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Markov Chain Monte Carlo Data Association

for Multiple-Target Tracking

Songhwai Oh, Stuart Russell, and Shankar Sastry

Abstract

This paper presents Markov chain Monte Carlo data association (MCMCDA) for solving data
association problems arising in multiple-target tracking in a cluttered environment. When the number of
targets is fixed, the single-scan version of MCMCDA approximates joint probabilistic data association
(JPDA). Although the exact computation of association probabilities in JPDA is NP-hard, we prove that
the single-scan MCMCDA algorithm provides a fully polynomial randomized approximation scheme for
JPDA. For general multiple-target tracking problems, in which unknown numbers of targets appear and
disappear at random times, we present a multi-scan MCMCDA algorithm that approximates the optimal
Bayesian filter. It exhibits remarkable performance compared to multiple hypothesis tracking (MHT)
under extreme conditions, such as a large number of targets in a dense environment, low detection

probabilities, and high false alarm rates.

I. INTRODUCTION

Multiple-target tracking plays an important role in many areas of engineering such as surveil-
lance, computer vision, and signal processing [1]-[3]. Under the general setup, some indistin-
guishable targets move continuously in a given region, typically independently according to a
known, Markovian process. Targets arise at random in space and time, persist for a random length
of time, and then cease to exist; the sequence of states that a target follows during its lifetime
is called atrack. The positions of moving targets are measured, either at random intervals or,

more typically, in periodicscansthat measure the positions of all targets simultaneously. The
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position measurements are noisy and occur with detection probability less than one, and there
is a noise background of spurious position repdrts, false alarms.

The essence of the multiple-target tracking problem is to find tracks from the noisy measure-
ments. Now, if the sequence of measurements associated with each target is known, multiple-
target tracking (at least under the assumption of independent motion) reduces to a set of state
estimation problems, which, for the purposes of this paper, we assume to be straightforward. Un-
fortunately, the association between measurements and targets is unknovadatd lassociation
problem is to work out which measurements were generated by which targets; more precisely,
we require a partition of measurements such that each element of a partition is a collection of
measurements generated by a single target or clutter [4]. In the general case, uncertainty as to
the correct association is unavoidable.

Multiple-target tracking algorithms are often categorized according to the objective function
that they purport to optimize:

« Heuristic approaches typically involve no explicit objective function. For example, the
greedy nearest-neighbor filter (NNF) [1] processes the new measurements in some order
and associates each with the target whose predicted position is closest, thereby selecting
a single association after each scan. Although effective under benign conditions, the NNF
gives order-dependent results and breaks down under more difficult circumstances.

« Maximum a posterioriMAP) approaches find the most probable association, given the
measurements made so far, and estimate tracks given this association.

. TheBayesiarmapproach generates optimal filtering predictions by summing over all possible
associations, weighted by their probabilities. Under certain distributional assumpeigns (
linear-Gaussian models), the optimal Bayesian filter can be shown to minimize the mean
squared error in the track estimates. For this reason, approaches that sum over multiple
associations are sometimes callethimum mean square errdqMMSE) approaches.

Tracking algorithms can also be categorized by the way in which they process measurements:

« Single-scanalgorithms estimate the current states of targets based on their previously
computed tracks and the current scan of measurements.

« Multi-scan algorithms may revisit past scans when processing each new scan, and can

thereby revise previous association decisions in the light of new evidence.
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MAP approaches include the well-knownultiple hypothesis trackingMHT) algorithm [5].

MHT is a multi-scan tracking algorithm that maintains multiple hypotheses associating past
measurements with targets. When a new set of measurements arrives, a new set of hypotheses
is formed from each previous hypothesis. The algorithm returns a hypothesis with the highest
posterior as a solution. MHT is categorized as a “deferred logic” method [6] in which the decision
about forming a new track or removing an existing track is delayed until enough measurements
are collected. MHT is capable of initiating and terminating a varying number of tracks and is
suitable for autonomous surveillance applications. The main disadvantage of MHT in its pure
form is its computational complexity since the number of hypotheses grows exponentially over
time. Various heuristic methods have been developed to control this growth [5], [7], [8]; but these
methods are applied at the expense of sacrificing the MAP property. Other MAP approaches have
been tried besides MHT, including 0-1 integer programming [9] and multidimensional assignment
[6]. As the latter reference shows, the underlying MAP data association problem is NP-hard, so
we do not expect to find efficient, exact algorithms.

Exact Bayesian data association is even less tractable than the MAP computation. Several
“pseudo-Bayesian” methods have been proposed, of which the best-known j@ntherob-
abilistic data association(JPDA) filter [1]. JPDA is a suboptimal single-scan approximation
to the optimal Bayesian filter; it can also be viewed as an assumed-density filter in which
the joint state estimate is always a single set of tracks for a “known” set of targets. At each
time step, instead of finding a single best association between measurements and tracks, JPDA
enumerates all possible associations and computes association probalilitiesvhere 3y, is
the probability thatj-th measurement extends thah track. Given an association, the state of a
target is estimated by a filtering algorithm and this conditional state estimate is weighted by the
association probability. Then the state of a target is estimated by summing over the weighted
conditional estimates. JPDA has proved very effective in cluttered environments compared with
NNF [1]. The exact calculation of association probabilitigs, } in JPDA, which requires the
summation over all association event probabilities, is NP-hard [10] since the related problem of
finding the permanent of a matrix is #P-complete [11]. Some heuristic approaches to approximate
JPDA include a “cheap” JPDA algorithm [12], “suboptimal” JPDA [13] and “near-optimal” JPDA
[14]. In [15], a single-scan data association problem is considered and a leave-one-out heuristic

is developed to avoid the enumeration of all possible associations.
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The main contribution of this paper is the development of a real-time multiple-target tracking
method called Markov chain Monte Carlo data association (MCMCDA). Unlike MHT and JPDA,
MCMCDA is a true approximation scheme for the optimal Bayesian filter, when run with
unlimited resources, it converges to the Bayesian solution. As the name suggests, MCMCDA uses
Markov chain Monte Carlo (MCMC) sampling instead of summing over all possible associations.
MCMC was first used to solve data association problems by Pasala[16], [17], who showed
it to be effective for multi-camera traffic surveillance problems involving hundreds of vehicles.
More recently, in [18], MCMC was used to approximate the association probabilities in JPDA and
was shown to outperform Fitzgerald’s cheap JPDMCMCDA goes beyond these contributions
by incorporating missing measurements, false alarms and an ability to initiate and terminate
tracks, so that the algorithm can be applied to the full range of data association problems.

The paper has two main technical results. The first is a theorem showing that, when the number
of targets is fixed, single-scan MCMCDA is a fully polynomial randomized approximation
scheme for JPDA. More specifically, for aay- 0 and any0 < n < .5, the algorithm finds “good
estimates” with probability at least-r in time complexityO (e 2 log n~! N (N log N+log(e71))),
where N is the number of measurements per scan. (The precise meaning of good estimates is
defined in Section IV-C.) The theorem is based on the seminal work of Jerrum and Sinclair [20],
who designed an MCMC algorithm for approximating the permanent of a matrix and developed
new techniques for analyzing its rate of convergence. As mentioned above, the relationship
between JPDA and computing the permanent was identified by Collins and Uhlmann [10]; the
connection to the polynomial-time approximation theorems of Jerrum and Sinclair was first
suggested by Pasukt al. [16]. Although our proof has the same structure as that of Jerrum
and Sinclair, substantial technical work was required to complete the mapping from computing
the permanent to solving JPDA, including the usage of gating conditions that ensure appropriate
lower bounds on individual association probabilities.

Our second technical result is the complete specification of the transition structure for a
multi-scan version of MCMCDA that includes detection failure, false alarms, and track initiation

and termination. We prove that the resulting algorithm converges to the full Bayesian solution.

IMCMC has also been used for problems that are roughly isomorphic to the data association problem, including state estimation

in the switching Kalman filter [19] and stereo correspondence in computer vision [3].
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We also provide the first extensive experimental investigation of MCMCDA's performance on
classical data association problems. We demonstrate remarkably effective real-time performance
compared to MHT under extreme conditions, such as a large number of targets in a dense
environment, low detection probabilities, and high false alarm rates. We also show the application
of MCMCDA to track people in video sequences.

The remainder of this paper is structured as follows. The multiple-target tracking problem
and its probabilistic model are described in Section Il. In Section Ill, the Markov chain Monte
Carlo (MCMC) method is summarized. The single-scan MCMCDA algorithm is presented in
Section IV along with the proof that it approximates JPDA in polynomial time. The multi-scan

MCMCDA algorithm is described in Section V along with our experimental results.

[I. MULTIPLE-TARGET TRACKING
A. Problem Formulation

Let T € Z* be the duration of surveillance. Léf be the number of objects that appear in
the surveillance regiofR during the surveillance period. Each objécmoves inR for some
duration|[t, t¥] C [1, T]. Notice that the exact values &f and{¢F, ¢f} are unknown. Each object
arises at a random position i at t¥, moves independently arourid until t# and disappears.
At each time, an existing target persists with probabilityp, and disppears with probability,.
The number of objects arising at each time ofhas a Poisson distribution with a parameter
AoV where )y is the birth rate of new objects per unit time, per unit volume, &nhds the
volume of R. The initial position of a new object is uniformly distributed ovr

Let F* : R" — R"™ be the discrete-time dynamics of the objéctvheren, is the dimension
of the state variable, and lef € R"= be the state of the objeétat timet. The objectk moves
according to

af = FF(af) + ), fort =t ... tF —1, (1)

wherew! € R" are white noise processes. The white noise process is included to model non-
rectilinear motions of targets. The noisy observation (or measuréjradithe state of the object
is measured with a detection probability. Notice that, with probabilityl — pq, the object is not

detected and we call this a missing observation. There are also false alarms and the number of

Note that the termsbservationand measuremenare used interchangeably in this paper.
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false alarms has a Poisson distribution with a paramegtérwhere ); is the false alarm rate per

unit time, per unit volume. Let; be the number of observations at timencluding both noisy
observations and false alarms. Lgte R™ be thej-th observation at time for j = 1,...,n,,
wheren, is the dimension of each observation vector. Each object generates a unique observation
at each sampling time if it is detected. L&t : R"» — R" be the observation model. Then the

observations are generated as follows:

H(2¥) +v] if j-th observation is from:} @
y =
' Uy otherwise,

wherev/ € R™ are white noise processes and~ Unif(R) is a random process for false alarms.

We assume that targets are indistinguishable in this paper, but if observations include target type
or attribute information, the state variable can be extended to include target type information.
The multiple-target tracking problem is to estimate {¢",¢F} and {zF : t& <t < t}}, for

k=1,..., K, from observations.

B. Solutions to the Multiple-Target Tracking Problem

LetY, = {y/ : j = 1,...,n,} be all measurements at timeandY = {Y; : 1 <t < T} be
all measurements fromm=1tot = T. Let 2 be a collection of partitions oY such that, for
w € Q,

1) w=A{r,71, .-, Tk };

2) Uy =Y andr, N7 =0 for i # j;

3) 79 is a set of false alarms;

4) |enY <1lfork=1,...,Kandt=1,...,T; and

5) || >2fork=1,..., K.
An example of a partition is shown in Figure 1 ands also known as @int association event
in literature. Here,K is the number of tracks for the given partitione €2 and |7;| denotes
the cardinality of the set,. We call r;, a track when there is no confusion although the actual
track is the set of estimated states from the observatipngiowever, we assume there is a
deterministic function that returns a set of estimated states given a set of observations, so no
distinction is required. The fourth requirement says that a track can have at most one observation

at each time, but, in the case of multiple sensors with overlapping sensing regions, we can easily
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Fig. 1. (a) An example of observations (each circle represents an observation and numbers represent observation times). (b)

An example of a partitiorw of Y

relax this requirement to allow multiple observations per track. A track is assumed to contain
at least two observations since we cannot distinguish a track with a single observation from a
false alarm, assuming; > 0. For special cases, in whigly = 1 or X = 0, the definition of(

can be adjusted accordingly.

Let e;,_; be the number of targets from tinie- 1, z; be the number of targets terminated at
time ¢t andc¢;, = e;_1 — z; be the number of targets from tinte- 1 that have not terminated at
timet. Leta;, be the number of new targets at timel; be the number of actual target detections
at timet and g; = ¢; + a; — d; be the number of undetected targets. Finally,flet n, — d; be

the number of false alarms. It can be shown that the posteriar ief
P(w]Y) oc P(Y[w) TT,Zy 93 (1 = ) pd (1 = pa)* Ag AT (3)

where P(Y|w) is the likelihood of observation¥™ given w, which can be computed based on
the chosen dynamic and measurement models.

As described in the introduction, two approaches to solve the multiple-target tracking problem
are maximum a posterior(MAP) and Bayesian (ominimum mean square errofiMMSE))
approaches. The MAP approach finds a partition of observations sucR(tbgt) is maximized
and estimates states of targets based on the partition which maxi®ize%’). The MMSE
approach seeks the conditional expectations sudi(@4Y’) to minimize the expected (square)
error. However, when the number of targets is not fixed, a unique labeling of each target is
required to findE(z¥|Y") under the MMSE approach.

[1l. M ARKOV CHAIN MONTE CARLO

Markov chain Monte Carlo (MCMC) plays a significant role in many fields such as physics,

statistics, economics, and engineering [21]. In some cases, MCMC is the only known general
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algorithm that finds a good approximate solution to a complex problem in polynomial time [20].
MCMC techniques have been applied to complex probability distribution integration problems,
counting problems, and combinatorial optimization problems [20], [21].

MCMC is a general method to generate samples from a distributimn a space? by
constructing a Markov chaitM with statesw € 2 and stationary distribution(w). We now
describe an MCMC algorithm known as the Metropolis-Hastings algorithm. If we are at state
w € Q, we proposes’ €  following the proposal distribution(w,w’). The move is accepted
with an acceptance probability(w, w’) where

A(w,w") = min (1, %) , 4)
otherwise the sampler stays.atWith this construction, the detailed balance condition is satisfied,

i.e, for all w,w" € Q with W' # w,
Qw,w') = m(w)P(w,w') = 7(W)P(w,u), (5)

where P(w,w') = q(w,w')A(w,w’) is the transition probability fromv to '

If M isirreducible and aperiodic, thel converges to its stationary distribution by the ergodic
theorem [22]. Hence, for a given bounded functigrihe sample meafi = %ZL f(wy), where
w; Is the state ofM at time¢, converges tdE, f(w) asT — oo. Notice that (4) requires only
the ability to compute the ratie(w’)/7(w), avoiding the need to normalize

An ergodic chainM on state spac€ converges to its stationary distribution asymptotically.
But a practical question is how fag¥l approaches stationarity. One way to measure the rate
of convergence ofM to stationarity is the “mixing time” of the Markov chain. Lét be the
transition probabilities of\ and let Pi(-) be the distribution of the state at tinmtegiven that
M is started from the initial state € Q. If 7 is the stationary distribution af, then thetotal
variation distanceat timet with initial statew is defined as

Au(t) = (1P, = mll = max [ P(S) — m(5)] = %Z 1Po(y) — = (y)]. (6)

yeN

The rate of convergence o¥1 to stationarity can be measured by timéing time
T,(6) = min{t : A,(s) <eforall s >t}. (7)

One approach to bound,(¢) of a Markov chain with a complex structure is the canonical

path method [20]. In this paper, we consider a highly complex Markov chain, hence we use
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the canonical path method to bound(¢) of the Markov chain simulated by the MCMCDA
algorithm given in Section IV. For the remainder of this section, we describe the canonical path
method.

For a finite, reversible and ergodic Markov chait with state spac€, consider an undirected
graphG = (V, E) whereV = Q and E = {(z,y) : Q(x,y) > 0} (recall the definition of))(-, -)
from (5)). So an edgér, y) € E indicates that the Markov chaifv! can make a transition from
z to y or fromy to z in a single step. For each ordered pairy) € Q?, the canonical path,,
is a simple path fromx to y in G. In terms of M, the canonical path,, is a sequence of legal
transitions fromz to y in M. LetI' = {v,, : z,y € Q} be the set of all canonical paths. Now

the mixing time of the chain is related to tineaximum edge loading

= () = max 5 3 #(e)w() ®

If pis not so big,i.e,, no single edge is overloaded, then the Markov chain can move around

eyl

fast and achieve the rapidly mixing property. The main result for the canonical path method is
as follows [20], [23]:

Theorem 1:Let M be a finite, reversible, ergodic Markov chain with loop probabilities
P(z,z) > % for all statesz. Let I be a set of canonical paths with maximum edge loaging
Then the mixing time ofM satisfiesr,(¢) < p(logn(z)~* + loge™'), for any choice of initial

Statex.

IV. SINGLE-ScaN MCMCDA

In this section, we consider a special case of the multiple-target tracking problem described
in Section II, in which the number of targets is fixed and known, and propose the single-scan
MCMCDA. Then, we prove that the single-scan MCMCDA algorithm finds an approximate

solution to JPDA in polynomial time.

A. Single-Scan MCMCDA Filter

The single-scan MCMCDA filter is based on the same filtering method used in the JPDA filter
[1]. JPDA has been traditionally used with the Kalman filter, assuming linear-Gaussian models,
i.e, linear dynamic and measurement models and white Gaussian noise processes [1]. However,

JPDA has also been applied with a nonlinear filtering algorithm such as a particle filter [24]. We
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present the single-scan MCMCDA filter under the general dynamics and measurement models
defined in Section II. The description of the single-scan MCMCDA filter for linear-Gaussian
models is given in [25].
Suppose that we have the distributi@rﬁXﬁ_Jyl:t_l) from the previous filtering time — 1,
for each target:, where P(X|y) is an approximation of the distributio®(X|y) and y,, =
{y1,...,y:}. Notice that we can only approximai& X |y..,_1) since we process each measure-
ment scan sequentially; this is why the JPDA filter is a suboptimal approximation to the optimal
Bayesian filter. We follow the notations defined in Section Il, except that random variables are
denoted by capital letters. Notice that, for linear-Gaussian models such as those used in [1], [25],
P(X¥ | |y14—1) is a Gaussian distribution and completely described by its mean and variance.
Step 1 (Prediction)For eachk, compute the distribution

p(th|y1:tfl) = /P(th’xf—laylztl)p<xf—1’yl:t1)d$f_1

= [ POt )P ek ©

where the Markovian assumption is used in the second equality’aid|«F ) is determined
by the noise process? in (1).
Step 2 (Measurement Validatiorfjor eachk and j, compute the distribution

pk(yvtj’ylztfl) = /P<Y;5j’$fay1:t1)p(x?|y1:t1>dxf

- / POY7 1) P(ablyrer)dat, (10)

where the second equality uses the fact the current observation is independent of previous
observations given the current state aR@Y;|z*) is determined by the noise process in

(2). Notice thatP’“(y{]ylzt,l) is the probability density of having observati@h given yi.;_1,

wheny/ is an observation of targét. Again, for linear-Gaussian model®)(Y/ |y1.,_,) is a
Gaussian distribution and completely determined by its mean and variance. As in JPDA, we
validate measurements and use only validated measurements when estimating states of targets.

The measuremeny is validated for target:, if and only if
Pyl lyre—1) = 0%, (11)

whered* are appropriate thresholds. We assume that all measurements are validated with at least

one target. If not, we can always consider the reduced problem, which consists of only validated
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measurements and targets with at least one validated measurement, and separately estimate states
of targets with no validated measurement.
Step 3 (State Estimatianlet 2 be a set of all feasible joint association events at timieor
notational convenience, the subscrigs dropped when there is no confusion. For each (2,
w = {(j,k)}, where (j, k) denotes an event that observatipris associated with target. A
joint association event is feasible when (i) for eachy, k) € w, y{ is validated for target;
(i) an observation is associated with at most one target; and (iii) a target is associated with at
most one observation.
Let V be the number of validated observations. We encode the feasible joint association events
in a bipartite graph. Le€ = (U,V, E) be a bipartite graph, wheteé = {1/ : 1 < j < N} is a
vertex set of validated observatioris,= {k : 1 < k < K} is a vertex set of target indices, and
E = {(u,v) :ueUveV,P"(ulyis_1) > 6"}. An edge(u,v) € E indicates that observatian
is validated for target according to (11). Then a feasible joint association eventrigatching
in G, i.e, a subset\/ C E such that no two edges il share a vertex. The set of all feasible
joint association event® can be represented &C My(G) U --- U Mk (G), where My (G) is
a set of k-matchings .
Finally, using the total probability theorem, compute the distribution
X Y1) ZP (XFlw, yr) w‘ylt Zﬁgkp (Xf |wWjks Y1:t), (12)
we J=0
wherew,;, denotes the everftv > (j, k)}, wo, denotes the event that no observation is associated
with targetk, and 3;; is an association probability, such that,
Bir = Plwinlyr) = > Plwlyra)- (13)
w:(j k) Ew
P(Xf]wjk,yl;t) in (12) can be easily computed by considering it as a single target estima-
tion problem with a single observation. Hence, the computatio®©@f*|y;.,) reduces to the
computation of3;,. The computation of3;; requires a summation over the posteriors, hence
the enumeration of all joint association events. In JPBAXF|y,;) is estimated in the same
manner as (12) and JPDA is a method for estimating expectations sthXasy,.;) using the
association probabilitie§s;;} in the presence of the identity uncertainty. As mentioned earlier,
the exact calculation of3,.} in JPDA is NP-hard [10] and it is the major drawback of JPDA.
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In the next sections, we describe an algorithm which approximates the association probabilities

{B;x} and prove that the running time of the algorithm is polynomial in the size of the problem.

B. Single-Scan MCMCDA Algorithm

The single-scan MCMCDA algorithm is used to approximgte, } in the single-scan MCM-
CDA filter described in the previous section. Based on the parametric false alarm model described

in Section 1I-A, the posterior ob € ) can be written as

1 1
P(W|?/1:t) = ZP(WWI:tfl)P(yt’W;ylzt—l) = EP(W)P(%Wnytfl)
1 ~
~ E‘P(W>P(yt’way1:t—l)
1 —|w|, |w —|w Hv >
= N = p) T P lyie) = Plelyn), (14)

(u,v)€w
where Z, and Z are normalizing constants, the Bayes rule is used in the first equality, and the
second equality uses that fact thais independent ofj;.;_;.

The MCMC data association (MCMCDA) algorithm is an MCMC algorithm whose state
space is the set of all feasible joint association evéhtsnd whose stationary distribution is
the posteriorP(w|y.;) (14). Each step of the MCMCDA algorithm is described in Algorithm 1
along with three MCMC moves (addition, deletion and switch moves), where we use the sampling
method from [20]. In Algorithm 1, since we have a uniform proposal distributidfy, w') =

min (1, ’;%:;;), wherer(w) = P(wl|y1,) from (14).

C. Analysis

Let M be the Markov chain simulated by Algorithm 1. Since the self-loop probability is
nonzero,M is aperiodic. It can be easily seen thiet is irreducible,i.e., all states communicate,
for example via the empty matching. In addition, the transitions described in Algorithm 1 satisfy
the detailed balance condition (5) gd is reversible. Hence, by the ergodic theorem, the chain
converges to its stationary distribution [22].

Let us first take a look at the complexity of the problem. As noted earlier, the state space of
the Markov chainM is Q C My(G) U --- U Mk (G). For eachk, [My(G)| < () g With
equality if the subgraph aofr with the £ chosen vertices ifv’ is a complete bipartite graphe.,
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Algorithm 1 MCMCDA (single step)
sampleU from Unif|0, 1]

if U< 1then
w=w
else

choosee = (u,v) € E uniformly at random
if e € w then
Ww=w-—e (deletion move)
else ifboth v andv are unmatched i then
w=w+te (addition move)
else if exactly one ofu andv is matched inv ande’ is the matching edggen
W =w+e—¢€ (switch move)
else
W =w
end if
end if
w = w’" with probability A(w, w")

all observations are validated for &llchosen targets. Hence, we can bound the size a6

] < [Mo(@) + -+ + Mk (@) £ (f,f)wL_'W (15)

Certainly, the size of the state space grows exponentially as the number of targets or the number
of observations increases, hence the exact calculation of JPDA by enumeration is not feasible
when the number of targets or the number of observations is large.

In (14), the normalizing constant becomes

7 = Z N \w\ |w\ pd)K—\w\ H pv(u|y1;t_1) . (16)

weN (u,v)Ew
We assume that each likelihood term can be bounded. as Pv(u]ylzt_l) < L, for all

(u,v) € E, whereL = mind* and L can be precomputed based #¥i(u|y;,_;). Here, we
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are making a reasonable assumption tﬁ‘a([u|y1:t_1) < L < oo for all (u,v) € E, e.g.linear-
Gaussian models [25]. Notice that the lower bounds due to the measurement validation. In
JPDA, the measurement validation is used to reduce the number of feasible joint association
events. However, we later find that it is required to approximate the association probabilities in
polynomial time.

For Theorem 2 below, lef' = 24X D — %pod) and R = max{1,C, D}. Also define

Ar(1=pg)’
my = max{1, L}, my = min{1, L},

my(K,N) = max {7 pg(1—pa)™ ™},
ma(K,N) = min A pg(1—pg)* ), and

m(K, N) K+1
ms(K,N) = Klog—+lgw+210gk+2bgn.

Remark 1:1f .5 < pg < 1 and s < 1 — pg, thenmg(K N) = N Epl andmy (K, N) =
M (1= pa). Soms(K,N)/my(K,N) = (ﬁ) and K is the only remaining exponent.

Notice that the omitted proofs appear in Appendix.

Theorem 2:Suppose thad; > 0 and0 < pg < 1. Then the mixing time of the Markov chain
M is bounded byr, (¢) < 4R K?N(ms(K, N) +loge™ ) for all x € €.

Remark 2:Let 7(¢) be the upper bound found in Theorem7Ze) is polynomial in K and
N. If ms(K,N)/my4(K,N) does not grow faste.g, Remark 1,7(¢) = O(K?N(K log K +
Nlog N +loge™)). If K is fixed, 7(¢) = O(N(Nlog N + loge™1)).

Let p(w) be the distribution of the states @#t after simulating Algorithm 1 for at least(¢)
steps. Then the total variation distance satisfies- 7|| < e. So we can sample from to
estimate{3;; }. However, there is a small bias in our estimates since we are not sampling from
7. The following theorem gives an upper bound on the number of samples needed for finding
good estimates.

Theorem 3:Let 0 < €1,e5 < 1 and0 < n < .5. Suppose thalp — || < € for € < €1¢,/8.
Then, with a total of04¢; %¢, ' [log '] samples fronp, we can find estimateéjk for 3;;, with
probability at leastl — 7, such that, for3;, > e, Bjk estimatess;;, within ratio 1 + ¢, i.e,
(1 —€1)Bk < Bjk < (1+ &1)Bjk, and, forfs;;, < e, |ng — Bikl < (1 +€)es.

Remark 3:Following Remark 2, for fixedk, 7(¢) = O(N(Nlog N + loge!)). Combining
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this fact with Theorem 3, the time complexity of the overall procedure is
T = O(e; %, logn ' N(Nlog N + log(e;'e; 1))).

Hence, with a total ofl’ samples, Algorithm 1 finds estimaté% for 3, with probability at
least1 — , such that, forg;, > e, (3, estimatess;, within ratio 1 + ¢;, and, for3;, < e,
|Bjk — Bik] < (14 €1)e2. We can simplify further by letting, = €;,e,. Then the time complexity
is O(e;?logn ' N(Nlog N + log(ey'))).

D. Simulation Results

In this section, we show a simulation confirming our findings from last section. Since our
goal is to estimate the association probabilities, we define the variation distance between two
sets of association probabilitigl, and 3, by As = max,, |8;, — (;x|. Eachg;; is computed
exactly by JPDA and eac/ﬁjk is estimated by MCMCDA. The upper bound on the number of
required samples found in Section IV-C is based on the worst-case analysis and, in practice,
MCMC finds solutions much faster in most cases. We use the most common method to estimate
3, following [26]:

nmc

A 1
Bk = — > (k) € wa),

n=npj
wherenn,. andny,; are the total number of samples and the number of initial burn-in samples,
respectively, andv,, is the n-th sample. A simple case is chosen to demonstrate MCMCDA,
in which two predicted observations are located[@atl]” and [0, —1]7. P*(y!|y1.—1) has a
Gaussian distribution with zero mean and covariaBée= diag(1, 1) for k € {1,2}. There are
15 observations as shown in Figure 2 (left). Other parameters’arep((y! —i*)7 (B*) ! (y] —
§*) = 4) for k € {1,2}, V = 16, ) = .8125, andpg = .98. In Figure 2 (right), the average
variation distance between two sets of association probabilitieand 3;; from 10 independent

runs is shown as a function of number of samples.

V. MuLTI-SCAN MCMCDA

In this section, we present an algorithm for solving the multiple-target tracking problem
described in Section Il. The algorithm is presented in Section V-A and its performance is

compared against MHT in Section V-B.
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Fig. 2. (left) Expected observations (crosses) and observations (dots). (right) Average vakiatama function of the total

number of samples (solid line). The dotted lines show the sample standard deviation from the average.

A. Multi-Scan MCMCDA Algorithm

The multi-scan MCMCDA algorithm is described in Algorithm 2. It is an MCMC algorithm
whose state space(sas defined in Section II-B and whose stationary distribution is the posterior
(3). The proposal distribution for MCMCDA consists of five types of moves (a total of eight
moves). They are (1) birth/death move pair; (2) splitymerge move pair; (3) extension/reduction
move pair; (4) track update move; and (5) track switch move. The MCMCDA moves are
graphically illustrated in Figure 3. We index each move by an integer suchnthat 1 for
a birth move,m = 2 for a death move and so on. The moveis chosen randomly from the
distribution £ (m) where K is the number of tracks of the current partitian When there is
no track, we can only propose a birth move, so we&ét. = 1) = 1 and 0 for all other
moves. When there is only a single target, we cannot propose a merge or track switch move, so
& (m=4) =& (m = 8) = 0. For other values of andm, we assumé(m) > 0. The inputs
for MCMCDA are the set of all observations, the number of samples,, the initial statevi,,
and a bounded functioX : 2 — R"™. At each step of the algorithny is the current state of
the Markov chain. The acceptance probabilitiw, ') is defined in (4) wherer(w) = P(w|Y)
from (3). The outputX approximates the MMSE estima. X and approximates the MAP
estimatearg max P(w|Y’). The computation ofv can be considered as simulated annealing at
a constant temperature. Notice that MCMCDA can provide both MAP and MMSE solutions to
the multiple-target tracking problem.

An MCMC algorithm can be specialized and made more efficient by incorporating the domain
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Algorithm 2 Multi-Scan MCMCDA
Input: Y, nme, winit, X : 2 — R”

Output: @, X

A

W = Winit; W = Winit; X =0
for n =1 to nye do
proposew’ based onw (see sections from V-A.1 to V-A.5)
sampleU from Unif|0, 1]
w=uwif U< A(w,w)
w=wif pw|Y)/p@|Y) >1
X = HLHX + #X(w)
end for

specific knowledge. In multiple-target tracking, we can make two assumptions: (1) the maximum
directional speed of any target iR is less thanv; and (2) the number of consecutive missing
observations of any track is less thdnThe first assumption is reasonable in a surveillance
scenario since, in many cases, the maximum speed of a vehicle is generally known based on
the vehicle type and terrain conditions. The second assumption is a user-defined parameter. Let
pat(s) = 1 — (1 — pq)® be the probability that an object is observed at least once out of
measurement times. Then, for giveg, we setd > log(1 — par)/ log(1 — pq) to detect a track
with probability at leaspy. For example, givempy = .7 and pg = .99, a track is detected with
probability larger than99 for d > 4. We will now assume that these two new conditions are
added to the definition df2 so each element € () satisfies these two additional assumptions.

We use a data structure, a neighborhood tree of observations, which groups temporally sep-
arated observations based on distances, to propose a new pastifirolgorithm 2. A neigh-

borhood tree of observations is defined as

La(yl) = {yFa € Yera Iyl — viall < d -0}

ford=1,...,d,j=1,...,n, andt =1,...,T — 1. Here|| - || is the usual Euclidean distance.
The parameter/ allows missing observations. The use of this neighborhood tree makes the
algorithm more scalable since distant observations will be considered separately and makes the

computations of the proposal distribution easier. It is similar to the clustering technique used in
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Fig. 3. Graphical illustration of MCMCDA moves (associations are indicated by dotted lines and rings are false alarms)

MHT but L, is fixed for a given set of observations.

We now describe each move of the sampler in detail. First{(é} be a distribution of a
random variablel taking values from{1,2,...,d}. We assume the current state of the chain is
w=uw'Uw! € Q, wherew® = {1y} andw' = {7, ...,7x}. The proposed partition is denoted
by o' = Ww? U W € Q. Note the abuse of notation below with indexing of tinhe,, when we
say(t;), t; means the time at which a target corresponding to the traiskobserved times.

1) Birth and Death Moves (Fig. 33 < b): For a birth move, we increase the number of
tracks fromK to K’ = K +1 and select; uniformly at random (u.a.r.) fronil, ..., 7—1} as an
appearance time of a new track. gt be the track of this new object. Then we chodsdrom
the distribution¢. Let L} = {y/, : La, (v}) #0,y], & 7(t1), 5 =1,...,ny, k=1,..., K}. L},
is a set of observations &t such that, for anyy € Lll, y does not belong to other tracks and
y has at least one descendantig (y). We choosery(t;) u.a.r. fromL} . If L} is empty, the
move is rejected since the move is not reversible. Once the initial observation is chosen, we then
choose the subsequent observations for the trackFori = 2,3, ..., we choosel; from ¢ and
chooserg(t;) u.a.r. fromLg, (7x:(ti—1)) \ {7(tic1 +d;) : k = 1,..., K} unless this set is empty.
But, for: = 3,4, ..., the process of adding observationsrg terminates with probabilityy,
where0 < v < 1. If |7x/| < 1, the move is rejected. We then propose this modified partition
wherew = W' U {7rx} andw = {7\ 7% }. For a death move, we simply chookei.a.r. from
{1,..., K} and delete thé-th track and propose a new partition wheré = w' \ {7} and

w’o = {TO U Tk}.
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2) Split and Merge Moves (Fig. 3, < d): For a split move, we select(¢,) u.a.r. from
{me(t;) «|me| > 4,i=2,..., || —2,k=1,..., K}. Then we split the track, into 7,, and s,
such thatry, = {7,(t;) : i =1,...,r} and7,, = {75(t;) : i = r+ 1,...,|7s|}. The modified
track partition becomes’ = (w!' \ {7:}) U {7, } U {7, } andw” = °. For a merge move, we

consider the set

M = {(Tk’l(tf)ka’z(tl)) : Tk2(t1) € Ltl_tf(Tkl(tf))7f = |Tk1| for k1 7é k271 < klka < K}

We select a paif7, (tf), 7s,(t1)) u.a.r. fromM. The tracks are combined into a single track
7, = T, UT,,. Then we propose a new partition whes€ = (w' \ ({r,,} U {7, })) U {7} and
W0 = W0,

3) Extension and Reduction Moves (Fig.e3 f): In a track extension move, we select a
track 7 u.a.r. fromK available tracks iw. We reassign observations fomfter the disappearance
time ¢;| as done in the track birth move. For a track reduction move, we select artrackr.
from K available tracks inv andr u.a.r. from{2,...,|7| — 1}. We shorten the track to
{r(t1),...,7(t,)} by removing the observations assignedrtafter the timet, ;.

4) Track Update Move (Fig. 3; < h): In a track update move, we select a tracl4.a.r. from
K available tracks inv. Then we pickr u.a.r. from{1,2,...,|r|} and reassign observations for
7 after the timet, as done in the track birth move.

5) Track Switch Move (Fig. 3,< j): For a track switch move, we select a pair of observations
(Tk, (tp), Tk, (t,)) from two different tracks such thaty, (t,+1) € La(7,(t,)) and 7, (t,41) €
L (T, (tp)), whered =ty — ty, d =t —t, and0 < d,d’ < d. Then we let

Toy = {7k (81)s - o s Thy () Ty (Eg1), - - - ,Tk2(t|%|)}
The = 1Tk (t1)s -+ o3 Tho (L) Ty (Bpt1) s -+ s Ty (B, ) -
We now show that MCMCDA is an optimal Bayesian filter in the limit. L/et be the Markov
chain specified by Algorithm 2.
Lemma 1:Suppose thad < p,,pg < 1 and \p, it > 0. If {(d) > 0, for all d € {1,...,d},
then the Markov chain\ is irreducible. (See [27] for the proof.)
Theorem 4:Under the assumptions in Lemma 1, the Markov ch&inis ergodic andX —
E,.X asnme — oo.
Proof: From Lemma 1,M is irreducible.M is aperiodic since there is always a positive

probability of staying at the current state in the track update move. Now the transitions described
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in Algorithm 2 satisfy the detailed balance condition since it uses the Metropolis-Hastings kernel
(4). Hence, by the ergodic theorem [22], the chain converges to its stationary distrib(tion

almost surely and¥ — E, X asnme — oo. m

B. Simulation Results

For the simulations we consider surveillance over a rectangular region on a lare,
[0, L] x [0, L] C R% The state vector is = [z, y, &, 5]’ where(z,y) is a position onR along
the usualz andy axes and(#,y) is a velocity vector. The linear dynamics and measurement

model are used:

af, = Azf + Guf y] = Cak +v]
where .
1 0 Ts O T3/2 0 10
01 0 T 0 1T12/2 0 1
Ao 5 G = s/ o 7
00 1 0 Ts 0 00
00 0 1 0 Ts 0 0

and Ts is the sampling periodw? is a zero-mean Gaussian process with covariafce-
diag(100, 100), andv] is a zero-mean Gaussian process with covaridee diag(25, 25).

The complexity of multiple-target tracking problems can be measured by several metrics: (1)
the intensity of the false alarm ratg; (2) the detection probabilityy; and (3) the density
of tracks. The problem gets more challenging with increasingdecreasingpy, increasing
K, and increasing density of tracks. The number of tracks itself may not make the problem
more difficult if they are scattered apart. The difficulty arises when there are many tracks that
are moving closely and crossing each other; this is when the ambiguity of data association is
greater. Hence, we only consider situations in which tracks move very closely so we can control
the density of tracks by the number of tracks. We study the performance of the MCMCDA
algorithm against the greedy algorithm and MHT by varying the parameters listed above. To
make the comparison easier, we take the MAP approach, in which the states of targets are
estimated fromv computed from Algorithm 2. The greedy algorithm is a batch-mode nearest
neighbor multiple-target tracking algorithm. The algorithm first marks all observations as false
alarms, and then picks two unmarked observations at different times to estimate an initial state.
Then it forms a canditate track by picking unmarked observations which are the nearest to

the predicted states for subsequent time steps. The candidate track is validated as a track and
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observations associated to the candidate track are marked if the marginal of the candidate track
exceeds a threshold. The process is repeated until no more tracks can be found.

Since the number of targets is not fixed, it is difficult to compare algorithms using a standard
criterion such as the mean square error. Hence, we introduce two new metrics to measure the
effectiveness of each data association algorithm: the normalized correct associations (NCA) and

incorrect-to-correct association ratio (ICAR)

number of correct associations

number of associations in test case
number of incorrect associations

number of correct associations

NCA =

ICAR =

We measure the performance of each algorithm by NCA, ICAR, the estimation error in the
number of tracksKer = ||w*| — |w||, @and the running time of the algorithm.

Both MCMCDA and greedy algorithms are written in C++ with Matlab interfaces. We have
used the C++ implementation of MHT [28], which implements pruning, gating, clusteNig,
scan-back logic an#-best hypotheses. The parameters for MHT are fine-tuned so that it gives
similar performance as MCMCDA when there are 10 targets: the maximum number of hypotheses
in a group is 1000, the maximum track tree depth is 5, and the maximum Mahalanobis distance
is 5.9. All simulations are run on a PC with a 2.6-GHz Intel processor.

1) Experiment | (Number of Tracks)n this experiment, we varyx from 5 to 100. The other
parameters are held fixe® = [0,1000] x [0,1000], T = 10, &V =1, d = 1, v = 130 unit
lengths per unit time. Since all tracks are observed, the number of observations increases as the
number of tracks increases. The results for MCMCDA are the average values over 10 repeated
runs and the initial state is initialized with the greedy algorithm and 10,000 samples are used.
The average NCAs, ICARSs, the estimation error in the numbers of tracks and the running times
for three different algorithms are shown in Figure 4 and Figure 5 (the running time of MCMCDA
includes the initialization step). Although the maximum number of hypotheses of 1000 per group
is a large number, with increasing numbers of tracks, the performance of MHT deteriorates due
to pruning. But both greedy and MCMCDA maintain good performance, although the greedy
algorithm detects fewer tracks for larg€é. In addition, the running times of both greedy and
MCMCDA are significantly less than that of MHT.

2) Experiment Il (False Alarms)Now the settings are the same as Experiment | but we vary

the false alarm rates while the number of tracks is fixedat 10. The false alarm rates are
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varied from V' = 1 to XV = 100 with an increment of 10. Again, 10,000 samples are used

for MCMCDA. The average NCAs, ICARs and the estimation error in the numbers of tracks

for three different algorithms at different false alarm rates are shown in Figure 6 and Figure 8

(left). It shows the remarkable performance of MCMCDA at high false alarm rates while the

other two algorithms perform poorly. The greedy algorithm scores slightly higher in NCA than

MCMCDA but poorly in ICAR. In addition, it reports spurious tracks at high false alarm rates.

Notice that MHT does not make any correct associations at high false alarm xgteg, 80,
so ICARs for MHT atA:V > 80 are not reported.

3) Experiment Ill (Detection Probability)The detection probabilityq is varied from0.3 to

0.9 with an increment of).1 while keeping the other parameters as the previous experiments

exceptK = 10, 4V = 1, T = 15 andd = 5. Now the tracks are not observed all the time.
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The average NCAs, ICARs and the estimation error in the numbers of tracks are shown in
Figure 7 and Figure 8 (right). For MCMCDA, we present two cases: MCMC(15K) with 15,000
samples and MCMC(150K) with 150,000 samples. It shows that MCMCDA outperforms the
other algorithms at low detection probabilities. At high detection probabilities, MHT scores
better than MCMCDA but it reports a higher number of tracks, meaning that it fragments tracks.
Although, in theory, MHT gives an optimal solution in the sense of MAP, it performs poorly in

practice when the detection probability is low or the false alarm rate is high due to the heuristics
such as pruning and/-scan-back techniques used to reduce the complexity. The heuristics are
required parts of MHT. Without the pruning anmd-scan-back logic, the problem complexity
grows exponentially fast even for a small problem. In practice, MHT with heuristics works well

when a few hypotheses carry most of the weight. When the detection probability is low or
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the false alarm rate is high, there are many hypotheses with appreciable weights and there is
no small set of dominating hypotheses, so MHT cannot perform well. In addition, when the
detection probability is high, MHT again suffers from a large number of observations. Another
noticeable benefit of the MCMCDA algorithm is that its running time can be regulated by the
number of samples and the number of observations but the running time of MHT depends on
the complexity of the problem instance, which is not predictable in advance.

4) Online MCMCDA Multiple-Target TrackerThe extension of MCMCDA to an online, real-
time tracking is a trivial task. We implement a sliding window of sizeusing Algorithm 2. At
each time step, we use the previous estimate to initialize MCMCDA and run MCMCDA on the
observations belonging to the current window. A total of three test cases are generated: (case 1)
100 tracks, (case 2) 200 tracks and (case 3) 300 tracks. The surveillance duration is increased to
T = 1000 and the surveillance region is nd® = [0, 10000] x [0, 10000]. The other parameters
are: )V =10, pg = .9, d = 3, v = 230 andws = 10. The objects appear and disappear at
random in time and space so the number of tracks changes in time. These test cases represent
instances of the general (discrete-time) multiple-target tracking problem. The average NCAs and
ICARSs over the sliding window and the average execution time per simulation time are shown
in Table I. Notice that MCMCDA achieves excellent performance in all cases with less than a

second of execution time.
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TABLE |

PERFORMANCE OFONLINE MCMCDA TRACKER: RUNNING TIME (RT) IN SECONDS

Number of samples
1,000 5,000
K | NCA | ICAR | RT | NCA | ICAR | RT
100 | .95 19 | .06 | .98 13 | .28
200 | .94 .06 | .09| .97 05 | .41
300 | .92 .07 | 11| .97 .05 | .55

C. Experiment

We have applied our algorithm to track people from video sequences taken by a stationary
camera. The sampling rate was 2 frames per second. Since we do not know the initial positions
of appearing objects, a tracking algorithm must be able to initiate and terminate tracks, hence
this application is a test of the algorithm presented in the previous section. We applied a simple
background subtraction algorithm to detect moving objects and Algorithm 2 is used to track
these objects. Some selected sequences are shown in Figure 9 along with the estimated tracks.
Figure 10 illustrates some failures of background subtraction as an object detection method.
The top row of Figure 10 shows a person walking under a tree who is not detected for six
frames. The bottom row of Figure 10 shows the case when the detection algorithm reports a
single detection when one person is occluded by another. In both cases, a person is not detected
for many frames, but MCMCDA was able to resume the track when the person appears again,

showing the robustness of the algorithm against missing observations.

VI. CONCLUSIONS

In this paper, we have presented Markov chain Monte Carlo data association (MCMCDA) for
solving data association problems arising in multiple-target tracking in a cluttered environment.
For the case of a fixed number of targets, we have shown that a single-scan MCMCDA algorithm
provides a fully polynomial randomized approximation scheme for the calculation involved in the
JPDA filter, which is known to be NP-hard. For the general multiple-target tracking problem,
in which an unknown number of targets appears and disappears at random times, we have
presented a multi-scan MCMCDA algorithm that is capable of initiating and terminating an

unknown number of tracks. The MCMCDA algorithm is flexible and can easily incorporate any
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Frame 70 . Frame 30

Fig. 9. Tracking people from video sequences. Some selected sequences are shown for illustration. Detections are shown in
boxes and tracks are shown in solid lines. (Video scenes courtesy of Parvez Ahammad)

domain specific knowledge to make it more efficient. Instead of enumerating the entire space of
associations, MCMCDA randomly samples the region where the posterior is concentrated. Our
simulation results show the remarkable performance of the MCMCDA algorithm under extreme

conditions such as a large number of targets in a dense environment, low detection probabilities,
and high false alarm rates. We have also shown that the algorithm can be formulated as an

online, real-time algorithm with excellent performance.

VIlI. APPENDIX

The proofs shown here parallel the proofs by Jerrum and Sinclair [20] in both structure and

details; the main differences are its application to the well-known data association problem in
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Fig. 10. Examples of missing detections. (top) A person walking under a tree is not detected from frame 14 to frame 19.

(bottom) A person is occluded by another person and not detected from frame 38 to frame 40

multiple-target tracking and the use of the non-uniform likelihood function into the posterior,
allowing us to understand the relationship between the parameters in the multiple-target tracking

problem and the mixing time of the Markov chain.

A. Proof of Theorem 2

To prove Theorem 2, we need the following lemmas.

Lemma 2:Let C' = Af(pld—fpd) andD = %j:d) For anywy, wi,ws € Q, if w; = wy — e, for

some edgey € wy, andwy, = wy — e1, for some edge; € w,, then:

m(wo)/m(wy) < C and m(wy)/m(wy) < D
m(wo)/m(we) < C2 m(wo)/m(wy) < D2

Proof: wy andw, are identical except that; is missing the edge,. So |wo| = |w1| + 1.
If e = (u,v) andk = |wol,

Akapk(l )K*k R

f d Pd v
m(wo)/m(w = P (ulyi.e—

( 0)/ ( 1) A;Vi(kil) 8_1(1 d)K—(k—l) ( |y14t 1)

= P _pruy,) <C

Af(1 = pq)
On the other hand,
- )\év—(k—npgq(l _pd)K—(k—l) 1
m(w1)/m(wo) = AT ph(1 — pa) R+ P (ulyre_1)
M(1 = pg) 1

Pd P”(u|y1;t—1)
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Sincem(wo)/m(wq) = m(wo)/m(w1) X m(wy)/m(we), by repeating the above argument twice,
we getm(wp)/m(we) < C2. Similarly, we haver(ws)/7(wo) < D?. ]

Lemma 3:Let R = max{1l,C, D}, whereC and D are defined in Lemma 2. Then the
maximum edge loading of the Markov chavt is bounded ag < 4R*K?N.

Proof: For each pair of matching&, Y in G, we define the canonical pathy as in [20].
Consider the symmetric differencé &Y, whereX @Y = (X - Y)U(Y - X). X d Y is a
disjoint collection of paths iz including closed cycles, each of which has edges that belong to
X andY alternately. Suppose that we have fixed some arbitrary ordering on all simple paths in
G, and designate a “start vertex” to each of the paths, which is arbitrary if the path is a closed
cycle but must be an endpoint otherwise. This gives a unique ordéting, ..., P, on the
paths appearing itX & Y. The canonical path fronX to Y involves “unwinding” each of the
P; in turn as follows. We need to consider two cases:

(i) P; is not a cycle Let P; consist of the sequendey, v1, ..., v;) of vertices with the start
vertexvg. If (vo,v1) € Y, perform a sequence of switching moves replading. i, v2;2) by
(v9;,v9541) for j = 0,1, ..., and finish with an addition move ifis odd. If (v, v1) € X, remove
(vo,v1) and proceed as before for the reduced gath. .., v;).

(i) P;is a cycle Let P, consist of the sequencey, vy, . . ., vy41) Of vertices, forl > 1, where
vy Is the start vertex, andvs;,v;+1) € X for j = 0,...,1, with remaining edges belonging
to Y. We first remove the edg@y, v1). Now we are left with an open path with endpoints
vo, v1, With the start vertexy, of O, for k € {0,1}. Then we unwindO as in (i) above but
treatingv,_, as the start vertex to identify that it was a cycle.

Let ¢ be an arbitrary edge in the Markov chaM, i.e,, a transition fromw to ' # w. Let
ep(t) = {(X,Y) : vxy > t} be the set of canonical paths that useNe define a function
ne : ep(t) — Q as in [20],

XY ® (wUuw) —exy,
n(X,Y) = if ¢ is a switch move and the current path is a cycle;
XY d(wuuw), otherwise
whereeyy, is the edge inX adjacent to the start vertex that was removed first in (ii) above.
n:(X,Y) is always a matching i’ andr; is injective as shown in [20]. Notice that the bipartite

graphG considered here is a subset of the graphs considered in [20] so the arguments; about
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can be directly applied here.
Notice that

Q) = Qw,w)=mw)P(w,w)= 2\E| min{r(w), m(w")}. a7)

Next, we boundr(X)7(Y) and we need to consider four cases:

(i) ¢ is a deletion moveWe havew = w —e andn(X,Y) = X @Y & (w U W'). Since
wUn(X,Y) and X UY are identical when viewed as multisets,
2|E|Q(t)

T(w)
T (W)
where we used the identity (17) in the second equality and Lemma 2 for the last inequality.
(i) ¢ is an addition moveWe havew’ = w+e andn(X,Y) = X @Y & (w UW'). Since
wUn(X,Y)and X UY are identical when viewed as multisets, using the arguments from (i),

T(X)n(Y) = w(w)r(n(X,Y)) = (W) (n:(X,Y))

2AE1Q(1) max{ }wm(x, ¥)) < 2R|EIQ()m(n (X, ),

T(X)r(Y) < 2R[E|IQ(t)7(n:(X,Y)).

(i) t is a switch move and the current path is a cycBaJpposew = w-+e—¢. Let
w; = w-+e. Thenw = w; — €. Since ((“’)) = ((t:}) ( by Lemma 2,5+ ) < CD < R?. Since
mX,)Y)=Xa@Y & (wUuw') —exy, the multlsetau Un(X,Y) dlffers from X UY only in

thate andey,, are missing from it. Hence, by Lemma 2,

T(X)m(Y) < Czﬂ'(w)ﬂ(m(X, Y)) = QCQ\E\Q(t) max {1, }W(nt(X, Y))

IA

2R E|Q(t)m(n(X,Y)).

(iv) t is a switch move and the current path is not a cydlkis case is similar to (iii) but the
multisetsw Un, (X, Y) differs from X UY only in thate is missing from it. Hence, by Lemma 2,

RO < Crl@n(n(X,Y)) = 201ElQ) max {1, 7w (x,v)

IN

2R°|E|Q(t)m(1:(X, ).

In summary, we have, in all cases(X)n(Y) < 2RYE|Q(t)m(n(X,Y)). Thus, for any
transitiont,

IN

2RYE| Y w(n(X,Y)) x|

Txy ot
< AR'KIE| Y w(n(X,Y))
Yxy ot

< 4R'K|E| < 4R'K°’N

1
= Z Y)lyxv|
Q IXY 2

where the second inequality follows from the fact that the length of any canonical path is
bounded by2K, the third equality is due to the fact that is injective andr is a probability
distribution, and the last inequality follows front’| < K N. Hence,p < 4R*K*N. [ |
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We now prove Theorem 2M is a finite, reversible, ergodic Markov chain with loop proba-

bilities P(x,z) > 5 for all statese (see Section IV-B). Hence, by Theorem 1, we have

72(€) < p(logm(z) " +loge™"). (18)

The upper bound fop is computed from Lemma 3. Now we just need to find the upper bound
for 7(z)~'. From (16),

weN

IN

K

mEma (K, N) 3 (5) 2 < g (1, N)(K + 1)V

1 3 ) k (N—k)' =~ 1 3 ) <LV oy
k=0

where the second inequality is by (15). Although this boundZois not tight, it will serve our
purpose. For any € Q, 7(w) > +mimy(K,N) so

1 Z mi \* ms(K, N)
m(w) = mfm;;(K,N)S(mig) m4(K,N)(K+1)!N!'

Hence,

og L < 1og<(”mg) Zigg:]Nvg(K—i—l)!N!):m5(K,N).

Putting all together, we have, for all initial states 2, 7,(¢) < 4R*K2N(ms(K, N)+loge™1).

B. Proof of Theorem 3

Let 8., = {(j,k) : Bjx > e2}. For now, assuméj, k) € 3., i.e, Bjx > €. Let Xj(w) =
I((¢*,y7) € w) wherel is an indicator function. Notice tha,(X;.) = m(w;x) = Bjx, Where
wir ={w € Q: (v, k) € w}. Sincellp — 7| <e,

ploge) — ()] < e )
Var,(X;1) — Var, (X;0)] < 3e< 361”7(“’““). (19)

Let B, = 2377, Xji(w;) be the sample mean of samples fromp. ThenE(3;) = p(w;k)
andVar(j3;,) = 1Var,(X;;). By Chebyshev's inequality,
ivarp(xjk)

PQBjk —plem)] > %lp(wjk)) = €1s plwjr)?

(20)
Now if |3;x — p(wje)| < Fp(wjr), from (19),
1Bk — m(wik)l < 1Bk — p(wir)| + [p(wik — m(wjik]

€1 €1 €1
< gp(wjk) + gﬂ(wﬂc) < gﬂ(wjk)
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and Bjk estimatesr(w;;) within ratio 1 + ¢;. Sincee; < 1 andVar, (Xj;) < m(wjk),

Varp(Xjk) < Val’ﬂ—(Xjk) + %F(w]‘k) < 2

plwir)®  ~ (Zm(win))? = m(wik)

(1)

Hence, by choosing = 72¢;%¢; " and using (20) and (21F, (18;x — p(wjr)| > Lp(wir)) < 1,

that is,Bjk estimatesr(w;;) within ratio 1 + ¢; with probability at leasB/4.

Now consider repeating the above experiment by an odd numtseres, independently. Let
3, be the median of the resultingvalues of3,,. From above, the probability that;, fails to
approximates;;, within ratio 1 + ¢; is at most

S OO 0" .0

i=(t+1)/2 i=(t+1
JOREON
Now lett = 6[logn~!] + 1, this probability is bounded above by Hence, with a total oft
samples,Bjk estimatesr(w,;,) within ratio 1 + ¢; with probability at leastl — 7 for 5;;, > e..
Notice thatst is upper bounded b§04e, %, [log n~1].
Now considerg;; that are smaller tham,. With probability at leastl — 7, for (j,k) € f.,,
(1 —e)Bix < Bk < (14 €1)Bir. S0 if B > (1 + €1)ea, We must have(j, k) € G.,. Hence,
Bjk < (1+€)e or |ng — Bik| < (14 €1)es for B < es.
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