
Rao-Blakwellised Partile Filtering forDynami Bayesian NetworksKevin Murphy and Stuart Russell1 IntrodutionPartile �ltering in high dimensional state-spaes an be ineÆient, beausea large number of samples are needed to represent the posterior. A standardtehnique to inrease the eÆieny of sampling tehniques is to redue thesize of the state-spae by marginalizing out some of the variables analytially;this is alled Rao-Blakwellisation (Casella and Robert 1996). Combiningthese two tehniques results in Rao-Blakwellised partile �ltering (RBPF)(Douet 1998, Douet, de Freitas, Murphy and Russell 2000). In this hapter,we explain RBPF, disuss when it an be used, and give a detailed exampleof its appliation to the problem of map learning for a mobile robot, whihhas a very large (� 2100) disrete state-spae.The key idea of RBPF is to partition the state-spae Zt into two sub-spaes, Rt and Xt, suh that the distribution P (XtjR1:t; y1:t) an be updatedanalytially and eÆiently; the distribution P (R1:tjy1:t) is updated using par-tile �ltering. The justi�ation for this deomposition follows from the hainrule of probability:P (X1:t; R1:tjy1:t) = P (X1:tjR1:t; y1:t)P (R1:tjy1:t)Sampling just Rt will generally require many fewer partiles (to reah some�xed auray threshold) than standard partile �ltering, whih would sampleboth Rt and Xt. (Please see the hapter by Douet, de Freitas and Gordon(2000: this volume) for an introdution to standard PF.)RBPF is very similar to standard PF, exept that eah partile now main-tains not just a sample from P (R1:tjy1:t), whih we will denote by r(i)1:t, butalso a parametri representation of P (Xtjr(i)1:t; y1:t), whih we will denote by�(i)t . (The parametri representation might be a mean vetor and a ovari-ane matrix, for instane.) The Rt samples are updated as in standard PF,and then the Xt distributions are updated using an exat �lter, onditionalon Rt. The overall algorithm is shown in Figure 1.In Setion 2, we disuss when this algorithm an be usefully applied, whihis best desribed using the language of dynami Bayesian networks. In Se-tion 3, we disuss in detail how to ompute the equations used by the al-gorithm. Finally, in Setion 4, we disuss the appliation of RBPF to maplearning. 1



2
Generi RBPF1. Sequential importane sampling step� For i = 1; : : : ; N , sample�br(i)t � � q(rt; r(i)1:t�1; y1:t)and set �br(i)1:t� def= (br(i)t ; r(i)1:t�1)� For i = 1; : : : ; N , evaluate the importane weights up to a normalisingonstant: w(i)t / p �ytj y1:t�1; r(i)1:t� p�r(i)t ��� r(i)1:t�1; y1:t�1�q �rt; r(i)1:t�1; y1:t�� For i = 1; : : : ; N , normalise the importane weights:ew(i)t = w(i)t � NXj=1w(j)t ��12. Seletion step� Resample N samples from (br(i)1:t) aording to the importane distributionew(i)t to obtainN random samples (r(i)1:t) approximately distributed aordingto p(r(i)1:tjy1:t).3. Exat step� Update �(i)t given �(i)t�1, r(i)t , r(i)t�1, and yt.

Figure 1. Generi Rao-Blakwellised partile �ltering algorithm.If we replae referenes to rt with zt = (xt; rt) and omit step 3, theresult is a \regular" (non Rao-Blakwellised) partile �lter. Notethat if we are only interested in �ltering, we do not to store thefull trajetory r(i)1:t in eah partile, just its most reent omponent,r(i)t , sine we are updating �(i)t online. This �gure is adaptedfrom (Douet et al. 2000).
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(a) (b) ()Figure 2. (a) The anonial DBN to whih RBPF an be applied.The shaded Yt nodes denote observations. (b) A simpli�ation inwhih we have removed the \ross ars." The Rt nodes are alledthe roots, and theXt nodes the leaves. () We have partitioned theroot node into two omponents, Rt(1), whih a�ets the dynamisof Xt, and Rt(2), whih a�ets the observation model Yt.2 RBPF in generalWe an most easily haraterize the models to whih RBPF may be eÆ-iently applied by representing them graphially as dynami Bayesian net-works (DBNs), whih we now briey explain. Bayesian networks (Pearl1988, Cowell, Dawid, Lauritzen and Spiegelhalter 1999) are direted ayligraphs, in whih nodes represent random variables, and the lak of arsrepresents onditional independenies. Dynami Bayesian networks extendBayesian networks to probability distributions that evolve over time. As ina state-spae model, we must speify the transition model, P (ZtjZt�1), theobservation model, P (YtjZt), and the prior, P (Z1). We use a \two slie"graph to represent the onditional independene relationships in P (ZtjZt�1).In addition to the graph struture, we must speify the onditional probabil-ity distribution (CPD) of eah node given its parents. For a more detailedintrodution to DBNs, please see Koller and Lerner (2000: this volume).RBPF an be applied to any DBN that an be made topologially equiva-lent to the model shown in Figure 2(a), lustering nodes together if neessary.However, to apply the algorithm in Figure 1, we must ompute the termP (Rtjr(i)1:t�1; y1:t�1) = Xxt�1 P (Rtjr(i)t�1; xt�1)P (xt�1jr(i)1:t�1; y1:t�1) (2.1)IfXt�1 is a vetor in f1; : : : ; kgm, i.e., the ross-produt ofm disrete k-valuedrandom variables, then this equation takes O(km) time to ompute, whih is



4usually unaeptably high, espeially sine it must be omputed one perpartile. Likewise, if Xt�1 is a vetor in IRm, the required integration oftenannot be omputed in losed form. Hene it is ommon to assume there isno ar from Xt�1 to Rt, so that we an eliminate the marginalization overXt�1. In other words, the equation beomesP (Rtjr(i)1:t�1; y1:t�1) = P (Rtjr(i)t�1)If we onsider a single time slie, there are now no ars entering Rt, so werefer to it as a \root." Similarly, Xt will be alled a \leaf." It is also ommonto assume there is no ar from Rt�1 to Xt, although this does not hange thealgorithm in any signi�ant way.1 After eliminating both of these inter-slie\ross ars", we end up with the DBN shown in Figure 2(b).Given the simpli�ed model of Figure 2(b), we are left with two tasks: tosample the root nodes eÆiently, and to update the leaf distributions eÆ-iently, given that the roots have known values (and are therefore e�etivelydisonneted from the graph). Sine the roots an be sampled using a stan-dard partile �lter, many of the tehniques disussed in this book are diretlyappliable. Hene we fous on the latter issue here.A simple example of when the leaves an be eÆiently updated is whenthe CPDs for Xt and Yt are linear-Gaussian, in whih ase the model isalled a onditionally linear-Gaussian state-spae model. We an omputeP (Xtjr1:t; y1:t) reursively using a Kalman �lter. If Rt is disrete, the modelis alled a jump Markov linear system, or swithing state-spae model (Chenand Liu 1999, Douet, Gordon and Krishnamurthy 1999). In this ase, it isoften useful to split the root node into two independent omponents, as inFigure 2(). Rt(1) is a parent of Xt, and an be used to model disontinuoushanges in state (.f., MGinnity and Irwin (2000: this volume)). Rt(2) is aparent of Yt, and an be used to model outliers in the observations. Anotherase when we might have multiple root nodes is when we are doing onlineparameter estimation: in the Bayesian approah, the parameters are justadditional random variables (nodes in the graph) that an be sampled usingpartile �ltering.In the jump Markov linear system, the jumps our \spontaneously", asditated by the Markov transition matrix on theRt(1) node. For some models,it is useful to have the system's state, Xt, \trigger" the jump, whih anbe modelled by adding an ar from Xt�1 to Rt, and making Rt's CPD alogisti or softmax funtion. Unfortunately, Equation 2.1 beomes hard toompute in this ase, sine we have a hidden ontinuous parent onneted to a(hidden) disrete hild. One possible approah would be to use the variationalapproximation disussed in (Murphy 1999).1Spei�ally, it just means we only have to ondition on r(i)t , instead of both r(i)t andr(i)t�1, when updating �(i)t in step 3 of the algorithm in Figure 1.
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Figure 3. The two-tank DBN, adapted from Koller and Lerner(2000: this volume). We have omitted the RF12 and R12 nodesto keep the �gure simple. RF standards for resistane failure, andrepresents a permanent hange in the resistivity of a pipe. MFstands for measurement failure, and represents a temporary errorin the sensor. The MF and observed (shaded) nodes are onlyshown for slie 2, for simpliity, sine they are transient variables,i.e., they are not onneted aross time-slies.



6 A more omplex DBN is shown in Figure 3. We would like to sam-ple the disrete indiator variables (whih model failures of various kinds)shown inside the dotted boxes, and apply exat inferene on the remain-ing, ontinuous-valued nodes, whih we an group into a single vetor-valuednode, Xt. Unfortunately, in this model, although the noise is Gaussian, thedynamis are non-linear, making it hard to integrate out Xt. We ould applyan approximate inferene tehnique, suh as the extended Kalman �lter, orthe unsented �lter (Julier and Uhlmann 1997), but we would no longer bedoing strit Rao-Blakwellisation. In partiular, these approximations maydiverge. (Koller and Lerner apply partile �ltering to both Rt and Xt.)Given an arbitrary DBN with a potentially omplex topology, whih nodesshould be onsidered as roots, and whih as leaves? If we disallow ars fromXt�1 to Rt for the reasons disussed above, the answer is fairly straightfor-ward. We de�ne the set of nodes whih are eligible to be roots, R, to be allthe nodes whih either have no parents, or whose parents are also in the setR, possibly shifted bak in time. We initialize R to be all the nodes Xt(i)whih have no parents, or whose only parent is Xt�1(i). We then add to Rall the nodes, Xt(i), whose parents are in R [ fXt�1(i)g. For example, inthe two-tank DBN in Figure 3, we start with R1 ontaining all the nodes indotted boxes, and an then add R1o and R2o to getR2 = fR1o; R2o; RF1o; RF2o;MF1o;MF2o;MF12g:The idea is to keep growing the set R until the set of remaining variables,Xi def= SnRi, an be updated exatly and eÆiently, where S represents all thenodes in a single slie of the DBN, and Ri represents the root set at iterationi of the above root-growing algorithm. In the two-tank ase, R2 is loallymaximal: there is no single node that an be added suh that the desiredlosure property would be maintained. The next valid root set is R3 = S,whih orresponds to sampling all the variables, as in standard PF.Now suppose the set of non-boxed variables X1 had linear-Gaussian dy-namis. In this ase, we ould sample the disrete root nodes R1 and applythe Kalman �lter to the ontinuous nodes X1, as we disussed before. Ex-panding fromR1 to R2, while legal, would probably not be very helpful, sineR1o and R2o are jointly Gaussian with X2 by assumption, and hene an bemarginalized out eÆiently.When all the (hidden) nodes in a DBN are disrete, we an always performexat inferene in losed form, using the HMM �lter or the juntion treealgorithm (Smyth, Hekerman and Jordan 1997, Cowell et al. 1999). Theproblem is that the omplexity is generally O(kn), where n is the number ofhidden nodes, and k is the number of values eah node an take on. (We willsee an example of this in Setion 4.) In this ase, we should keep growing Runtil X beomes small enough that exat inferene beomes omputationally



7
X(1) X(1)

Y(1) Y(1)

X(2) X(2)

Y(2) Y(2)

R R

X(1) X(1)

Y(1) Y(1)

X(2) X(2)

Y(2) Y(2)

R R

(a) (b)Figure 4. (a) We have partitioned the leaves and observationsinto two omponents. (b) The dashed ars entering the root nodeindue orrelation between the leaves, as indiated by the dotted\path of inuene." The root nodes are shown shaded sine theyare instantiated.tratable.2 Of ourse, the larger R, the more samples we will need, so thistradeo� must be made arefully. We hope to examine this issue in the future.In this hapter, we assume that the set R has been pre-spei�ed.In some ases, the non-root nodes might be onditionally independentgiven the roots, as in Figure 4(a). We will see an example of this in Setion 4.The advantage of this is that we an update eah leaf independently, ondi-tioned on the root, whih is exponentially more eÆient than updating theleaves jointly. Note, however, that, if we had ars from the leaves entering theroot, as in Figure 4(b), we would no longer be able to update the leaves inde-pendently. This is beause Rt would at like a ommon observed hild node,induing orrelation amongst its parents, a phenomenon alled \explainingaway" (Pearl 1988).2For example, applying the greedy root-growing algorithm to the BAT DBN (Figure 6)in the hapter by Koller and Lerner gives the following results, where we use the notation�i def= Ri n Ri�1 to represent the extra nodes added at the ith iteration. R1 = fLeftClr,RightClr, EngStatus, BYdotDi�, SensorValid, Blrg, �2 = f FYdotDi�, BXdot, Blose-Fast, Flr g, �3 = f FloseSlow g, �4 = f FrontBakStatus g. To ontinue growing, wewould have to onsider additions of two or more parents simultaneously, et.



83 The RBPF algorithm in detailWe now explain the RBPF algorithm, whih is skethed in Figure 1, in moredetail. We assume there are no ars from Xt�1 to Rt, and for simpliity, thatthere are also no ars from Rt�1 to Xt, so the generi struture is one that isisomorphi to Figure 2b.As we mentioned in the introdution, the belief state, P (Xt; R1:tjy1:t), isrepresented by a set of N weighted partiles. The marginal distribution onthe root nodes is approximated asP (r1:tjy1:t) � NXi=1witÆ(r(i)1:t; r1:t)where wit is the weight of the i'th partile, and Æ(x; y) = 1 if x = y and is 0otherwise. The marginal on the leaf is approximated asP (Xtjy1:t) = Xr1:t P (Xtjr1:t; y1:t)P (r1:tjy1:t)� Xr1:t P (Xtjr1:t; y1:t) NXi=1witÆ(r(i)1:t; r1:t)= NXi=1witP (Xtjr(i)1:t; y1:t)For notational simpliity, we will assume that all nodes are disrete, so wean represent eah leaf marginal as a vetor in [0; 1℄k whih sums to 1, wherek is the number of possible values of the node. In addition, sine the nodesare disrete, all the CPDs an be expressed as tables:�R(r) def= P (R1 = r)TR(r0; r) def= P (Rt = rjRt�1 = r0)TX(x0; r; x) def= P (Xt = xjRt = r;Xt�1 = x0)OY (x; r; y) def= P (Yt = yjXt = x;Rt = r)Sine the leaf nodes are disrete, we an update their distributions, on-ditional on having sampled Rt, using the HMM �lter as follows. First weompute the one step-ahead predition:�(i)tjt�1(x) def= P (Xt = xjy1:t�1; r(i)1:t)= Xx0 P (Xt = xjXt�1 = x0; r(i)t )P (Xt�1 = x0jy1:t�1; r(i)1:t�1)= Xx0 TX(x0; r(i)t ; x)�(i)t�1(x0)



9Then we do Bayesian updating:�(i)t (x) def= P (Xt = xjy1:t; r(i)1:t)= (1=Z(i)t )P (ytjXt = x; r(i)t )P (Xt = xjy1:t�1; r(i)1:t)= (1=Z(i)t )OY (x; r(i)t ; yt)�(i)tjt�1(x)where the denominator is equal to the likelihood:Z(i)t def= P (ytjy1:t�1; r(i)1:t) =Xx OY (x; r(i)t ; yt)�(i)tjt�1(x) (3.1)If we have L leaves onditionally independent leaves, as in Figure 4(a), weapply these equations to eah leaf separately. Eah suh update will result ina \loal likelihood" term, Zt(j)(i), like the one above. The overall likelihoodthen beomes a produt of the loal likelihoods:P (ytjy1:t�1; r(i)1:t) = Xx1;:::;xL LYj=1 hP (yt(j); Xt(j) = xjjr(i)1:t; y1:t�1)i= LYj=1 "Xx P (yt(j)jXt(j) = x; r(i)1:t)P (Xt(j) = xjr(i)1:t�1; y1:t�1)#= LYj=1Zt(j)(i)All that remains is to speify how to do the following standard PF steps:� Sample new values of the roots.� Compute the weight of a partile.� Resample the partiles.We will now explain these steps in detail. We drop the i supersript forbrevity.As disussed in the hapter by Douet, de Freitas and Gordon (2000: thisvolume), in sequential importane sampling, if we sample from the proposaldistribution q(Rt; r1:t�1; y1:t), we must assign the partile weight equal to theratio between the true posterior and the proposal density:wt / P (ytjy1:t�1; r1:t)P (Rtjrt�1)q(Rt; r1:t�1; y1:t)The simplest ase is if we sample from the prior, q(Rt) = P (Rtjrt�1). In thisase, the weight is simply the likelihood omputed in Equation 3.1.



10 The \optimal" proposal distribution, in the sense of minimizing the vari-ane of the importane weights (Douet et al. 1999), is given byP (Rtjr1:t�1; y1:t) = P (ytjy1:t�1; r1:t)P (Rtjrt�1)P (ytjy1:t�1; r1:t)where the denominator is the one step-ahead likelihoodP (ytjy1:t�1; r1:t) = jRtjXr=1P (ytjy1:t�1; r1:t�1; Rt = r)P (Rt = rjrt�1)This requires omputing the likelihood jRtj times, whih an be quite ex-pensive. Whether the omputational expense is worthwhile depends on therelative reliability of the observations and the transition prior: if the prioris weak (di�use) and the observation likelihood is strong (sharply peaked),many partiles may be proposed in a part of the state spae that has lowlikelihood, whih is wasteful. In this ase, it might be worthwhile to takethe most reent evidene, yt, into aount before proposing. See Pitt andShephard (2000: this volume) for a more detailed disussion.Finally, given a set of partiles and weights, we an resample a fresh setusing any of the standard methods, suh as residual resampling, disussed inDouet, de Freitas, and Gordon (2000: this volume).4 Appliation: Conurrent loalisation andmap learning for a mobile robotIn this setion, we disuss an appliation of RBPF to a highly simpli�edversion of the problem of map learning for mobile robots (Murphy 2000).The appliation of standard (non-RB) PF to the problem of robot loalisation(�nding the robot's position given a known map) using real robots is disussedin Thrun et al. (2000: this volume).Consider a robot whih an move on a disrete, two-dimensional grid.The goal is to learn the olor of eah grid ell, whih an be either blak orwhite (say). The diÆulty is that the olor sensors are not perfet (they mayaidently ip bits with probability po), nor are the motors (the robot mayfail to move in the desired diretion with probability pa, due e.g., to wheelslippage). Consequently, it is easy for the robot to get lost. And when therobot is lost, it does not know what part of the map to update. (Note that, ifthe robot always knew its loation, e.g., by using GPS, map learning would beeasy; unfortunately, GPS does not work indoors, nor is it aurate enough.)The optimal Bayesian solution to this problem is to maintain a belief stateover both the loation of the robot, Lt 2 f1; : : : ; NLg, and the olor of eahgrid ell, Mt(l) 2 f0; 1g, l = 1; : : : ; NL, where NL is the number of ells. For



11notational simpliity, in this subsetion we shall assume there are only twoolors; the tehnique easily generalizes.We assume the olor of the ells an hange, to represent the fat thatthe environment an be dynami. For example, in Setion 4.2, we use four\olors" that represent whether a ell is unoupied, or ontains a wall, oran open door, or a losed door, and we allow doors to hange between openand losed. In this ase, Mt is like an oupany grid (Morave and Elfes1985), whih is a simple kind of map. For simpliity, we assume the olors ofthe ells hange independently, but with an idential distribution, spei�edby the matrix TM(; 0) def= P (Mt(l) = 0jMt�1(l) = ). If this is an identitymatrix, it means that the olors do not hange.3The observation model is that the robot sees the olor of the grid ell atits urrent loation, orrupted by noise:P (ytjm1; : : : ; mNL ; Lt = l) def= B(ml; yt) = ( 1� po if yt = mlpo if yt 6= mlwhere po is the probability that a olor gets misread, and B is the 2 � 2observation matrix with 1 � po on the diagonal and po o� the diagonal. Amore realisti model would apture the fat that the robot an see the olor ofneighboring ells as well. This is not hard to do, but for notational simpliity,we shall stik to the single-ell model for now.Let us assume for now that the robot is in a one-dimensional grid world, soit an only move left or right, depending on the ontrol input, Ut. The robotmoves in the desired diretion with probability 1 � pa, and otherwise staysput. In addition, it annot move o� the edges of the grid. Algebraially, thisbeomesP (Lt = l0jLt�1 = l; Ut =!) = 8>>><>>>: 1� pa if l0 = l + 1 and 1 � l0 < NLpa if l = l0 and 1 � l0 < NL1 if l = l0 = NL0 otherwiseThe equation for P (Lt = l0jLt�1 = l; Ut = ) is analogous. In Setion 4.2, wewill onsider the ase of a robot moving in two dimensions. In that ase, themotion model will be slightly more omplex.Finally, we need to speify the prior. The robot is assumed to know itsinitial loation, so the prior P (L1) is a delta funtion. If the robot did notknow its initial loation, there would be no well-de�ned origin to the map; inother words, the map is relative to the initial loation. Also, the robot has auniform prior over the olors of the ells. However, it knows the size of theenvironment, so the state spae has �xed size.3If the olors do not hange, and if we are satis�ed with learning a maximum likelihoodestimate of the map, instead of a full posterior, we an treat theM(i)s as �xed parametersand use EM to learn them (Thrun, Burgard and Fox 1998). However, doing this onlinedoes not work very well (Murphy 2000).
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Figure 5. The DBN used in the map learning problem. Mt(l)represents the olor of grid ell l at time t, Lt represents the robot'sloation, Yt the urrent observation, and Ut is the urrent input(ontrol).The DBN we are using is shown in Figure 5. This kind of topology (mod-ulo the observed input ndoes) is alled a fatorial HMM (Ghahramani andJordan 1997). Inferene in these models is omputationally intratable. Tobe preise, if there are n hains, eah of whih an take on k possible values,then the belief state has size O(kn): all the hains beome oupled beauseYt is a ommon observed hild. Exat inferene, using the juntion tree al-gorithm (Smyth et al. 1997, Cowell et al. 1999), takes O(nkn+1) operationsper time step. In general, if the number of values the nodes in hain j antake on is kj, then the belief state has size S = Qnj=1 kj, and exat inferenetakes O(SPnj=1 kj) operations per time step. In our appliation, there are NLhains with 2 possible values eah, and one hain with NL possible values,so we need 3N2L2NL operations per time step. In Setion 4, we use a 10� 10grid, so this requires O(2100) operations per time step for exat inferene.In our ase, however, the observation model has the ruial property thatYt only depends on a single element of Mt one Lt is known. Note that thisonditional independene property is not obvious from the struture of thegraph, but is impliit in Yt's CPD .f., (Boutilier, Friedman, Goldszmidt andKoller 1996). The upshot is that we an rewrite the model of Figure 5 to takeon the form of Figure 4(a) as follows: Lt is equivalent to the root Rt, and themap ells Mt(j) are equivalent to the leaves Xt(j). (We ignore the Ut nodesfor simpliity.) The transition model for the root is the motion model of the
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Figure 6. A one-dimensional grid world.robot, and the transition model of the leaves is the matrix TM , de�ned to beindependent of Lt. Finally, the observation nodes are as follows. We de�neP (Yt(j) = m0jMt(j) = m;Lt = l) = ( B(m;m0) if j = l1=2 if j 6= lwhere j; l 2 f1; : : : ; NLg and m;m0 2 f0; 1g. This observation model onlygives information about the ell at the robot's urrent loation, Lt = l, asdesired; all other ells (leaves) will be e�etively be updated with no obser-vations. It is now straightforward to apply RBPF to this model.4.1 Results on a one-dimensional gridTo evaluate the e�etiveness of this algorithm, we �rst applied it to a problemwhih was suÆiently small (8 ells) that we ould ompute the \groundtruth" using exat inferene. In partiular, onsider the one-dimensional gridshown in Figure 6. We have NL = 8, so exat inferene takes about 50,000operations per time step (!). For simpliity, we will �x the ontrol poliy asfollows: the robot starts at the left, moves to the end, and then returns home.Suppose there are no sensor errors, but there is a single \slippage" error att = 4. We summarize this below, where Ut represents the input (ontrolation) at time t.t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16Lt 1 2 3 4 4 5 6 7 8 7 6 5 4 3 2 1Yt 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0Ut - ! ! ! ! ! ! !         To study the e�et of this sequene, we used exat inferene to omputeP (Ltjy1:t) and P (Mtjy1:t): see Figure 7. At eah time step, the robot thinks itis moving one step to the right, but the unertainty gradually inreases. How-ever, as the robot returns to \familiar territory", it is able to better loalizeitself, and hene the map beomes \sharper", even in distant ells. Note thatthis e�et only ours beause we are modelling the orrelation between ells.f., the stohasti map representation of (Smith, Self and Cheeseman 1988).For a more detailed interpretation of this example, see (Murphy 2000).In Figure 8, we show the results obtained using RBPF. We see that itapproximates the exat solution very losely, using only 50 partiles. The
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(a) (b)Figure 7. Results of exat inferene on the 1D grid world. (a) Aplot of P (Mt(i) = 1jy1:t), where i is the vertial axis and t is thehorizontal axis; lighter ells are more likely to be olor 1 (white).(b) A plot of P (Lt = ijy1:t), i.e., the estimated loation of therobot at eah time step.
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(a) (b)Figure 8. Results of the RBPF algorithm on the 1D grid worldusing 50 partiles.results shown are for a partiular random number seed; other seeds produequalitatively very similar results, indiating that 50 partiles are in fat suÆ-ient in this ase. Obviously, as we inrease the number of partiles, the errorand variane derease, but the running time inreases (linearly).The question of how many partiles to use is a diÆult one: it dependsboth on the noise parameters and the struture of the environment (if everyell has a unique olor, loalization, and hene map learning, is easy). Sinewe are sampling trajetories, the number of hypotheses grows exponentiallywith time (as in a jump Markov linear system). In the worst ase, the number
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(a) (b)Figure 9. Results of the BK algorithm on the 1D grid world.of partiles needed may depend on the length of the longest yle in theenvironment, sine this determines how long it might take for the robot toreturn to \familiar territory" and \kill o�" some of the hypotheses (sine auniform prior on the map annot be used to determine Lt when the robot isvisiting plaes for the �rst time). In the above example, the robot was able toloalize itself quite aurately when it reahed the end of the orridor, sineit knew that this orresponded to ell 8. In general, we may need to use alever ontrol poliy, suh as the one we disuss in the next setion, to keepthe number of partiles tratable.For omparison purposes, we also tried the Boyen-Koller (BK) algorithm(Boyen and Koller 1998), whih is another popular approximate inferenealgorithm for disrete DBNs. In its simplest, fully fatorised form, BK rep-resents the belief state as a produt of marginals:P (Mt; Ltjy1:t) = P (Ltjy1:t) NLYj=1P (Mt(j)jy1:t)The results of using BK are shown in Figure 9. As we an see, it performsvery poorly in this ase, beause it ignores orrelation between the ells. Ofourse, it is possible to use produts of pairwise or higher-order marginals fortightly oupled sets of variables. Unfortunately, there is no natural subset ofvariables to use in this ase, sine all the grid ells are potentially orrelated.4.2 Results on a two-dimensional gridWe now onsider the 10� 10 grid world in Figure 10. We use four \olors",whih represent losed doors, open doors, walls, and free spae. Doors antoggle between open and losed independently with probability p = 0:1, but
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