
BLOG: Relational Modeling with Unknown Objects

Brian Milch milch@cs.berkeley.edu

Bhaskara Marthi marthi@cs.berkeley.edu

Stuart Russell russell@cs.berkeley.edu

Computer Science Division, University of California, Berkeley, CA 94720-1776 USA

Abstract

In many real-world probabilistic reasoning
problems, one of the questions we want to
answer is: how many objects are out there?
Examples of such problems range from multi-
target tracking to extracting information
from text documents. However, most prob-
abilistic modeling formalisms — even first-
order ones — assume a fixed, known set of ob-
jects. We introduce a language called Blog

for specifying probability distributions over
relational structures that include varying sets
of objects. In this paper we present Blog

informally, by means of example models for
multi-target tracking and citation matching.
We discuss some attractive features of Blog

models and some avenues of future work.

1. Introduction

In many probabilistic reasoning problems, from multi-
target tracking to extracting information from text
documents, our task is to infer facts about the real-
world objects that generated our data. The set of real-
world objects involved is seldom known in advance.
Thus, we need a probabilistic modeling formalism that
allows for uncertainty about what objects exist.

Existing formalisms that combine probability with
logic programming (Kersting & De Raedt, 2001; Sato
& Kameya, 2001) make both the unique names as-

sumption — that each term in the logical language
refers to a distinct object — and the domain closure

assumption — that the only objects are those denoted
by the terms of the language. Thus, these formalisms
only allow a fixed, known set of objects. Probabilis-
tic relational models (PRMs) have been extended in
several ways to allow unknown objects. PRMs may
include number variables which specify the number of
objects that stand in a given relation to an existing
object (Koller & Pfeffer, 1998). A PRM may also in-

clude existence variables, which specify, for instance,
whether a role exists for a given actor in a given movie
(Getoor et al., 2002). Finally, PRMs have been ex-
tended to allow uncertainty about the total number
of objects of a given type (Pasula et al., 2003). But
there has been no unified syntax for describing all these
kinds of uncertainty.

In this paper, we present a language called Blog

(Bayesian Logic) which is designed for reasoning about
unknown objects. A Blog model defines a probabil-
ity distribution over model structures of a first-order
logical language, which may include varying sets of
objects. In (Milch et al., 2004), we discuss Blog for-
mally and prove that if a Blog model satisfies certain
acyclicity conditions, it defines a unique probability
distribution. In this paper, we take a more informal
approach, introducing the language by example. We
also discuss how to assert evidence about unknown ob-
jects, and highlight some attractive features of Blog

models for information extraction tasks.

2. The aircraft domain

In this section, we describe one domain that we will
use as a running example. Consider the problem of
tracking an unknown number of aircraft, over an area
that contains an unknown number of air bases. At
each time step, an aircraft is either on the ground at
some base, or flying with some position and velocity.
Aircraft that are on the ground have some probability
of beginning a flight to some destination at each step.

Suppose we observe the world through radar. For each
time step t we receive a set of blips, each of which has
an (x, y, z) location. A blip either is generated by some
aircraft, in which case the location depends noisily on
the aircraft’s position, or is a false detection (resulting
from clouds, etc.) We do not observe the true set of
aircraft or airbases that exist, nor the identity of the
aircraft generating a particular blip.

Here are some questions that we might be interested



Table 1. Language Lair for the aircraft domain.

Functor symbol Type signature Return type
Location (AirBase) R2Vector

HomeBase (Aircraft) AirBase

CurBase (Aircraft, NaturalNum) AirBase

State (Aircraft, NaturalNum) R6Vector

Dest (Aircraft, NaturalNum) AirBase

TakesOff (Aircraft, NaturalNum) Boolean

Lands (Aircraft, NaturalNum) Boolean

BlipTime (RadarBlip) NaturalNum

BlipSource (RadarBlip) Aircraft

ApparentPos (RadarBlip) R3Vector

in, given a set of observations:

• Did the blip at position (3.3, 6.2, 9) at time 5 come
from an aircraft, and if so, what is its destination?

• How many airbases exist?
• Are the blip at (2, 4, 1) at time 3 and the blip at

(6,−1, 4) at time 9 from the same source?

3. Possible worlds

Our modeling approach is to specify a probability dis-
tribution over a set of possible worlds. A possible
world for the aircraft domain consists of:

• a set of air bases, each with a location in R
2;

• a set of aircraft, each with a home base;
• a function that maps each (a, t) pair to the air

base where aircraft a is located at time t, or a
null value if a is in the air at time t;

• a function that maps each (a, t) pair to aircraft
a’s state vector (position and velocity) in R

6 at
time t;

• a function that maps each (a, t) pair to the base
that is aircraft a’s current destination at time t;

• for each time t ∈ {1, . . . , T}, a set of radar blips
observed at that time, each with an apparent
source position;

• a function that maps each radar blip to its source
aircraft, or a null value if it is a false detection.

We use first-order logic to describe such sets of possi-
ble worlds in a formal way. A typed first-order lan-
guage (Enderton, 2001) L consists of a set of type
symbols and a set of functor symbols (i.e., function
and predicate symbols). Each functor symbol has a
type signature (s1, . . . , sk), where each si is a type sym-
bol. Such a functor is known as a k-ary functor sym-
bol; if k = 0, it is also known as a constant symbol.
Each functor symbol also has a return type s, which is
Boolean for predicate symbols. We also allow functors
to take on the special value null. Table 1 shows the

functors for the aircraft domain.

As model structure ω of a typed first-order language
includes an extension [s]

ω
for each type, which is the

set of objects of that type in ω. Also, for each functor
symbol f with signature (s1, . . . , sk) and return type
s, it includes an interpretation [f ]

ω
, which is a func-

tion from [s1]
ω × · · · × [sk]ω to [s]ω ∪ {null}. We will

use model structures of a language to represent pos-
sible worlds formally.1 For example, model structures
of Lair correspond to possible worlds in the aircraft
domain. The syntax and semantics of terms and for-
mulas of a typed first-order language are as in standard
first-order logic, except that terms have types and the
arguments to a functor must be of the appropriate
types.

4. The probabilistic model

To describe a probability distribution over possible
worlds, it is often useful to imagine a generative pro-

cess that samples a possible world. For the aircraft do-
main, we generate a possible world ω as follows. First,
create some number (chosen according to a prior) of
AirBase objects, and sample a location for each one.
For each base b, create some number of aircraft having
b as home base. For each time step t (starting at 0),
and each aircraft a, sample values for a’s attributes at
time t. Specifically, if a is in flight at time t−1, decide
whether a lands at time t. If so, the base that used
to be a’s destination becomes its current base. Oth-
erwise, sample a’s state vector at time t conditioning
on its state at time t − 1 and the location of a’s des-
tination. If a is on the ground at time t − 1, decide
whether it takes off at time t, and if so, sample a new
destination and initial state for a. Finally, for each a
in flight at time t, choose whether to create a radar
blip corresponding to a. Also, create some number of
false detections at time t.

This generative process induces a probability distribu-
tion over possible worlds. We now present Blog, a
formal language for specifying such distributions. A
Blog model begins by specifying a typed first-order
language L. A type can either be user-defined or
be chosen from a library of standard types such as
NaturalNum. The functor symbols of L are divided into
two sets : random and nonrandom. The model then
specifies, for each type s, a set of guaranteed objects

GM(s) which exist in every possible world, and the
value of each nonrandom functor f on each tuple of
guaranteed objects. In the aircraft domain, for ex-

1Strictly speaking, we only allow structures over a par-
ticular universe of discourse. See (Milch et al., 2004) for
details.



#{AirBase}:
∼ NumBasesDistrib()

Location(b):
∼ UniformLocation()

#{Aircraft : HomeBase 7→ b}:
∼ NumAircraftDistrib()

TakesOff(a, t):
if Greater(t, 0) ∧ ¬InFlight(a, Pred(t))

then ∼ TakeoffBernoulli()
Lands(a, t):

if Greater(t, 0) ∧ InFlight(a,Pred(t))
then ∼ LandingDistrib(State(a, Pred(t)),

Location(Dest(a, Pred(t))))
CurBase(a, t):

if t = 0 then = HomeBase(a)
elseif TakesOff(a, t) then = null
elseif Lands(a, t) then = Dest(a,Pred(t))
else = CurBase(a,Pred(t))

InFlight(a, t):
= (CurBase(a, t) = null)

State(a, t):
if TakesOff(a, t)

then ∼ InitState(Location(CurBase(a,Pred(t))))
elseif InFlight(a, t)

then ∼ StateTransition(State(a, Pred(t)),
Location(Dest(a, t)))

Dest(a, t):
if TakesOff(a, t)

then ∼ UniformChoice({AirBase b})
elseif InFlight(a, t)

then = Dest(a, Pred(t))
#{RadarBlip : BlipSource 7→ a, BlipTime 7→ t}:

if InFlight(a, t) then
∼ NumDetectionsDistrib()

#{RadarBlip : BlipSource 7→ null, BlipTime 7→ t}:
∼ NumFalseAlarmsDistrib()

ApparentPos(r):
if BlipSource(r) = null

then ∼ FalseDetectionDistrib()
else ∼ ObsDistrib(State(BlipSource(r),BlipTime(r)))

Figure 1. Blog model for the aircraft domain.

ample, there are guaranteed objects for the natural
numbers, and the nonrandom functor Pred(x) denotes
the standard predecessor function.

The main part of the BLOG model consists of state-
ments specifying conditional probability distributions.
The generative process described above includes two
types of sampling operations. The first type involves
sampling the value of some functor applied to some
objects. The second type involves creating a set of ob-
jects having a certain property (e.g. aircraft with a
given home base), where the number of newly created
objects is sampled from some distribution. BLOG has
a statement type for each of these operations.

4.1. Dependency statements

A BLOG model includes a dependency statement for
each random functor, that describes how to sample the
value of that functor applied to each tuple of objects.
Consider, for example, the dependency statement for
State in Figure 1. Suppose we are in the process of sam-
pling a world ω and are about to sample a value for
State(a, t) for some particular objects a and t. We first
check whether the condition after the if statement —
TakesOff(a, t) — holds in ω (thus, our sampling process
needs to have already chosen the value of TakesOff(a, t)
at this point). Suppose it is false. We then check
the condition InFlight(a, t) in ω. Suppose this condi-
tion does hold. We then compute State(a, Pred(t)) and
Location(Dest(a, t)) and pass them to the conditional

probability distribution (CPD) StateTransition, which we
assume is defined elsewhere by the user using a lan-
guage such as Java. This function samples a value for
State(a, t) from the return type of State.

In general, the lefthand side of a dependency state-
ment specifies the functor symbol being sampled, and
provides variable names that will be used to refer to
the arguments of the functor. The righthand side con-
sists of an if-then-else statement. The sampling pro-
cess checks the clauses of this if-then-else statement
until it finds one that is true. It then instantiates the
arguments for the CPD and calls it. The CPD is ei-
ther defined by the user or part of a library of standard
distributions, such as Gaussian. If none of the clauses
of the if statement are satisfied, then the value is null

by default.

In the dependency statement for State, the arguments
to the CPD were just the values of certain functors.
However, BLOG also allows passing a set of values
into a CPD. There are two situations where this is
necessary. First, we might want to select one element
of the set. For example, the first clause for the Dest

functor in Figure 1 results in a uniform choice over
the set of all air bases. The second situation where
we need to pass in a set is when the values have to
be aggregated in some way by the CPD. For example,
when reasoning about movies, the success of a movie
might depend on the sum of the Fame variables of each
actor in the movie.

4.2. Number statements

The probability distributions governing the number of
objects satisfying a particular property are specified
using number statements. Consider the third state-
ment in Figure 1. The lefthand side indicates that
this statement determines the number of aircraft hav-
ing a particular home base b. The righthand side has



the same form as in dependency statements, except
that it must sample from a distribution over natural
numbers.

There can in general be multiple number statements
for each type. The lefthand side of each number state-
ment contains a set of conditions, which form a poten-

tial object pattern. In the example, this set consisted of
the single condition HomeBase(a) = b. Our semantics
require that each nonguaranteed object in a possible
world satisfy exactly one potential object pattern, and
so when a value n is sampled for a given number state-
ment, exactly n new objects are created.

5. Evidence and Queries

A BLOG model specifies a probability distribution
over possible worlds of a language L. Therefore,
we can in principle introduce evidence simply by
conditioning on a first-order sentence of L. However,
this approach runs into problems. Suppose, for
example, that we have observed a blip at time 8 at
position (9.6, 1.2, 32.8), and condition on the sentence
∃r (BlipTime(r) = 8 ∧ ApparentPos(r) = (9.6, 1.2, 32.8)).
We now want to query the destination air base of the
aircraft that generated this blip. Unfortunately, we
can’t do this, because we don’t have a way of referring
to the blip outside the existential quantifier.

This problem is handled in logical reasoning systems
using Skolem constants. Instead of asserting an exis-
tentially quantified sentence, one extends the language
to include a new constant symbol, known as a Skolem
constant. In the example, we might introduce the
new constant symbol R1 and condition on the sentence
BlipTime(R1) = 8 ∧ ApparentPos(R1) = (9.6, 1.2, 32.8).

However, our observation process is often such that
we observe all objects generated by certain instances
of number statements. For example, at time t we ob-
serve all the radar blips generated by the two number
statements for RadarBlip in Figure 1 for that value of
t. The fact that our observations are exhaustive can
significantly affect our beliefs. For example, the prob-
ability that there are 10 aircraft in flight might be high
given that there is a blip on the screen, but low given
that there is only one blip on the screen.

We therefore use a syntax that allows us to state this
exhaustiveness property. Suppose that, in addition to
the previously mentioned blip, we observed only one
other blip at time 8, at (2, 1.6, 3). We first write {b :
BlipTime(b) = 8} = {B1, B2}. This asserts that the
constant symbols B1 and B2 refer to all the blips b such
that BlipTime(b) = 8. We also make a local unique-
names assumption, that B1 and B2 refer to different

objects. The precise probabilistic semantics of such
evidence statements is given in (Milch et al., 2004).

We then assert our observations as evidence, with the
statements ApparentPosition(B1) = (9.6, 1.2, 32.8) and
ApparentPosition(B2) = (2, 1.6, 3). We may now use
the symbols B1 and B2 in our queries. For exam-
ple, we might ask about the posterior distribution of
Dest(BlipSource(B1)).

6. Using BLOG Models for Information

Extraction

In (Marthi et al., 2003), we argued that information
extraction (IE) – the task of inferring facts from text
documents – is a promising application for first-order
probabilistic models that allow unknown objects. In
this section, we give a Blog model for the citation
matching domain discussed in (Pasula et al., 2003;
Marthi et al., 2003), and highlight some attractive fea-
tures of Blog models for IE.

6.1. BLOG Model for Citation Matching

In the citation matching task, we are given some cita-
tions taken from the “works cited” lists of publications
in a certain field. We wish to recover the true sets of
researchers and publications in this field. For each
publication, we want to infer the true title and author
list; for each researcher, we want to infer a full name.

We use the following generative model for this domain.
First, some number of researchers are generated, and
a name is chosen for each one. Then a number of
publications are generated, depending on the number
of researchers (we do not assume the publications are
generated by individual researchers). For each pub-
lication, we choose a number of authors, then choose
the specific authors by sampling uniformly without re-
placement from the set of researchers. The title of the
publication is chosen independently.

We choose not to model how the given list of citations
is generated; instead, we just treat the citations as
guaranteed objects. For each citation, the publication
cited is chosen uniformly at random from the set of
publications. The author names and title that appear
in the citation are sampled according to some string
corruption models (we assume the citation does not
drop, add, or reorder authors). Finally, we construct
the whole citation string, given the corrupted names
and title.

A Blog model for this domain is shown in Fig. 2.
This model illustrates how Blog allows us to de-
fine sets of objects that are passed as arguments to



#{Researcher r}:
∼ NumResearchersDistrib()

Name(r):
∼ NamePrior()

#{Publication p}:
∼ NumPubsDistrib({Researcher r})

NumAuthors(p):
∼ NumAuthorsDistrib()

Author(p, i):
if Less(i, NumAuthors(p))

then ∼ SampleUnused({Reseacher r},
{Author(p, j) : Less(j, i)})

Title(p):
∼ TitlePrior()

PubCited(c):
∼ UniformChoice({Publication p})

NameAsCited(c, i):
if Less(i, NumAuthors(PubCited(c)))

then ∼ NameObs(Name(Author(PubCited(c), i)))
TitleAsCited(c):

∼ TitleObs(Title(PubCited(c)))
CitString(c):

∼ CitDistrib({i, NameAsCited(c, i) :
Less(i, NumAuthors(PubCited(c)))},

TitleAsCited(c))

Figure 2. Blog model for citation matching.

a CPD, such as {Author(p, j) : Less(j, i)}. We can
even pass sets of pairs, such as {i, NameAsCited(c, i) :
Less(i, NumAuthors(PubCited(c)))}. An interesting issue
is how to represent arbitrary-length sequences, such as
a publication’s author list. The model in Fig. 2 illus-
trates one representation, where we have an infinite
sequence of variables Author(p, i) for each publication
p, but Author(p, i) = null for i ≥ NumAuthors(p).

6.2. Attractive features of BLOG models

We will now discuss several attractive properties that
follow naturally from the Blog modeling approach,
but are lacking in many other approaches to IE.

6.2.1. Reasoning about objects not

mentioned in the text

In (Marthi et al., 2003), we discussed how a citation
matching system should handle a query such as, “Did
Mike Jordan have a paper in UAI ’97?” if it has not
seen any citations to such a paper. We considered
a system that may have access to documents, such
as Mike Jordan’s home page, which it can identify as
exhaustive lists of the papers with a certain property.
If the system has seen Mike Jordan’s home page and
noted that it does not contain a UAI ’97 paper, then
the probability that such a paper exists is very low.
On the other hand, if it has not seen any exhaustive

lists, it should return a higher probability.

We are not aware of any existing IE systems that sup-
port reasoning about unmentioned objects. However,
the ability to do such reasoning arises almost unavoid-
ably in Blog models. Even in the simple model of
Fig. 2, which does not include any notion of an ex-
haustive list, our possible worlds can include uncited
publications. Since we assume that the target of each
citation is chosen uniformly at random, we can make
inferences about the number of uncited publications:
for instance, if every cited publication has been cited at
least 10 times, then the probability that there is also
an uncited publication out there is low. Of course,
reasoning about unmentioned object may entail extra
complexity in inference. The point is that in a Blog

model, a query about unmentioned objects has well-
defined semantics.

6.2.2. Representing attributes once per

object

A Blog model like the one in Fig. 2 distinguishes
an object’s true attributes (e.g., Title(p)) from the
attributes associated with individual mentions (e.g.,
TitleAsCited(c)). This means that we can reconstruct
an object’s true attributes using clues from many sep-
arate mentions. There is also a more subtle advan-
tage: when we compute the probability of a possible
world, probabilities for object attributes are multiplied
in only once per object, not once per mention.

This point is worth noting because defining object
attributes on a per-mention basis might seem like a
good way to avoid reasoning about unknown objects.
Indeed, that is the approach taken in (McCallum &
Wellner, 2003), which defines three unified probabilis-
tic models for IE. Model 1 uses the same variables that
we would use in a Blog model: a set of attribute vari-
ables for each object, plus a variable for each mention
that specifies the object it refers to. Model 2, on the
other hand, avoids any explicit representation of ob-
jects, and associates a set of object attribute variables
with each mention. The object attribute variables for
co-referring mentions are constrained to be equal.

To see how this simplifying step can be harmful, con-
sider the task of inferring attributes for people men-
tioned in documents. For example, suppose we have a
document where the first name “Dana” occurs many
times, and the probability that all these occurrences
of “Dana” refer to the same person is close to 1. Now
suppose we want to infer Dana’s sex. According to
U.S. Census data, the probability that a person named
“Dana” is female is around 0.75. So Model 2 would in-
clude a potential giving weight 0.75 to Sex(x) = female



and weight 0.25 to Sex(x) = male when FirstName(x) =
”Dana”. But this potential would be multiplied into
the joint probability once per mention. So with n men-
tions, the posterior probability that the occurrences
of “Dana” refer to a female would be approximately
(0.75)n/((0.75)n + (0.25)n), which approaches 1 as n
increases. In a document with a large number of men-
tions, this duplication of potentials might outweigh
contextual clues about Dana’s sex (such as pronouns),
leading to incorrect results.

6.2.3. Reasoning about coreference: Beyond

pairwise compatibilities

In the Blog model of Fig. 2, we can ask for the poste-
rior probability that three citations are coreferent —
that is, they have the same PubCited value. This proba-
bility depends on the chance that a single publication,
with some attributes, would yield the three observed
citation strings. Most existing methods for corefer-
ence resolution do not attempt to approximate this
probability. Instead, they use pairwise compatibility
scores representing the probability that two mentions
corefer. This simplification is made, for instance, in
the transition from Model 2 to Model 3 in (McCallum
& Wellner, 2003). Model 3 does not include any at-
tribute variables; it just includes a Boolean coreference
variable for each pair of mentions (with constraints to
enforce transitivity of the coreference relation).

This simplification can lead to incorrect coreference
resolution, even if we are not interested in the at-
tribute values for their own sake. For example, sup-
pose we are given a news article with mentions of
“Stuart”, “Jones”, and “Alice”, and some grammat-
ical cues suggest these mentions are all coreferent. If
we only look at pairwise compatibilities, we will not
realize that this three-way coreference is very unlikely
(even if we enforce transitivity). There could easily
be a person named “Stuart Jones”, “Alice Jones”, or
“Alice Stuart”. But it is very unlikely that a person
would be referred to sometimes as “Stuart”, sometimes
as “Jones”, and sometimes as “Alice”, all in the same
news article. This problem arises because there is am-
biguity about which attribute of a person (first or last
name) is being specified by the mention “Stuart”.

7. Future Work

The obvious question at this point is how to do infer-
ence (and parameter estimation, which requires infer-
ence if our data are only partially observed) in Blog

models. There are really two questions here. The first
is under what conditions the inference problem is even
decidable, given that a Blog model may permit an

unbounded number of objects. We hope to define a
Markov chain Monte Carlo (MCMC) algorithm that
is guaranteed to converge to the correct probability
for a Blog query under certain broad conditions.

The other question is: when can we do approximate
inference efficiently in practice? It is worth noting
that approximate inference is NP-hard even for stan-
dard Bayesian networks (Dagum & Luby, 1993), but
this has not prevented Bayesian networks from being a
popular representational formalism. Researchers have
developed a toolbox of approximate inference algo-
rithms that are accurate and efficient on some practical
problems. We plan to build upon this work to develop
approximate inference algorithms for Blog models.

With this goal in mind, there are two major ap-
proaches to explore. The first is to place some up-
per bound on the number of potential objects that
exist, so we can represent the distribution over pos-
sible worlds with a large but finite Bayesian network.
For some queries, we may not even need to impose an
upper bound, because only a finite number of objects
may be relevant. We can then apply an approximate
inference algorithm such as loopy belief propagation
(Murphy et al., 1999).

The other approach is to use a stochastic sampling
technique such as MCMC, where we allow different
states of our Markov chain to include different numbers
of objects. MCMC algorithms of this type have been
implemented for Bayesian mixture modeling (Neal,
2000) and for the citation matching task described in
Sec. 6.1 (Pasula et al., 2003). However, we would like a
general algorithm that applies to any probability dis-
tribution defined as a Blog model. In some of the
MCMC algorithms mentioned above, the states of the
Markov chain are not fully specified possible worlds,
but rather partial descriptions that leave out (for ex-
ample) the uncited publications. We believe that such
query-specific simplifications of the MCMC state space
can be applied to Blog models in general, and may
lay the foundation for practical approximate inference.

We are also interested in extending Blog to repre-
sent undirected and conditional models, such as those
used in (McCallum & Wellner, 2003). The Blog mod-
els we have described in this paper can be thought of
as extending probabilistic relational models (Friedman
et al., 1999) to handle unknown objects; we should
also be able to extend their undirected analogues, re-
lational Markov networks (Taskar et al., 2002). The
main technical problem is ensuring that the normal-
ization constant in an undirected model remains finite,
even when we have an unbounded number of objects
and hence an infinite set of possible outcomes.



Acknowledgments

This work was supported by ONR MURI N00014-00-
1-0637 and the DARPA CALO program. The authors
are also supported by an NSF Graduate Research Fel-
lowship (Milch), and an NSERC PGS-B fellowship
(Marthi). We thank Mark Paskin for useful discus-
sions.

References

Dagum, P., & Luby, M. (1993). Approximating proba-
bilistic inference in Bayesian belief networks is NP-
hard. Artificial Intelligence, 60, 141–153.

Enderton, H. B. (2001). A mathematical introduction

to logic. Academic Press. 2nd edition.

Friedman, N., Getoor, L., Koller, D., & Pfeffer, A.
(1999). Learning probabilistic relational models.
Proc. 16th IJCAI (pp. 1300–1307).

Getoor, L., Friedman, N., Koller, D., & Taskar, B.
(2002). Learning probabilistic models of link struc-
ture. JMLR, 3, 679–707.

Kersting, K., & De Raedt, L. (2001). Adaptive
Bayesian logic programs. Proc. 11th Int’l Conf. on

ILP.

Koller, D., & Pfeffer, A. (1998). Probabilistic frame-
based systems. Proc. 15th AAAI (pp. 580–587).

Marthi, B., Milch, B., & Russell, S. (2003). First-order
probabilistic models for information extraction. IJ-

CAI Wksp on Learning Statistical Models from Re-

lational Data.

McCallum, A., & Wellner, B. (2003). Toward condi-
tional models of identity uncertainty with applica-
tion to proper noun coreference. IJCAI Wksp on

Information Integration on the Web.

Milch, B., Marthi, B., & Russell, S. (2004). First-order
probabilistic models with unknown objects. Unpub-
lished manuscript.

Murphy, K. P., Weiss, Y., & Jordan, M. I. (1999).
Loopy belief propagation for approximate inference:
An empirical study. Proc. 15th UAI (pp. 467–475).

Neal, R. M. (2000). Markov chain sampling methods
for Dirichlet process mixture models. J. Computa-

tional and Graphical Statistics, 9, 249–265.

Pasula, H., Marthi, B., Milch, B., Russell, S., & Sh-
pitser, I. (2003). Identity uncertainty and citation
matching. In NIPS 15.

Sato, T., & Kameya, Y. (2001). Parameter learning
of logic programs for symbolic-statistical modeling.
JAIR, 15, 391–454.

Taskar, B., Abbeel, P., & Koller, D. (2002). Dis-
criminative probabilistic models for relational data.
Proc. 18th UAI (pp. 485–492).


