this reward as a proxy to compute a stochastic policy 𝜋 ∶ 𝑆 × 𝐴 → [0, 1] that
best imitates the expert [3].
We propose multi-principal apprenticeship learning as a generalization of AL. We suppose
that there are 𝑁 demonstrators, each with a private reward function 𝑅𝑖 ∶ 𝑆 × 𝐴 → ℝ
and providing one trajectory 𝜏𝑖 to the AI system. The AI system observe all trajectories,
compute a stochastic policy using an AL method for example and follows the policy to
produce a trajectory 𝜏𝑅 ∈ (𝑆 × 𝐴)𝑇 . The goal of the AI system is to maximize a social
welfare function 𝑊 of the true rewards:

𝜏∗
𝑅 ∈ arg max

𝜏
𝑊(𝑅1(𝜏), ..., 𝑅𝑁(𝜏)) (1)

Social welfare functions are a heavily studied field, examples include the utilitarian criterion
𝑊𝑈(𝑅1, ..., 𝑅𝑁) = ∑ℎ 𝑅ℎ [26] and the egalitarian criterion 𝑊𝐸(𝑅1, ..., 𝑅𝑁) = minℎ 𝑅ℎ
[27, 28]. In the remainder of the paper we consider the utilitarian criterion.
The process leading to 𝜏𝑅 can be represented by a stochastic function 𝑔 ∶ ((𝑆 × 𝐴)𝑇 )𝑁 →
△((𝑆 × 𝐴)𝑇 ). The objective of human 𝑖 is to lead the AI system towards a trajectory that
maximize their own utility:

𝜏∗
𝑖 ∈ arg max

𝜏𝑖
𝔼𝑅𝑖(𝑔(𝜏𝑖, 𝜏−𝑖)) (2)

Since (𝑆 × 𝐴)𝑇 is a finite non-empty set, 𝑔 is a game form as defined by Gibbard and we
can apply his impossibility result for non-deterministic process [13]:
Theorem 1 (Gibbard 1978). On the domain of versatile2 trajectories, any straightforward3

mechanism must be a probability mixture of mechanisms of two kind:

• Duple mechanisms, where the set of possible trajectories are restricted to two.

• Unilateral games, where one human gets to choose among a certain set of possible
lotteries over trajectories.

Thus the only straightforward LfD mechanisms are not acceptable mechanisms. A first solu-
tion widely explored in the mechanism design literature would be to constraint the domain
of preferences. Yet reward functions for real-world tasks can have various structure and be
highly multi-modal, and we don’t consider here money transfer between the demonstrators
and the AI system. If we can’t constraint the domain of preferences, we can hope that ma-
nipulating an AI system observing trajectories is computationally hard. Yet we challenge
this hope in the following section by introducing an algorithm that manipulates feature
matching algorithms, a widely used family of LfD algorithms, in polynomial time.

2A trajectory is versatile if the set of utility profile for which it is dominant has interior points.
3A straightforward mechanism induces a game where every player has a weakly dominant strat-

egy. It is equivalent to say that it is not manipulable.
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2.2 A polynomial-time algorithm to manipulate feature-matching algorithms

Current methods in learning from demonstrations are not adapted for dealing with multiple
humans because they are easily manipulable. For example, if an AI system uses a feature
matching algorithm on an aggregation of demonstrations coming from different humans, we
can find a demonstration such that the robot policy is biased towards a single demonstrator
in polynomial time. More specifically, we have the following result:
Proposition 1. Suppose that the AI system models the humans as noisily-optimal planners
with linear features and computes the rewards that maximize the likelihood of the aggregated
demonstrations [10]. The best-response trajectory of a human can be computed in polynomial
time.

To show that, we transform the manipulation problem into a least square problem. The
objective of the AI system is the following:

𝜔∗ = max
𝜔

𝑃( ̃𝜏 |𝜔, 𝜌0)

𝑃 ( ̃𝜏 |𝜔, 𝜌0) =
𝑁

∏
𝑖=1

𝑒𝜙(𝜏𝑖)𝑇 𝜔

𝑍(𝜔, 𝜌0)
𝑍(𝜔, 𝜌0) = ∑

𝜏,𝑠0∼𝜌0

𝑒𝜙(𝜏)𝑇 𝜔

(3)

where 𝑁 is the number of demonstrators, ̃𝜏 = (𝜏1, ..., 𝜏𝑛) is the aggregate of trajectories and
𝜙(𝜏 𝑖)𝑇 𝜔 = ∑𝑇

𝑡=1 𝜙(𝑠𝑖
𝑡)𝑇 𝜔 is the cumulative return of 𝜏 𝑖 under reward 𝜔.

By taking the gradient to zero, we see that this concave objective is maximized when the
expected feature count of the computed reward’s optimal policy is equal to the empirical
feature count of the aggregated demonstrations:

𝔼𝜏∼𝜋∗(𝑤∗),𝑠0∼𝜌0
(𝜙(𝜏)) = ∑𝑁

𝑖=1 𝜙(𝜏 𝑖)
𝑁

(4)

This gives the strategic demonstrator a simple procedure to bias the system towards their
own interest: they give a demonstration such that the empirical feature count of the aggre-
gated demonstrations is the closest possible to their own policy’s expected feature count.
Formally, this translates into the following least squares objective:

𝜏∗
𝑖 (𝜏−𝑖) = min

𝜏𝑖
∥𝜙(𝜏𝑖) − (𝑁𝔼𝜏∼𝜋∗(𝑤𝑖),𝑠0∼𝜌0

(𝜙(𝜏)) − ∑
𝑗≠𝑖

𝜙(𝜏𝑗))∥
2

2

(5)

Concretely, a strategic demonstrator will act like they like (dislike) something more than
they actually do to push the AI system towards (away from) a particular outcome.
An efficient way to solve this problem is to find the occupancy measure that minimizes the
following constrained least squares problem:

min
𝜌𝑡𝑠,𝑎

|| ∑
𝑠,𝑎,𝑡

𝜌𝑡
𝑠,𝑎𝜙(𝑠) − (𝑁𝔼[𝜙|𝑤] − ∑

𝑗≠𝑖
𝜙(𝜏𝑗))||2

subject to ∑
𝑎

𝜌𝑡+1
𝑠′,𝑎 = ∑

𝑠,𝑎
𝑃(𝑠, 𝑎, 𝑠′)𝜌𝑡

𝑠,𝑎 ∀𝑠′, ∀𝑡 ∈ [0, 𝑇 − 1]

∑
𝑎

𝜌0
𝑠,𝑎 = 𝜇0[𝑠] ∀𝑠

(6)

This is a linearly constrained least squares problem solvable in polynomial time. We can
compute the best-response trajectory directly from the occupancy measure in linear time.
We test our solver in a gridworld environment (see Fig. 1a) and observe that:

• The best-response trajectory can be computed in very short time, thus computation
time is not a barrier to manipulation.

• The best-response trajectory is not what the agent would have picked in isolation
and depend on other humans’ trajectories. In other words, this LfD method is not
straightforward in general, in accordance with Gibbard’s theorem.
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(a) First row: 𝑅1; 𝑅2; 𝐻2’s honest trajec-
tory; 𝐻2’s strategic trajectory. Second row:
Recovered reward when 𝐻2 is honest; Recov-
ered reward when 𝐻2 is strategic; Robot’s
trajectory when 𝐻2 is honest; Robot’s tra-
jectory when 𝐻2 is strategic (𝐻1 is always
honest).

(b) Return of 𝐻1 and 𝐻2 and social welfare
from the robot’s trajectory against 𝛽 (𝐻1 is
always honest).

2.3 An Example of Real-World Misalignment: Microsoft Tay

In 2016, Microsoft released a Twitter chatbot, Tay, designed to learn to converse via tweets.
It took less than 24 hours for a group of prankster users to train Tay to mix racist comments
into its discourse. Tay had at least three conceptual problems:

1. Manipulable inputs. Tay was not trained on chat logs ‘in the wild’; it was trained
by humans who knew there was a system that could be manipulated to achieve
goals outside its intended purpose.

2. User/creator misalignment. TAY’s creators primarily wanted TAY to imitate a nor-
mal person, not entertain people (although entertainment was useful to gain more
engagement and data). By contrast, its users primarily wanted to be entertained.
This means there was a misalignment between the creators as principals and the
users as principals.

3. User/user misalignment. Prankster users wanted offensive entertainment, present-
ing a misalignment between different groups of the users. The pranksters were able
to increase TAY’s level of racism to an unusual degree using:
(a) extreme features (highly racist inputs)
(b) extreme numbers of inputs

In this work, we are concerned primarily with problems analogous to problem 1 and prob-
lem 3(a). Problem 1 raises the question of how to elicit honest responses, i.e., incentive
compatibility. Problem 3(a) raises the question of users exaggerating their preferences to
move the value of a ‘compromise’ policy closer to their desired policy, which is a kind of ma-
nipulability for many learning procedures that we have recovered in the previous subsection
by computing the best-response to a feature-matching LfD algorithm (see Equ. 5). As we
will see in the next section, these problems can both be mitigated by requiring demonstra-
tions to have natural consequences outside of the AI’s policy, thereby eliciting more ‘normal’
behavior from demonstrators.

3 Circumventing Gibbard’s Theorem with Collegial Mechanisms

3.1 Exploiting the Consequential Nature of Real-World Demonstrations

Even if it is not hard to compute what trajectory would bias a system towards an individual
interest, there are scenarios in real life where a human would prefer to stay honest. This is
due to the fact that when collected in the field, demonstrations might have consequences for
their demonstrators that are independent of the behavior of the AI system. In our setting,
this can be formulated using the same objective with an additional term, the direct reward
the human will get by choosing an action with a coefficient 𝛽 that quantifies the importance
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that the human puts on the direct consequences of its demonstration relatively to the robot’s
action:

𝜏∗
𝑖 ∈ arg max

𝜏𝑖
𝛽𝑅𝑖(𝜏𝑖) + 𝔼𝑅𝑖(𝑔(𝜏𝑖, 𝜏−𝑖)) (7)

To obtain a clear bound on 𝛽 we suppose that the reward function are integer-valued:
𝑅𝑖 ∶ 𝑆 × 𝐴 → ℕ and that there is 𝑀 ∈ ℕ such that: ∀𝑖, ∀(𝑠, 𝑎) ∈ 𝑆 × 𝐴, 𝑅𝑖(𝑠, 𝑎) ≤ 𝑀 .
Notice that the Gibbard’s impossibility result stated in the previous section still holds when
we take integer-valued reward functions with a fixed upper-bound. We have the following
result:
Proposition 2. If 𝛽 > 𝑀 , then every mechanism is straightforward.

This result shows that we can circumvent Gibbard’s theorem by looking for situation where
demonstrations are the most meaningful, incurring a natural cost of lying for the demon-
strator.
A similar bound can be obtained for real-valued reward functions. For every human 𝑖, we
define 𝑅∗

𝑖 = max𝑠,𝑎 𝑅𝑖(𝑠, 𝑎), we assume that there is (𝑠, 𝑎) such that 𝑅(𝑠, 𝑎) < 𝑅∗
𝑖 and we

define 𝛾𝑖 = min(𝑠,𝑎){𝑅∗
𝑖 − 𝑅𝑖(𝑠, 𝑎) ∶ 𝑅(𝑠, 𝑎) < 𝑅∗

𝑖 }. We also define 𝛾 = min𝑖 𝛾𝑖. Since we
consider a finite MDP with a finite number of humans we have 𝛾 > 0. We have the following
result:
Proposition 3. If 𝛽 > 𝑀

𝛾 , then every mechanism is straightforward.

Even when 𝑀
𝛾 → ∞ and 𝛽 < 𝑀

𝛾 , collecting meaningful demonstrations can significantly
reduce the manipulability of a mechanism. To see that, we consider a plurality voting
system with random tiebreak with 3 voters and 3 alternatives and compare the proportion
of manipulable profile when 𝛽 = 0 and 𝛽 = 1 for the utilities domain {𝑅 ∶ {1, 2, 3} →
[0, 1], 𝑅(1) + 𝑅(2) + 𝑅(3) = 1} under which Gibbard’s theorem still holds and such that
𝛾 → 0. Using a geometric argument on the 2-simplex we show that:
Proposition 4. In a system using plurality voting with random tiebreak with 3 voters and
3 alternatives, 1

3 of the simplex is manipulable4 when 𝛽 = 0 while only 1
9 of the simplex is

manipulable when 𝛽 = 1.

We can efficiently compute the best-response trajectory when 𝛽 > 0 by adding a term to
the objective of the previous optimization problem (see Equ. 6):

max
𝜌𝑡𝑠,𝑎

𝛽 ∑
𝑠,𝑎,𝑡

𝛾𝑡𝜌𝑡
𝑠,𝑎𝜙(𝑠)𝑇 𝑤 − || ∑

𝑠,𝑎,𝑡
𝜌𝑡

𝑠,𝑎𝜙(𝑠) − (𝑁𝔼[𝜙|𝑤] − ∑
𝑗≠𝑖

𝜙(𝜏𝑗))||2

subject to ∑
𝑎

𝜌𝑡+1
𝑠′,𝑎 = ∑

𝑠,𝑎
𝑃(𝑠, 𝑎, 𝑠′)𝜌𝑡

𝑠,𝑎 ∀𝑠′, ∀𝑡 ∈ [0, 𝑇 − 1]

∑
𝑎

𝜌0
𝑠,𝑎 = 𝜇0[𝑠] ∀𝑠

(8)

We recover a regularized dual of the linear program formulation for finite-horizon discounted
Markov Decision Process [29].
We plot the social welfare obtained by the robot’s policy in our gridworld setting against
the importance that the strategic demonstrator put on their demonstration (see Fig 1b).
We observe that when 𝛽 is higher than 100, 𝐻2 is incentivized to be honest and the social
welfare increases significantly.
Thinking back about our real-world example, if the Tay bot had been reading from people’s
work account instead of anonymous Twitter feed, the problem would not have occurred,
since there’s a greater negative utility to the human for providing profane examples in the
former case.

4We say that a utility function is manipulable when the associated best response strategy depends
on the strategy of the other humans.
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3.2 Towards Efficient Mechanisms with Collaboration beyond Demonstrations

So far we have considered a subclass of MPAGs where the AI system is passively observing
the humans. Although it enables a clear comparison with the social choice theory, it is
arguably not the best way to learn human values. A challenge of learning from multiple
demonstrators is that demonstrations give only one mode of the reward function. Yet to
maximize the social welfare we certainly need more information: there is cardinal utility
profile such that the social maximizing action is sub-optimal with respect to each of the
individual utilities5.
In this section we widen the considered class of MPAGs to yield an approximately efficient6

mechanism. Specifically, we assume that the AI system learns human values through a
human-robot collaborative task. Consequently, the AI system has an influence on the utility
the human get when demonstrating their preferences.
We obtain a non-trivial asymptotic worst case bound on the social welfare in a simplified
model of human-robot collaboration. We consider a stateless sequential setting where at
each time step, the robot can choose one human (among N humans) to collaborate with.
During the collaboration, the human chooses one action (among M actions) and at the end
of the step, the robot chooses weather the human get the associated reward. The robot
chooses at which time step to stop and then chooses an action. We wish to maximize the
social welfare of this action.
A robot mechanism ℳ is given by a human selection criterion, a reward allocation criterion,
a stopping time criterion and an action selection criterion. We define the distortion7 of the
robot’s mechanism as:

△(ℳ) = max
𝑅

max𝑎 ∑ℎ 𝑅ℎ(𝑎)
𝔼 ∑ℎ 𝑅ℎ(𝑎ℳ(𝑅)) (9)

We propose a mechanism that achieves a non-trivial asymptotic distortion (see Algorithm 1).
In broad outline, the robot chooses a human and allocates reward only if the human did not
choose the action before. Periodically, the robot chooses a random action with probability
1 − 1

2 1
𝑀

.

Exploiting the fact that humans plan with a discount factor strictly less than 1 and using
recent tools from the ordinal voting literature[30], we obtain the following bound:
Proposition 5. △(ℳ) = 𝑂(√𝑀 log 𝑀)

4 Conclusion

In this paper, we explore an area of concern in the study of AI alignment—ensuring that
AI systems are designed so that humans agents are incentivized to interact with AI systems
in a “honest” way. We view our main contributions as follows:

• Propositions 2, 3 and 4 show that collegial preference inference can yield numerous
desirable properties including incentive-compatibility.

• Proposition 5 reveals the asymptotic performance of a mechanism coupling collegial
preference inference with human-robot collaboration.

These results appear to be reasons for optimism in the domain of mechanism design for
multi-principal assistance games. Meanwhile, the overall problem of preventing manipulative
behavior in multi-human AI systems is open and presents many opportunities for further
work. Our methods are applied to fairly simple problems; there exists a need to generalize
these results to more general theoretical settings and more complicated situations in the
real world.

5Consider the utility profile {(0.6, 0.4, 0), (0, 0.4, 0.6)} in a stateless MDP with 3 actions and 2
humans.

6A mechanism is efficient if it maximizes the social welfare.
7The distortion is a notion introduced in the ordinal voting literature.
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Algorithm 1: Approximately Efficient Mechanism
Input : Number of humans 𝑁 ; Number of arms 𝑀
Output : Robot action 𝑎𝑅
for ℎ ∈ [1, 𝑁] do

𝐴𝑐𝑡𝑖𝑜𝑛𝑠[ℎ] ⟵ [1, 𝑀]
end
for 𝑎 ∈ [1, 𝑀] do

𝑆𝑐𝑜𝑟𝑒[𝑎] ⟵ 0
end
for 𝑡 ∈ [1, 𝑀] do

for ℎ ∈ [1, 𝑁] do
Let human ℎ choose an action 𝑎
if 𝑎 ∈ 𝐴𝑐𝑡𝑖𝑜𝑛𝑠[ℎ] then

Execute 𝑎
𝑆𝑐𝑜𝑟𝑒𝑠[𝑎]+ = 1

𝑡
Remove 𝑎 from 𝐴𝑐𝑡𝑖𝑜𝑛𝑠[ℎ]

end
end
With probability 1 − 1

2 1
𝑀

, return an arm sampled uniformly on [1, 𝑀].
end
Return arm 𝑎 with probability 𝑆𝑐𝑜𝑟𝑒[𝑎]

∑𝑎′ 𝑆𝑐𝑜𝑟𝑒[𝑎′]
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