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1 IntrodutionMCMC simulation is a powerful and aurate strategy for inferene and learning (Gilks,Rihardson and Spiegelhalter 1996, Robert and Casella 1999). However, it often requiresthe design of omplex proposal distributions when applied to new tasks. Otherwise, thealgorithms an take very long to onverge (i.e., mix poorly). On the other hand, varia-tional methods have been shown to provide fast approximate estimates in many senarios(Jaakkola and Jordan 1999, Jordan, Ghahramani, Jaakkola and Saul 1999). Yet, theyrely on simpli�ations of the original problem in order to ensure mathematial tratability.This often results in algorithms that yield poor estimates of high order moments, suh aovarianes and kurtosis.In this paper, we introdue a lass of Markov hain Monte Carlo (MCMC) algorithmsthat exploits the fat that variational approximations an be used as proposal distribu-tions. We show that naive algorithms exploiting this property an mix poorly, but solvethis problem by introduing more sophistiated MCMC kernels based on blok samplingand mixtures of MCMC kernels. In partiular, we use mixtures with variational kernels thatallow the algorithm to detet the regions of high probability quikly and metropolis kernelsthat enable it to explore the neighbourhood of these regions. The resulting algorithm on-verges quikly to the regions of high probability and also yields reasonable approximationsto the entire distribution of interest. Our approah makes it possible to ombine variationaland MCMC algorithms within a rigorous probabilisti setting so as to exploit the bene�tsof both approahes simultaneously.There have been other attempts at ombining spei� approximation tehniques and sim-ulation methods; indeed, researhers in the statistis ommunity often ombine the Laplaeapproximation with simulation methods (Gilks et al. 1996). However, the Laplae methodis based on trunated Taylor expansions of derivative terms that an often lead to poorapproximations. Reently, Ghahramani and Beal (2000) showed that using a variationalapproximation for mixtures of fator analyzers as the proposal for an importane samplerould lead to an improvement in the auray of the results. The approah we take hereis far more general and surmounts many of the problems enountered in the importanesampling approah.We demonstrate the approah on the task of Bayesian parameter estimation of logisti(sigmoidal) belief networks with latent variables. This problem is of interest for several rea-sons. First, it exhibits nonlinearity an non-Gaussianity. Seond, it inludes the problemsof logisti regression and lassi�ation with missing observations as a sub-ase. That is,our approah an handle situations in whih we have many partially observed input signals.1



Third, the noise is very uninformative and onsequently one has to be very areful whenapplying model testing tehniques suh as ross-validation. This motivates the Bayesianparadigm and, in partiular, the introdution of a Gaussian prior as a regularisation meh-anism. Lastly, this type of network has important onnetions with researh arried out inthe area of neural omputation.The remainder of this paper is organised a follows. The probabilisti models and estima-tion goals are outlined in Setion 2. In Setion 3, we present the variational approximationsto the original models and the expetation maximisation (EM) algorithm to perform theneessary omputations. The presentation of variational tehniques for parameter estima-tion begins at a very general level. Subsequently, it fouses on the ases of fully observedBayesian networks (BNs) and BNs with hidden nodes. A novel strategy that ombinesMCMC and variational methods is proposed in Setion 4. The experimental results ob-tained with this method for logisti BNs are presented in Setion 5. Conlusions andreommendations for future work are drawn in Setion 6. Finally, the notation appears inthe appendix.2 Model Spei�ationIn this setion, we present our probabilisti model for parameter estimation in belief net-works (BNs). These networks provide a onvenient pitorial representation of probabilitydistributions that an be fatorised as follows1p(x1:nx j�) = nxYi=1 p(xijx�(i);�i)where x1:nx , fx1;x2; : : : ;xnxg represents a staked set of nodes, xi denotes the variableassoiated with node i, x�(i) denotes the parent nodes of node i and �i are some unknownparameters assoiated with node i. Figure 1 shows a simple BN where all the nodes areobserved (A) and a BN where the value of one of the nodes is unknown (B). In both ases,we will show that it is possible to design algorithms to estimate the parameters.More formally, we onsider a ountable set of random variables xi 2 X , and partitionthe set into a visible part, xvi 2 X v, and a hidden part, xhi 2 X h, suh that X = fX v [X hg.1For simpliity, we use xt to denote both the random variable and its realisation. Consequently, we expressontinuous probability distributions using p (dxt) instead of Pr (Xt 2 dxt) and disrete distributions usingp (xt) instead of Pr (Xt = xt). If these distributions admit densities with respet to an underlying measure� (usually ounting or Lebesgue), we denote these densities by p (xt). For example, when onsidering thespae Rn , we will use the Lebesgue measure, � = dxt, so that p (dxt) = p (xt) dxt. To make the materialaesible to a wider audiene, we shall allow for a slight abuse of terminology by, sometimes, referring top (xt) as a distribution. 2
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Figure 1: (A) Fully observed belief network. (B) Belief network with one hidden node(right). The parameters � are treated as hidden units in the Bayesian framework. Thedashed box represents the Markov blanket for node �i, while the ontinuous box is a tem-plate indiating that there are T opies of x.We shall assume that we have T sets of measurements for the observed variables; that isxv , xv1:nxv;1:T 2 (X v)nxv�T . The distribution of the random variable xi is parameterisedby �i 2 Rn�(i) , where n�(i) is the number of variables on whih xi depends; that is thenumber of parent nodes in the ase of a belief network. In general, the ardinality of �is n� , Pi n�(i). Even though parameters in the Bayesian setting are to be regarded ashidden variables, we will here make a notational distintion between the hidden states andthe distributional parameters of the hidden states.We shall restrit the parameterisation of the onditional probability distributions to thefollowing Bernoulli family with a logisti mappingp(xijx�(i);�i) = TYt=1 g ('i;t) = TYt=1 11 + exp (�'i;t)= TYt=1 " 11 + exp ���� �0ix�(i);t�#xi;t+12 " 11 + exp ��+ �0ix�(i);t�#�xi;t�12where 'i;t , xi;t(� + �0ix�(i);t), xi 2 f�1; 1gT and � is assumed to be �xed. (Note that weonly make the latter assumption for presentation purposes. One ould always introdue anextra node �xed to 1 and treat � as an extra parameter.) To omplete the spei�ation ofthe Bayesian model, we assume a Gaussian prior N (�0;�0) on the parameters �i and prior3



independene, that is p(d�) =Qi p(d�i).The goal of the analysis will be to ompute the posterior distribution p(d�jxv). Fromthis distribution, one an easily derive other quantities of interest, suh as preditive dis-tributions and marginal distributions. As illustrated in Figure 1, we need to distinguishbetween two senarios: fully observed networks and networks with hidden nodes.(i) Fully observed BNs: As shown in the left plot of Figure 1, the Markov blanket of�i (the nodes inside the dashed box) does not inlude any other parameters. As a result ofthis, the problem of parameter estimation for BNs simpli�es to several logisti regressionsub-problems; one for eah node with parents. The posterior for eah of these nodes an beomputed using Bayes rulep(d�jx) = Qnxi=1QTt=1 p(xi;tjx�(i);t;�i)p(d�i)R�Qnxi=1QTt=1 p(xi;tjx�(i);t;�i)p(d�i)where nx denotes the number of nodes that have at least one parent.(ii) BNs with hidden nodes: Hidden nodes introdue dependenies between the param-eters of the model. For example, in the right plot of Figure 1, the parameters �j depend onthe parameters �i beause xi is unknown. To ompute the posterior, we need to marginaliseover the hidden variablesp(d�jxv) = PxhQnxi=1QTt=1 p(xi;tjx�(i);t;�i)p(d�i)R�PxhQnxi=1QTt=1 p(xi;tjx�(i);t;�i)p(d�i)The posterior distributions, in both ases, annot be alulated analytially beause ofthe large integrals and sums appearing in the denominators. To irumvent this problem, inthe next setion we introdue variational methods to obtain approximate solutions. Thesemethods will require that we map the original model to a simpli�ed model that is moreamenable to analytial and omputational treatment. We shall orret for this hange ofmodel using Markov hain Monte Carlo simulation in Setion 4.3 Variational ApproximationWe begin this setion by presenting a general variational framework for parameter esti-mation. We then enfore the belief network topologial onstraints and, �nally, deriveapproximations for parameter estimation in logisti belief networks. The resulting approx-imations are similar to the ones of (Jaakkola and Jordan 2000), with the exeption that weintrodue an extra parameter, �, to treat multimodality.4



3.1 Variational methods for parameter estimationThe aim of variational methods is to onvert a omplex problem into a simpler, moretratable problem: see for example (Jordan et al. 1999). The simpler problem is generallyharaterised by a deoupling of the degrees of freedom in the original problem. Thisdeoupling is ahieved by introduing an extra set of parameters, the so-alled variationalparameters. The variational parameters are then optimised so that the solution to thesimpler problem resembles the solution to the omplex problem.Bounds and onvexity play an important role in the variational paradigm. In manysituations, inluding our BNs, the likelihood of the data p(xvj�) annot be easily evaluated.However, if we know a lower bound on the likelihood, we an maximise this bound toobtain an approximate solution. Lower bounds on the likelihood an be easily obtainedusing Jensen's inequalitylog p(xvj�) = log E q(xh ) �p(xj�)q(xh) � � E q(xh ) [log p(xj�)℄� E q(xh ) hlog q(xh)i (1)where q(xh) is an arbitrary density over the hidden states with respet to the Lebesgueor ounting measure. The right hand side is the negative Kullbak Leibler \distane"between q and p (that is, �KL(qkp)) while the the last term is known as the entropy,H(q(xh)) , �E q(xh ) �log q(xh)�, of the distribution q. It is lear, therefore, that maximisingthe lower bound is equivalent to minimising the Kullbak Leibler \distane".The distribution q that yields the tightest bound an be found by free-form maximi-sation, but this typially leads to bounds that annot be evaluated (Chandler 1987). Analternative approah is to hoose a parametri form, bq(xhj�), of q(xh) that makes the righthand side of equation (1) easy to evaluate. The variational parameters � an then be opti-mised to get a bound that is as tight as possible. This approah is similar to what is done instatistial mehanis where one uses a tratable energy funtion and the Gibbs-Bogoliubov-Feynman inequality to alulate the partition funtion (the normalising density in Bayes'rule) of a system with an intratable energy funtion (Zhang 1993).It may be impossible, in general, to hoose a spei� funtional form of bq(xhj�) thatmakes the evaluation of E bq(xhj�) [log p(xj�)℄ tratable. However, additional exibility an beintrodued by lower bounding p(xj�) with a well-hosen funtion bp(xj�; �), where � denotesan additional set of variational parameters. To summarise, the variational approah involvesthe following two steps1. Introdue the variational parameters � to make the onditional joint distribution ofthe hidden and visible variables, p(xj�), tratable.5



2. Introdue the variational distribution q with parameters � to make the onditionalmarginal distribution of the visible variables, p(xvj�), tratable.Following these steps, we an obtain an unnormalised lower bound on the likelihoodbp(xvj�;�; �) / expnE bq(xhj�) [log bp(xj�; �)℄� E bq(xhj�) hlog bq(xhj�)io (2)and, using Bayes' rule, we an easily obtain a lower bound on the posterior distributionbp(d�jxv;�; �) / p(d�) expnE bq(xhj�) [log bp(xj�; �)℄o (3)Finally, we an obtain a lower bound, bp(xv j�; �), on the evidene, p(xv), by standardmarginalisation p(xv) = Ep(d�) [p(xvj�)℄ � E p(d� ) [bp(xvj�;�; �)℄ = bp(xvj�; �) (4)Impliitly, we are replaing the integrand in the normalising expression of the posteriordistribution with a tratable lower bound (that is, one that an be integrated easily). We,then, maximise the resulting lower bound on the integral to approximate the true integral.In other words, we have replaed the integration problem by an easier optimisation problem.An alternative approah to obtain a lower bound on the likelihood was proposed in(Jaakkola and Jordan 2000). The method is also based on onvexity and Jensen's inequality.In partiular, it is based on the fat that the geometri average, Qi pqii , where qi is aprobability distribution, is less than or equal to the arithmeti average, Pi qipi. Followingthis result, the likelihood an be lower bounded as followsp(xv j�) = E bq(xhj�) � p(xj�)bq(xhj�)� � E bq(xhj�) � bp(xj�; �)bq(xhj�) ��YXh �bp(xj�; �)bq(xhj�) �bq(xhj�) = C(q)YXh (bp(xj�; �))bq(xhj�)where logC(q) is the entropy of the random variable xh under the distribution bq(xhj�).The lower bound on the likelihood an be written as followsbp(xvj�;�; �) /YXh (bp(xj�; �))bq(xhj�)That is, the dependenies between the variables x that would have resulted from performingexat marginalisation have been replaed with dependenies through a shared variationaldistribution. We shall however use the bound given by equation (2) as it is more generaland tratable.To ompute the parameters �, � and �, we maximise the lower bound on the evidene,bp(xvj�; �). This step an be arried out using the oordinate asent maximum likelihood6



1. Expetation step: Compute the expetation of the omplete log-likelihood usingthe old values of the variational parametersQ , E bp(d�jxv;�old;�old) [log bp(xv ;�j�; �)℄2. Maximisation step: Maximise with respet to the variational parameters(�new; �new) = argmax�;� Q3. Go to 1 until a maximum number of iterations or required error tolerane arereahed.
Figure 2: EM algorithm for variational approximation.algorithm shown in Figure 2 (Dempster, Laird and Rubin 1977). This algorithm is guaran-teed to maximise the lower bound on the evidene bp(xvj�; �), but it is not guaranteed tomaximise the atual evidene p(xv). That is, monitoring onvergene on bp(xv j�; �) an bemisleading. However, if the bounds on the likelihood of the observed and omplete data arehosen arefully, some existing empirial results suggest that this framework an performvery well in omplex senarios (de Freitas, Niranjan and Gee 2000, Jaakkola and Jordan1999, Jaakkola and Jordan 2000). For the BNs introdued in the previous setion, theexpetation of the omplete log-likelihood is de�ned asQ , E bp(d�jxv;xv�;�old;�old) "log nxYi=1 bp(xvi jxv�(i);�i;�i; �i)p(d�i)!#/ E bp(d�jxv;xv�;�old;�old) "H(bq) + log nxYi=1 expnE bq(xhi j�i) �log bp(xijx�(i);�i; �i)�o p(d�i)!#(5)where xhi denotes the hidden nodes in fxi;x�(i)g and H(bq) , Pnxi=1H(bq(xhi j�i)). In thefollowing two setions, we show how to ompute this quantity in the ase of logisti beliefnetworks.
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3.2 Variational approximation for fully observed logisti BNsWhen analysing logisti BNs, we an an lower bound the likelihood of the data using aGaussian approximation (Jaakkola and Jordan 2000), as followsp(xijx�(i);�i) = g ('i) � g(�i) exp�'i � �i2 � �(�i) �'2i � �2i �� (6)where 'i = xi(�+ �0ix�(i)) and �(�i) , tanh(�i=2)4�i . It is then trivial to apply Bayes' rule toompute a lower bound on the posterior distribution of the parametersbp(d�ijxi;x�(i); �i) / bp(xijx�(i);�i; �i)p(d�i)where bp(xijx�(i);�i; �i) orresponds to the right hand side of equation (6). Using onjugateanalysis and ompleting squares, we an obtain the following reursive expressions for themean, �, and variane, �, of the Gaussian posterior distribution��1i;t = ��1i;t�1 + 2�(�i;t�1)x�(i);tx0�(i);t�i;t = �i;t h�xi;t2 � 2�(�i;t�1)��x�(i);t +��1i;t�1�i;t�1iAs an instane of equation (5), we an ompute the variational parameters by maximis-ing the lower bound on the evidene�newi = argmax�i E bp(d�ijxi;x�(i);�oldi ) �log bp(xijx�(i); �i)p(d�i)�Sine all the distributions are Gaussian, one an take derivatives and equate to zero toobtain the following reursive formula for the variational parameters�2i;t = E bp(d�ijxi;x�(i);�oldi ) �(�+ �0ix�(i);t)2�= �2 + 2��0i;tx�(i);t + x0�(i);t ��i;t + �i;t�0i;t�x�(i);t= �2 + 2��0i;tx�(i);t + tr���i;t + �i;t�0i;t�x�(i);tx0�(i);t�The EM algorithm used for omputing the variational approximation of fully observedlogisti BNs is shown in Figure 3.3.3 Variational approximations for logisti BNs with hidden nodesTo obtain the EM update equations for logisti networks with hidden nodes, we �rst alu-late a lower bound on the posterior distributionbp(d�ijxvi ;xv�(i);�i; �i) / bp(xvi jxv�(i);�i;�i; �i)p(d�i)/ expnE bq(xhi j�i) �log bp(xijx�(i);�i; �i)�o p(d�i)/ exp�E bq(xhi j�i) �'i � �i2 � �(�i) �'2i � �2i ��� p(d�i)8



For eah hild node xiInitialise �i;0, �i;0 and �i;0For t=1 to t=TInitialise iterations ounter: k = 0While (k < maxIterations and error tolerane � Tol)k = k + 1��1(k)i;t = ��1i;t�1 + 2�(�i;t�1)x�(i);tx0�(i);t�(k)i;t = �(k)i;t ��xi;t2 � 2�(�i;t�1)��x�(i);t +��1i;t�1�i;t�1��2(k)i;t = �2 + 2��0(k)i;t x�(i);t + tr���(k)i;t + �(k)i;t �0(k)i;t �x�(i);tx0�(i);t�Compute toleraneEnd While(k)End For(t)End For(i) Figure 3: EM for fully observed logisti BNs.Proeeding as in the previous setion, one an easily obtain the following reursive formulasfor �, � and ���1i;t = ��1i;t�1 + 2�(�i;t�1)E bq(xhi j�i) hx�(i);tx0�(i);ti�i;t = �i;t �E bq(xhi j�i) h�xi;t2 � 2�(�i;t�1)�� x�(i);ti+��1i;t�1�i;t�1��2i;t = �2 + 2��0i;tE bq(xhi j�i) �x�(i);t�+ tr���i;t + �i;t�0i;t� E bq(xhi j�i) hx�(i);tx0�(i);ti�To obtain an update equation for the variational distribution, q, we introdue the followingparametri mean �eld approximationbq(xhj�) = Yfj;xj2Xhg�xj+12j (1� �j)�xj�12
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That is, eah hidden node is represented by an independent Bernoulli distribution. To �ndthe optimal parameters, we need to ompute argmax� Q, whereQ / E bp(d�jxv;xv� ;�old;�old) "H(bq) + log nxYi=1 expnE bq(xhi j�i) �log bp(xijx�(i);�i; �i)�o p(d�i)!#= H(bq) + E bp(d�jxv ;xv�;�old;�old) "nxXi=1 E bq(xhi j�i) �log bp(xijx�(i);�i; �i)�+ log (p(d�i))#= H(bq) + E bp(d�jxv ;xv�;�old;�old) "nxXi=1 E bq(xhi j�i) �'i � �i2 � �(�i) �'2i � �2i ��+ log (p(d�i))#We an aomplish this by omputing the derivative ���jQ (for all j suh that xj 2 X h)and equating to zero. In doing so, we �rst notie that ���jH(bq) = log 1��j�j . Consequently,�j = exp (Dj)1 + exp (Dj)where,Dj = ���j E bq(xhj j�j) "E bp(d�jxv;xv�;�old;�old) �'j � �j�2 � �(�j)E bp(d�jxv;xv� ;�old;�old) �'2j � �2j�# :(7)The EM algorithm for logisti BNs with hidden nodes is analogous to the one for fullyobserved BNs, with the exeption that now one has to ompute expetations with respetto E bq(xhj j�j) and inlude equation (7). As an example, if an observed node, �i has a hiddenparent, x�(i);j , the seond term on the right hand side of equation (7) is equal to zero,yielding Di = ���j E bq(x�(i);j j�j) �xi�0ix�(i) � �i2 � : (8)4 Variational MCMCIn the previous setion, we showed how variational methods an be used to map a omplexproblem to a simpler problem, to whih one an apply methods that exploit some of theanalytial properties of the funtions under onsideration. Suh a strategy, of ourse, anresult in biased estimates. To orret for this error, we an resort MCMC simulation.In partiular, we shall use the variational posterior distribution, bp(d�jxv;xv�;�; �), as theproposal distribution for various MCMC samplers. Before we an explain how this is done,we need to introdue some basi notions of MCMC simulation.MCMC tehniques are a set of powerful simulation methods that may be applied to solveintegration and optimisation problems in large dimensional spaes (Gilks et al. 1996, Robert10



and Casella 1999, Tierney 1994). These two types of problem play a fundamental role inthe �elds of mahine learning, physis, eonometris, statistis and deision analysis. In theontext of maximum likelihood estimation, MCMC tehniques an be used for arrying outthe neessary maximisations (Geyer and Thompson 1992). Within the Bayesian framework,given some unknown variables � 2 � and data y 2 Y , MCMC simulation an be adoptedto solve the following integration problems (Brooks 1998, Gilks, Thomas and Spiegelhalter1994)Normalisation: To obtain the posterior distribution p(d�jy) given the prior p(d�) andlikelihood p(yj�), the normalising fator in Bayes' theorem needs to be omputedp(d�jy) = p(yj�)p(d�)R� p(yj�)p(d�)Marginalisation: Given the joint posterior of (�; z) 2 ��Z, we may often be interestedin the marginal posterior p(d�jy) = ZZ p(d�; dzjy)Expetation: The objetive of the analysis is often to obtain summary statistis of theform E (f(�)jy) = Z� f(�)p(d�jy)for some funtion of interest f : �! Rnf integrable with respet to p (d�jy). Exam-ples of appropriate funtions inlude the onditional mean, in whih ase f (�) = �,or the onditional ovariane of � where f (�) = ��0 � E p( d�jy) [�℄ E 0p( d�jy) [�℄.We emphasize again that the diÆult problem of omputing integrals is not only restritedto Bayesian learning. For example, in statistial mehanis, one needs to ompute thepartition funtion, Z, of a system with states, s, and Hamiltonian (potential and kinetienergy), E(s), Z =Xs exp ��E(s)kT �where k is the Boltzmann's onstant and T denotes the temperature of the system. Itturns out that the basi problem of equilibrium statistial mehanis is to ompute thissum, whih beomes and integral ontinuum systems and a trae for quantum mehanialsystems (Baxter 1982).The idea of perfet Monte Carlo integration methods is to draw an i.i.d. set of samplesf�(i); i = 1; 2; : : : ; Ng from the target distribution p(d�) (it ould be the posterior, p(d�jy),11



in Bayesian analysis) to obtain the following empirial distributionPN (d�) = 1N NXi=1 Æ�(i) (d�)where Æ�(i) (d�) denotes the delta-Dira mass loated in �(i). Consequently, one an ap-proximate the integrals, I (f), by disrete sums, IN (f), as followsIN (f) = 1N NXi=1 f(�(i)) a:s:����!N!1 I (f) = Z� f(�)p(d�) (9)The estimate IN (f) is unbiased and by the strong law of large numbers, it will almost surelyonverge to I (f). That is P� limN!1 IN (f) = I (f)� = 1If the variane of f (�) satis�es �2f , E p(d�) �f2 (�)� � I2 (f(�)) < +1, then the varianeof IN (f) is equal to var (IN (f)) = �2fN and a entral limit theorem yields onvergene indistribution of the error pN�IN (f)� I (f)� =)N!+1 N (0; �2f )where =) denotes onvergene in distribution (Robert and Casella 1999, Setion 3.2). Theadvantage of Monte Carlo integration over deterministi integration arises from the fatthat the former positions the integration grid (samples) in regions of high probability. Onthe other hand, the main disadvantage of simple Monte Carlo methods is that often it is notpossible to draw samples from p(d�) diretly. This problem an, however, be irumventedby the introdution of MCMC algorithms. Assuming that we an draw samples from aproposal distribution �(d�), the key idea of MCMC simulation is to design Markov hainmehanisms that ause the proposed samples to migrate so that their empirial distributionapproximates p(d�).The most popular example of this lass of algorithms is the Metropolis-Hastings (MH)algorithm (Hastings 1970, Metropolis, Rosenbluth, Rosenbluth, Teller and Teller 1953). AMetropolis-Hastings step of invariant distribution, say p (d�), and proposal distribution,say � (d�?j�), involves sampling a andidate value �? given the urrent value � aord-ing to � (d�?j�). The Markov hain then moves towards �? with aeptane probabil-ity A(�;�?) = minf1; [p(d�)�(d�?j�)℄�1 p(d�?)�(d�j�?)g, otherwise it remains at �. Thepseudo-ode is shown in Figure 4.In the pseudo-ode, we assume that the proposal and target distributions admit densitieswith respet to the Lebesgue or ounting measures. The transition kernel assoiated with12



1. Initialise �(0) and set i = 0.2. Iteration i+ 1� Sample u � U[0;1℄.� Sample �(i+1)? from �(d�(i+1)?j�(i)).� If u < A(�(i);�(i+1)?) = min�1; p(�(i+1)?)�(�(i)j�(i+1)?)p(�(i))�(�(i+1)?j�(i)) ��(i+1) = �(i+1)?else �(i+1) = �(i)3. i+ 1 i+ 2 and go to 2.Figure 4: Metropolis-Hastings algorithm.the MH algorithm, assuming Lebesgue measure for more generality, is given byK(�(i); A) = ZAK(�(i); d�(i+1)?) + r(�(i))IA(�(i)) (10)where K(�(i); d�(i+1)?) = �(d�(i+1)?j�(i))A(�(i);�(i+1)?)and A(�(i);�(i+1)?) = min�1; p(d�(i+1)?)�(d�(i)j�(i+1)?)p(d�(i))�(d�(i+1)?j�(i)) �is the probability assoiated with a andidate being aepted, while the probability ofstaying at the same point is 1�A(�(i);�(i+1)?). The rejetion term is, therefore, given byr(�(i)) = 1� ZX �(d�(i+1)?j�(i))A(�(i);�(i+1)?)It is fairly easy to prove that the samples generated by MH algorithm will mimi samplesdrawn from the target distribution (a property known as ergodiity). By onstrution,K(�; d�) satis�es the detailed balane ondition (reversibility). That is,p(d�(i))K(�(i); d�(i+1)?) = p(d�(i+1)?)K(�(i+1)?; d�(i))p(d�(i))r(�(i+1)?)IA(�(i+1)?) = p(d�(i+1)?)r(�(i))IA(�(i))
13



it follows that for any measurable set AZ�K(�(i); A)p(d�(i)) = Z� ZAK(�(i); d�(i+1)?)p(d�(i))= Z� ZAK(�(i+1)?; d�(i))p(d�(i+1)?)= ZA p(d�(i+1)?) = p(A) (11)sine R�K(�(i+1)?; d�(i)) = 1. Thus, by onstrution, the MH algorithm admits p as invari-ant distribution. To show that the MH algorithm onverges, we need to ensure that thereare no yles (aperiodiity) and that every state that has positive probability an be reahedin a �nite number of steps (irreduibility). Sine the algorithm always allows for rejetion,it follows that it is aperiodi. To ensure irreduibility, we simply need to make sure that�(�) > 0 over the entire state spae. Under these onditions, we obtain the onvergeneresult of equation (9) (Tierney 1994, Theorem 3, page 1717). If the spae � is small (forexample, bounded in Rn), then it is possible to use minorisation onditions to prove uni-form (geometri) ergodiity (Meyn and Tweedie 1993). It is also possible to prove geometriergodiity using Foster-Lyapunov drift onditions (Meyn and Tweedie 1993, Roberts andTweedie 1996).Some properties of the MH algorithm are worth mentioning. Firstly, the normalisingonstants of the target distribution are not required. We only need to know the targetdistribution up to a onstant of proportionality. Seondly, although the pseudo-ode makesuse of a single hain, it is easy to simulate several hains in parallel. Finally, the suessor failure of the algorithm often hinges on the hoie of proposal distribution. This isdemonstrated in Figure 5. Here the proposal is a simple random walk, �(�(i+1)?j�(i)) =N (0; ��2). If the proposal is too narrow, only one mode of p(d�) might be visited. Onthe other hand, if it is too wide, the rejetion rate an be very high. If all the modesare visited while the aeptane probability is high, the hain is said to \mix" well. Inthe following subsetions, we show how one an use the variational approximation as theproposal distribution so as to improve the mixing of the hains in some senarios.4.1 Naive variational MCMC approahThe most obvious and immediate way of improving the variational approximation usingMCMC is to sample new andidates aording to the variational distribution. That is,�(d�(i+1)?j�(i)) = bp(d�(i+1)?jxv;xv�;�; �)
14
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(i) θFigure 5: Approximations obtained using the Metropolis algorithm with three Gaussianproposal distributions of di�erent varianes.In this ase, the aeptane probability of the MH algorithm simpli�es toA(�(i);�(i+1)?) = min�1; p(d�(i+1)?jxv;xv�)bp(d�(i)jxv ;xv�;�; �)p(d�(i)jxv ;xv�)bp(d�(i+1)?jxv ;xv�;�; �)�= min�1; w(�(i+1)?)w(�(i)) �where w(�) , p(�)=bp(�) denotes the importane weights. This type of algorithm is knownas the independent MH algorithm and it is losely related to the standard importanesampler (Geweke 1989). In the previous setion, we pointed out that this algorithm willonverge to the posterior distribution under mild onditions. Moreover, we an state someenouraging results using \metris" ommonly used in the variational literature; namely,sine p(d�jx;x�) is the unique invariant distribution of the Markov hain, it follows that therelative entropy (Kullbak Leibler \distane" between the true posterior and the MCMCapproximation) onverges to zero as the number of iterations inreases (Cover and Thomas15



1991). However, both the importane sampler and independent MH algorithm are wellknown to perform poorly in high dimensions unless the proposal distribution is very loseto the target distribution (Geweke 1989, Mengersen and Tweedie 1996). (In pratie, theaeptane ratio usually tends to zero after approximately 10 dimensions.) In fat, we havethe following resultProposition 1 (Mengersen and Tweedie 1996, Theorem 2.1) The independent MHalgorithm onverges at a uniformly (geometri) rate if there exists a onstant � > 0 suhthat p(�jxv;xv�)bp(�jxv;xv�) � �; � 2 supp(p(�))in whih ase, kK(i)(�; :) � pkTV � 2�1� 1��iwhere k � kTV denotes the total variation norm. Conversely, if there exists a set of positivemeasure where the bound on the importane weights does not hold, then the algorithm is noteven geometrially ergodi.The negative result in this proposition is, perhaps, the most interesting one. Unless wean bound the importane weights in the regions of high probability and in the tails, theapproah is bound to fail. One an apply the result of Proposition (1) to obtain the followingorollaryCorollary 1 (Uniform Ergodiity of naive variational MCMC) The independentMH algorithm for logisti BNs, using the variational approximation, N (b�; b�), as proposaldistribution, onverges at a uniformly (geometri) rate if(� � �0)0��10 (� � �0)� (� � b�)0 b��1(� � b�) � 0 (12)in whih ase, kK(i)(�; :) � pkTV � 2�1� 1��iThe onverse result of Proposition (1) also applies.Proof. Sine both the target distribution and the variational approximation to it are properand sine the likelihood is bounded for all possible values of �, we only require that the ratioof the prior distribution, N (�0;�0), to the proposal distribution, N (b�; b�), be bounded. Itis then trivial to see that this is the ase when ondition (12) is satis�ed �In the one-dimensional ase, the bound in the previous orollary is satis�ed when thevariane of the prior distribution is less than or equal to the variane of the proposaldistribution. 16



4.2 Blok MCMC approahIn the previous setion, we argued that the aeptane rate of the independent MH sampleran be very low in high dimensions. To surmount this problem to a ertain extent, we anexploit the nature of the variational approximation and propose to update the parametersin bloks. The modi�ed algorithm, using bj to denote the size of the j-th blok and nbto denote the number of bloks, is shown in Figure 6. It uses the notation �(i+1)�[bj+1:bj+1℄ ,1. Initialise �(0) and set i = 0.2. Iteration i+ 1� Sample the blok �(i+1)1:b1 aording to an MH step with proposal dis-tribution bp1(d�(i+1)1:b1 j�(i+1)�[1:b1℄;�(i)1:b1 ;xv ;xv�) and invariant distributionp(d�(i+1)1:b1 j�(i+1)�[1:b1℄;xv ;xv�).� Sample the blok �(i+1)b1+1:b2 aording to an MH step with proposal distri-bution bp2(d�(i+1)b1+1:b2 j�(i+1)�[b1+1:b2℄;�(i)b1+1:b2 ;xv ;xv�) and invariant distributionp(d�(i+1)b1+1:b2 j�(i+1)�[b1+1:b2℄;xv;xv�). ...� Sample the blok �(i+1)bnb�1+1:bnb aording to an MH step with proposal distribu-tion bpnb(d�(i+1)bnb�1+1:bnb j�(i+1)�[bnb�1+1:bnb ℄;�(i)bnb�1+1:bnb ;xv;xv�) and invariant distribu-tion p(d�(i+1)bnb�1+1:bnb j�(i+1)�[bnb�1+1:bnb ℄;xv ;xv�).3. i+ 1 i+ 2 and go to 2.Figure 6: Blok variational MH algorithm.f�(i+1)1:b1 ;�(i+1)b1+1:b2 ; : : : ;�(i+1)bj�1+1:bj ;�(i)bj+1+1:bj ; : : : ;�(i)bnb�1+1:bnbg. (This algorithm inludes theGibbs sampler as a speial ase; when the proposals orrespond to the full onditionalsand the aeptane is equal to 1 (Geman and Geman 1984).) Eah proposal distributionorresponds to a Gaussian distribution whose mean is a subset of the elements of the meanof the original variational distribution and whose ovariane is the orresponding blok-diagonal omponent of the original ovariane.The transition kernel for this algorithm is given by the following expressionK(�(i); A) = nbYj=1KMH�j(�(i)bj�1+1:bj ;�(i+1)�[bj�1+1:bj ℄;Aj)17



whereKMH�j(�; d�) denotes the j-th MH algorithm in the yle. Sine this kernel allows oneto visit all sets of positive measure, while being aperiodi, the algorithm's simple onvergeneholds true as the number of samples beomes very large.Obviously, hoosing the size of the bloks poses some trade-o�s. If one samples theomponents of a multi-dimensional vetor one-at-a-time, the hain may take a very longtime to explore the target distribution. This problem gets worse as the orrelation betweenthe omponents inreases. Alternatively, if one samples all the omponents together, thenthe probability of aepting this large move tends to be very low.4.3 Mixtures of MCMC stepsA very powerful property of MCMC is that it is possible to ombine several samplers intomixtures and yles of the individual samplers (Tierney 1994). This way we an have globalproposals to explore vast regions of the parameter spae and loal proposals to disover �nerdetails of the target distribution (Andrieu, de Freitas and Douet 2000, Andrieu and Douet1999). If the transition kernels K1 and K2 have invariant distribution p(�) eah, then theyle hybrid kernel K1K2 and the mixture hybrid kernel �K1 + (1 � �)K2, for 0 � � � 1,are also transition kernels with invariant distribution p(�).In this paper, we ombine the variational MCMC algorithm disussed in Setion 4.2with a random walk metropolis (also in bloks). This will be useful, for example, whenthe target distribution has many narrow peaks. Here, the variational proposal loks into apartiular peak while the random walk allows one to explore the spae around this peak.The pseudo-ode for this mixture is shown in Figure 7.1. Initialise �(0) and set i = 0.2. Iteration i+ 1� Sample u � U[0;1℄.� If u < �Perform the blok MH algorithm with the variational proposal.� else Perform a blok Metropolis algorithm with a random walk proposal.3. i+ 1 i+ 2 and go to 2.Figure 7: Mixture MCMC algorithm.18



5 SimulationsWe performed experiments on fully and partially observed logisti BNs. When all the nodesare observed, the posterior is unimodal and symmetri. This allows us to ompare thealgorithms by evaluating the distane between their estimates of the mean and the optimalmean. The likelihood will be higher for estimates lose to the optimal mean. Notie that theoptimal mean an be very di�erent from the generating mean. To illustrate this, we useda model with a single parameter set to 1 and generated 1000 observations. We repeatedthis four times and, eah time, we evaluated the likelihood distribution on a disrete grid.As shown in Figure 8, the generating mean is not neessarily equal to the optimal mean.Our non-informative noise model is, therefore, not amenable to model testing tehniquessuh as ross-validation. We also performed experiments on multimodal distributions thatshow the performane of the algorithm not only in terms of approximating the mean, butin terms of approximating the entire posterior distribution.
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Figure 8: Likelihood of the data (1000 observations) when generated by a Bernoulli logistinode with a single parameter set to 1. Clearly, 1000 observations are not enough to reoverthe true value of the parameter. We are dealing with a very uninformative noise model andonsequently standard ross-validation tests are not expeted to perform well.
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5.1 Unimodal modelsWe used a logisti model onsisting of one hild and a varying number of parents to gen-erate sets of 1000 data samples. We then omputed posterior approximations using thevariational EM algorithm, the blok M-H sampler with the variational proposal distribu-tion (VarMCMC), the random walk Metropolis (RW), and the MCMC mixture with avariational kernel and a Metropolis kernel (VarMixMCMC). We repeated this experiment10 times to obtain estimates of the performane in terms of means and error bars. Weused 5000 MCMC samples, set the random walk variane to 0:01, the bias parameter to0:5, the Bernoulli mean to 0:5 and the generating parameters to uniformly random valuesbetween on (0; 1℄. We hose a fairly at prior N (0; 100I) The results are shown in Figure9. It is lear that the VarMixMCMC algorithm outperforms the VarMCMC algorithm,
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pratial senarios we often need reliable and faster options. Notie also that this example... Computational time .......other performane measures next setion .......5.2 Multimodal modelsIn this experiment, we onsidered a network with two parents (one hidden and one observed).The posterior for � is, therefore, bivariate and an have two modes. These modes need notbe symmetrial. For demonstration, we set the generating parameters for the hidden andobserved nodes to 2 and �1 and the respetive Bernoulli means of the hidden variablesto 0:6 and 0:5. We set the bias parameter to 2, the number of data 50 and the prior toN (3; 10I). The posterior in this ase an be evaluated numerially on a two-dimensionalgrid. We show its ontour urves in Figure 10.The posterior is bimodal and asymmetri. The �gure also shows the ontour plot of theRW MCMC histogram after 1000 iterations and the variational approximation. We notie
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that the variational approximation �ts losely to one of the modes. We also notie that ifthe random walk starts in a region of low probability, it an take long to loate one of themodes. Its performane will, therefore, be poor when dealing with posteriors with elongatedontours...........
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Symbolsz1:t Staked vetor z1:t , (z1; :::; zj�1; zj ; zj+1; :::; zt)0.z�j Vetor with j-th omponent missing z�j , (z1; :::; zj�1; zj+1; :::; zk)0.Ai;j Entry of the matrix A in the ith row and jth olumn.A1:p;1:q;1:r Three-dimensional matrix of size p� q � r.In Identity matrix of dimension n� n.Rn Eulidean n-dimensional spae.N The set of natural numbers (positive integers).p(z) Distribution of z.p(zjy) Conditional distribution of z given y.p(z;y) Joint distribution of z and y.z �p(z) z is distributed aording to p (z).zjy �p (z) The onditional distribution of z given y is p (z).B(�) Sigma �eld of subsets of the spae �.O(N) The omputation omplexity is order N operations.Operators and funtionsA0 Transpose of matrix A.A�1 Inverse of matrix A.tr(A) Trae of matrix A.jAj Determinant of matrix A.IE(z) Indiator funtion of the set E (1 if z 2E, 0 otherwise).Æzi(dz) Dira delta funtion (impulse funtion).bz Highest integer stritly less than z.E(z) Expetation of the random variable z.var(z) Variane of the random variable z.exp(�) Exponential funtion.�(�) Gamma funtion.log(�) Logarithmi funtion of base e (ln).min, max Extrema with respet to an integer value.inf, sup Extrema with respet to a real value.argminz The argument z that minimises the operand.argmaxz The argument z that maximises the operand.k�kTV Total variation norm k�kTV , supA2B(�)�(A)� infA2B(�)�(A).24
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