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Abstract

Filtering—estimating the state of a partially ob-
servable Markov process from a sequence of
observations—is one of the most widely stud-
ied problems in control theory, AI, and com-
putational statistics. Exact computation of the
posterior distribution is generally intractable for
large discrete systems and for nonlinear con-
tinuous systems, so a good deal of effort has
gone into developing robust approximation algo-
rithms. This paper describes a simple stochas-
tic approximation algorithm for filtering called
decayed MCMC. The algorithm applies Markov
chain Monte Carlo sampling to the space of
state trajectories using a proposal distribution
that favours flips of more recent state variables.
The formal analysis of the algorithm involves
a generalization of standard coupling arguments
for MCMC convergence. We prove that for
any ergodic underlying Markov process, the con-
vergence time of decayed MCMC with inverse-
polynomial decay remains bounded as the length
of the observation sequence grows. We show
experimentally that decayed MCMC is at least
competitive with other approximation algorithms
such as particle filtering.

1 Introduction

Let us consider a partially observable Markov process with
state variable ��� and observation variable ��� . The process
is described by a transition model �	�
���
���� ����� , a sensor
model �	��� � � � � � , and a prior �	������� (see Figure 1). The
process is assumed to be stationary—the transition and
sensor models do not vary with � —and ergodic. At any
given current time � , the observations �������������� � (abbrevi-
ated as �!#" � ) are available. The basic problem of calculat-
ing �	�
� � � � #" � � —the belief state or distribution over pos-
sible states given the evidence to date—has been studied in
many guises, as state estimation, filtering, tracking, or situ-
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Figure 1: Unrolled Bayesian network depicting a partially
observable Markov process.

ation assessment. We will use the term “filtering,” and we
will concentrate on two aspects: (1) the update computa-
tion needed when a single new observation arrives, and (2)
the behaviour of the filtering algorithm in the limit of long
observation sequences (i.e., as �%$'& ).

Markov processes come in various flavours: discrete mod-
els such as hidden Markov models (HMMs) and discrete
dynamic Bayesian networks (DBNs); continuous mod-
els such as Kalman filters; and hybrid models such as
switching Kalman filters. All of these approaches are ex-
pressible as generalized DBNs with � �)( � � �����������+*� and
�,� ( � � �������-�#�/.� . Exact update is intractable for several of
the standard classes—all existing algorithms are 0��21 * � for
discrete DBNs and 0��3&4� for switching Kalman filters (i.e.,
the update cost grows without bound as �5$6& ). A va-
riety of approximation algorithms have therefore been sug-
gested, and several will be discussed in Section 2. Particle
filtering (PF) in particular is a robust and general algorithm
with many applications [Doucet et al., 2001]. Four crucial
features of PF are (1) it takes a constant amount of time per
update, independent of � (which is essential for any online
filtering algorithm); (2) by increasing the number of sam-
ples it can approach the true belief state arbitrarily closely;
(3) it can be applied easily to any standard Markov process
model; and (4) it is usually non-divergent—i.e., its estima-
tion error remains bounded for large � . There are cases,
however, where particle filtering diverges. Particle filtering
also has the drawback that its space requirement is propor-
tional to the number of samples used.

The main contribution of this paper is a new filtering al-
gorithm called decayed Markov chain Monte Carlo, or de-
cayed MCMC (Section 3). The basic idea is to concentrate



the sampling activity of the MCMC algorithm on state vari-
ables in the recent past, since they are more relevant to the
current state. Decayed MCMC shares the advantages of
particle filtering but is provably convergent given certain
standard conditions on the Markov process being observed.
In Section 4 we develop a generalized form of the standard
coupling lemma used to analyze convergence of MCMC
algorithms, and we prove that a particular form of decayed
MCMC using an inverse polynomial decay converges to
within an arbitrary � of the true belief state in time that is
independent of � , the length of the observation sequence.
This implies that decayed MCMC is non-divergent. In Sec-
tion 5, we demonstrate empirically that our algorithm’s per-
formance is comparable to that of PF. We draw our conclu-
sions in Section 6.

2 Approximate DBN inference methods

One reason why exact DBN inference is intractable is that
the running time of BN algorithms is exponential in the
tree width of the underlying graph. In a DBN, the exist-
ing dependencies will cause this quantity to grow to � as
the network is unrolled. Boyen and Koller [1998] have
suggested that this problem can be overcome by, at every
timestep, ignoring some of the weaker variable interdepen-
decies. This approach has been shown to work very well
on some DBNs. The downside is that picking the depen-
dencies to be ignored is a non-trivial problem, difficult to
automate. Moreover, once the simplifications have been
selected, the error is a deterministic function of the graph
and of the set of observations, so it is not possible to make
arbitrarily close approximations.

An alternative method is Loopy Belief Propagation [Mur-
phy and Weiss, 2001]. Here, belief propagation, which
is a tractable exact algorithm for polytree BNs, is ap-
plied to an arbitrary DBN until convergence. This ap-
proach gives approximate answers, but there are no guar-
antees as to their quality; once again, no arbitrary im-
provement of the approximation is possible. Recent gen-
eralizations of belief propagation [Yedidia et al., 2001;
Minka, 2001] do admit of successively more accurate ap-
proximations and may yield a practical filtering algorithm.

A third deterministic approximation algorithm can be de-
rived using variational techniques, which use the “clos-
est” simplified model that is tractable. The original varia-
tional algorithms were derived for specific families of DBN
structures, e.g., factorial HMMs [Ghahramani and Jordan,
1997], and resemble the Boyen–Koller algorithm in that
they perform well if the variational model is a good fit but
cannot produce arbitrarily close approximations.

Particle filtering [Doucet et al., 2001], the most widely ap-
plied algorithm, represents the belief state by a set of sam-
ples. The samples are propagated forward at every time
step, weighted according to the likelihood of the new obser-
vation, and then resampled according to the weights so as

to move the sample population towards the high-likelihood
part of the state space. As

�
, the number of samples, is in-

creased, the approximation becomes arbitrarily good. For-
mal analysis of convergence has proven quite difficult, and
the basic algorithm can diverge when the diversity of the
sample population collapses.

3 Decayed MCMC

3.1 MCMC filtering

MCMC [Gilks et al., 1996] generates samples from a pos-
terior distribution � ����� over possible worlds � by simu-
lating a Markov chain1 whose states are the worlds � and
whose stationary distribution is � ����� . Even though the
samples are not independent, the ergodic theorem guaran-
tees that expectations estimated from the samples converge
to the right answer as

� $'& .

For filtering, it would be natural to construct a Markov
chain such that the posterior distribution � ��� � is the be-
lief state �	���	� � �  " � � . Unfortunately, there is no satisfac-
tory way to define this chain without considering the values
of � #" ���  as well, and so the target stationary distribu-
tion � will be �	�
�  " � � � #" ��� . This means that the sample
worlds visited by the computational Markov chain will be
complete state trajectories over � #" � . The estimated belief
state �	�
�	� � �! " ��� can be extracted easily from the sampled
trajectories simply by looking at the value of � � in each
trajectory. The memory requirements of MCMC filtering
are therefore independent of the number of samples (and
therefore, of the required accuracy), unlike particle filter-
ing, since the algorithm can simply accumulate counts for
each value of � � (or for particular �
	� variables that may
be queried). On the other hand, the MCMC algorithm sam-
ples past states conditioned on their Markov blankets, so
we must store the history of evidence

� � � � . In practice,
there will be a limit � such that evidence more than � steps
in the past is forgotten. However, the convergence time of
the algorithm does not depend on � , and so a pessimistic
value of � can be used without affecting performance.

A computational Markov Chain with the appropriate sta-
tionary distribution can be constructed using Gibbs sam-
pling [Pearl, 1988]. Viewing the model as having a single
state variable ��� , the Gibbs sampling step first chooses �
and then samples �	� from the distribution conditioned on
its Markov blanket,

�������� ��������������������� ��!�"$#��������� �����%��!&���� ��� ����!&����'���(��� �'��!*)

(With multiple state variables, each state variable � 	� is
sampled conditional on its own Markov blanket.) Gibbs
sampling is local in that the Markov blanket involves nodes
in a neighbourhood of �
	� ; each sampling step takes time
that is, for bounded fan-in, independent of the model size.

1This “computational” Markov chain should be distinguished
from the “physical” Markov chain whose state is being estimated.



With Gibbs sampling, the order in which the �	� ’s are sug-
gested as candidates for change can be fixed. It is also per-
missible to pick variables at random from some distribution� �
��� over ��� ��������� , as long as every variable is guaranteed
to be chosen infinitely often. The algorithm (for the single
state-variable case) is as follows:

for � "��
to 	

choose 
 from �  
 !
sample

� �
from

���� � � � ���%� ��� ����� ��� � !
update counts for

��
For reasons that will become clear, the choice of the decay
function � �
��� is crucial to the success of MCMC filtering.

3.2 The decay function

We are concerned primarily with the mixing time � ��� � of
the MCMC process, which, roughly speaking, is the num-
ber of samples required before the estimated posterior is
within an error tolerance � of the true posterior. (A more
precise definition is given in Section 4.) In most anal-
yses of MCMC, one measures error with respect to the
posterior over states of the computational Markov process.
In our case, that would mean �	���  " � � � #" � � , the poste-
rior over trajectories. For filtering, however, we are inter-
ested only in the error with respect to the posterior marginal
�	�
� � � � #" � � . Let us consider a number of possible choices
for the decay function � ����� and see how the choice affects
the mixing time.

Uniform over ��� ��������� :� � ����� ( ��� � for ��� ���4� , 0 otherwise.
This is the usual way to apply Gibbs sampling to Bayesian
networks, with every variable sampled equally often. For
the posterior marginal error at ��� to be less than � , we must
sample � � some number of times proportional to some
increasing function of ��� � , and the total amount of work
will be � times larger than this. Therefore, MCMC filtering
with a uniform decay function fails as � $'& , because the
cost per update grows without bound.

A uniform decay fails because it spends arbitrary amounts
of time sampling variables in the far distant past that are
essentially irrelevant to the current state. More precisely,
if the “physical” Markov process (conditioned on the evi-
dence) is ergodic, old values of both the observations and
the states are forgotten exponentially fast with a rate that
can be bounded by the Birkhoff coefficients of the pro-
cess [Shue et al., 1998]. Thus, it is helpful to think of a
physical mixing time ��� for the observed process.

Uniform over fixed window � �
��������� � ����� ��� :��� �
��� ( ��� � for �����!�"�#�����4��� � , 0 otherwise.
Uniform sampling over the recent past has the advantage
that the marginal at ��� will converge in time that depends
only on the window size � and not on � ; it has the dis-
advantage that it converges to the wrong distribution unless
� is chosen to be much larger than the physical mixing
time ��� (which is typically unknown). Further, once � has

been fixed, arbitrary improvements in the accuracy cannot
be made. Finally, the fixed-window approach spends as
much time flipping variables at time ���!�$��� as it does
variables at time � , which is wasteful.

Exponential decay:��% �
��� ('& %)( � %+* � �,�-, for ��4���4� , 0 otherwise.
Since an exponential decay ensures that every � is sam-
pled infinitely often in the limit, convergence to the cor-
rect marginal at ��� is guaranteed. If the decay constant
�/. ( ����0 is matched to the physical mixing time �/� , we
expect reasonably fast convergence because the sampling
frequency is proportional to “relevance.” However, since
�1� is unknown, there is a danger of setting �2. too large (in
which case samples in the far past are wasted) or too small
(in which case the number of samples needed for conver-
gence to the correct marginal grows exponentially in the
difference � � �'� . and also with ��� � ).
Inverse polynomial decay:�43 ����� ('& 3 ����� �5��� � � * �� 3 , for ��� ���4� , 0 otherwise.
Again, we have convergence to the correct marginal in the
limit. We prove in Section 4 that the inverse polynomial
decay results in a convergence time that is independent of
� . Moreover, because the proof does not depend on the
starting state of the MCMC algorithm, decayed MCMC is
robust against divergence as �%$'& .

4 A mixing time bound

We now prove a bound on the mixing time of decayed
MCMC with an inverse polynomial decay � 3 ����� for dis-
crete DBNs. The bound does not depend on the history
length. For simplicity, we assume the DBN has one state
variable and one observation variable (this will not affect
the asymptotic behaviour of the mixing time).

4.1 Notation

We begin by introducing some notation. All discussion of
mixing times is assumed to be with respect to some pre-
specified � . The total variation distance between two prob-
ability distributions on a set

�
is defined as

687  � 7:9;6 ( �
1
<
= >;? �

7  �����@� 7A9 ��� ���
The state and observation variables of the DBN take val-
ues in the finite sets B and C respectively. � will denote
the length of the evidence sequence. We define the mixing
parameter D of a DBN as the maximum, over all values
� �&�  ��� �
�� � �:E�&�  � �AE�
� GF B and ��� F C , of6 �	�
� � � � �&�  � � �
�  ��� � �H� �	��� � � � E�&�  ��� E�
�� ��� � � 6
D will be part of the constant factor in our mixing time
analysis, and it summarizes the mixing properties of the
DBN. For a given evidence sequence � , a tighter “data-
dependent” version of D can be used by not maximizing
over ��� .



Our MCMC notation is from Jerrum and Sinclair [1997].
The state space of the computational MCMC process is� ( B � , the set of all physical trajectories of length � .
The stationary distribution of MCMC on

�
is denoted by

� . ���= will denote the probability distribution on
�

result-
ing from starting in state � F � , and running MCMC for� steps. In general, superscripts will refer to the number
of time steps of MCMC, and subscripts to time steps in
the DBN, so that ���� is the state of the � ��� timeslice of the
DBN after � steps of MCMC. (This conflicts slightly with
the earlier use of superscripts as identifiers of individual
variables within a timeslice, but we will avoid the latter us-
age in what follows.) ������� � denotes the error—the total
variation distance between the MCMC distribution at step� and the stationary distribution, i.e.,

6 �	�= � � 6 . The worst-
case distance for all starting states is � � (�
��� = � � ����� .
The mixing time � ��� � is then 
���� � � � ����� ��� , i.e., the first
time at which the worst-case distance is less than � . We
will often omit the dependence on � , since it is a prespeci-
fied constant.

We are specifically interested in the � ��� timeslice, and so
define � to be the operator that takes a probability dis-
tribution on

�
and marginalizes it onto the last coordinate.

We can then define the marginal error ���. ����� ( 6 � �����= � �
� ��� � 6 , and use this to define ���. and � . ��� � as before.
The marginal mixing time � . is the quantity we want to
bound.

4.2 Coupling and Marginal Coupling

The technique of coupling [Bubley and Dyer, 1997] is
commonly used in proving bounds on the mixing time of
MCMC algorithms. The idea is that we consider two in-
stances of the chain, and bound the mixing time of the chain
in terms of how long the two instances take to come to-
gether. Now, if the two instances were independent, this
would not be a very useful thing to do because the bound
would be very loose. However, the power of the method
is that we may “couple” the two instances together how-
ever we like, by specifying their joint transition matrix, so
long as their marginal transition behaviour is according to
the given Markov chain, and the coupling bounds will still
hold. More precisely, we have the following theorem :

Theorem 1 (MCMC Coupling Theorem) Given a
Markov transition matrix � , let

� ����� and
������-� be two

Markov chains such that

� For each � , the marginal transitions �	����� �� � ��� � and
�	� ���� �� � ���� � are given by �
� ��� ( ������ ��� �� ( ���� ��

Then the mixing time satisfies � ��� ��� �� � � , where

�� (!
��"=$#&%= ' � 
���� � � � � � ( �� � �!� � � ( � � �� � ( �� � �

We cannot use this theorem directly, because we want to
bound the marginal mixing time � . rather than the mixing
time � for the entire sequence. Of course, � . � � , but
because � depends on � , this bound is too weak for our
purposes. Therefore, we prove a modified version of the
coupling theorem. First, we recall a lemma from probabil-
ity theory.

Lemma 1 (Coupling Lemma) Let ( and ) be discrete
random variables with distributions given by * and � . Then

1. � �+(-,( )�/. 6 * � � 6
2. There exists a joint distribution for ( and ) with

marginals * and � that allows equality to be achieved
in the above.

Now let 01�. ��� � �� � be the marginal distance after � steps
between two MCMC processes starting from states � , �� ,
i.e., 01�. ����� �� � ( 6 � �2���= � �2� �2���%= � 6 . As before, we
will be concerned with the worst-case marginal distance:
03�. (4
��� =$#&%= 03�. ��� � �� � . We can show that this gives an
upper bound on the marginal error:

Lemma 2 ���. �503�. .

Proof: For � F � , let � � ��� � be the probability distribution
that assigns � to � and 6 to anything else. We can then write
� as a convex combination 7 = >$8:9 = � � ����� where 9 = .;6
and 7 =<9 = ( � .
We can view a probability distribution

7
over
�

as a vector,
and the transition kernel of MCMC as a matrix � , so that if
we apply one step of MCMC to a distribution

7
, we obtain

the distribution
7 � . Since � is stationary,

� ( �=� �
(

<
= 9 = �

� ��� �>� � ( <
= 9 = � �=

Since � is also linear, � ��� � (?7 =<9 = � �����= � , i.e.,
� ��� � is contained in the convex hull of the � ���@�= � .
Let �� F � , and consider the ball centered at � ���@�%= � with
radius 
��" = 6 � �����%= �)�3� �2���= � 6 . Since this is convex and
contains all the � ���	�= � , it must also contain � ��� � , and
so, for any �� ,

6 � �2� � � �� ���@��� ��� � 6 � 
��"= 6 � ��� � � �� ���@��� ��� � ����� � 6
� 0 �.

The claim follows by taking a maximum over �� .

We will use these lemmas to prove a marginal version of
Theorem 1. Essentially, instead of looking at the time it
takes until ��� ( ���� , we just look at how long it takes until
they agree on their � ��� coordinate, i.e., ���� ( ����� . Now,
we can no longer require that the chains stay together once



they come together on the � ��� coordinate, because that
would violate the requirement that each chain’s dynamics
mirror the specified Markov chain. However, we can still
get a bound on total variation distance after

�
steps. In our

applications, this bound will be a non-increasing function
of

�
, and so we get a bound on � . as well.

Theorem 2 (Marginal Coupling Theorem) For a given
transition matrix � on

�
, let

� ����� and
�@������ be Markov

chains such that for all � , �	����� �� � ��� � and �	� ���� �� � ���� �
are given by � . Then

� �. � 
���=�#&%= � � � �� ,( �� �� � � � ( � � �� � ( ��)�

Proof: By Lemma 2, ���. � 03�. . Since
� ����� and

� ������
both evolve marginally according to � , 0 �. ��� � �� � equals6 �	��� � � ��� � � �� � � ( ��� � �� ���H� �	� �� � � ��� � � �� � � ( ����� �� ��� 6
We can now apply part 1 of Lemma 1 to finish the proof.

Another useful extension of the coupling framework is
multiple-step coupling. Suppose we have a Markov chain
with dynamics given by the transition matrix � , and we
want to show that the mixing time is less than

�
. To use

the coupling theorem directly requires finding a coupling
on a single step of � which brings two instances together
in

�
steps with high probability. Sometimes, however, it

is simpler to consider the
�

-step dynamics with transition
matrix � ?

, and find a coupling for this new dynamics that
brings two instances together in � step with high probabil-
ity. Since both � and � ?

have the same stationary distri-
bution, the existence of such a coupling would also imply
that � mixes in

�
steps. This idea extends to marginal cou-

pling, resulting in the following corollary to Theorem 2.

Corollary 1 Let � be a transition matrix on
�

, and
� � 6 .

Suppose we can construct a coupling �
�+� ��+� $ ��� ? � �� ? �
such that �	�
� ? � � � and �	� �� ? � �� � are both given by � ?

,
and �	�
� ?� ,( �� ?� � � ( � � �� ( �� ��� ����� � �� . Then the
marginal mixing time of � satisfies � . ��� ��� �

.

4.3 The decayed window dynamics

Suppose that we have a polynomial decay function �83 �
���
but modify the Gibbs sampling algorithm so that it does
nothing whenever � 3 chooses a time ��� � ��� � � for
some fixed � . We call this the decayed window dynam-
ics; its transition kernel is � 3 # � . Since it ignores evidence
before ��� � � � , its stationary distribution � � will not
in general equal � . In this section, we will find a bound on
the mixing time of the decayed window dynamics which
depends on � but not � . This result will then be used to
bound the mixing time of decayed MCMC.

Given a matrix � and vector � , define the Dirichlet Form

��� # � � *�� * � ( �
1
<
=$# %= � * ��� �H� * �

���� �
9
� ��� � �� �	� �����

Let 
 � be the family of nonnegative real-valued functions
on
�

such that 7 = ������� *
9
����� ( � . For * F 
 � , define

the entropy � � � *
9
� ( 7 = ������� *

9
�����������*

9
��� � . Finally,

define the logarithmic Sobolev constant by

� � � � ����� ( ������ >����
��� # � � *�� * �
� � � * 9 �

The logarithmic Sobolev constant provides a bound on the
mixing time, via the following theorem2 [Diaconis and
Saloff-Coste, 1996], [Randall and Tetali, 2000].

Theorem 3 For a Markov chain with transition kernel �
and stationary distribution � , with ��� (!
��&� = � ����� ,

� ��� ��� � � � � � ��� ���������������� ��� � � ����������� ��� � �
Define a matrix � unif # � as follows : if ��� �� differ
only at the � ��� timeslice for some � � � � � ,
then � unif # � ��� � �� � ( �	�
� �)( �� � � � mb

* �-, ( � mb
* �-, � ; other-

wise, � unif # � ��� � �� � ( 6 . In statistical physics, � unif # � is
an example of a generator of the Glauber dynamics of a
lattice spin system. Its log Sobolev constant is bounded as
follows: [Martinelli, 1999]3

Theorem 4 � � � � unif # � � � � ��. �  � D)� � 6 where �  � D��
is independent of � .

� unif # � is closely related to � 3 # � , and we can use Theo-
rem 4 to bound the mixing time of � 3 # � .

Theorem 5 Given a DBN with mixing parameter D , the de-
cayed window dynamics with window size � and a poly-
nomial decay function � 3 mixes to within �/�"! of � � in� 9 � D �$#�� � �� 3 ������� � �������� ��� � ��� steps where � 9 �-D �$#�� is
independent of � .

Proof: Since 
�����% �'&�� � �)( �43 �
��� ( �43 �
� � � � ��� , the
Dirichlet forms of � unif # � and � 3 # � satisfy the inequality���+*-, . # / . � *�� * ��. � 3 �
���!�"��� � ��� unif

, . # / . � *�� * ��
is the only thing in the definition of � � which depends on
� . So, by Theorem 4,
� � 
� ��� 3 # � ��� � � � � � 3 ��� ���"�#��� � � � ��� unif # � ��� � �

( 0�� � �� 3 � �  � D)���
Also, �0�� � � � �1 for some constant � 1 , and so�����,��������� ��� �0�� ��� ( 0���������� � ��� . Plugging all this into
Theorem 3 gives the desired bound.

This bound on the mixing time implies the existence of a
multiple-step coupling that makes two instances of the de-
cayed window dynamics come together quickly:

2This bound is similar to classical bounds based on the
eigengap of 2 , the main difference being that we have a term35476  35476  �98;:�< !�!

instead of
35476  �=8=:><�!

, which turns out to be a cru-
cial improvement

3See Theorem 4.6 of this reference, but note that the definition
of ?�@ used there is the inverse of our definition



Corollary 2 For
� . � 9 � D�� � �� 3 �����,� � ������,� ��� � � , there

exists a coupling �
� � �� � $ �
� ? � �� ? � such that if
�	�
� ? � � � and �	� �� ? � ��+� are given by � ?3 # � , then

�%��� �� �	��� ? ,( �� ? � � ( ��� �� ( ���� � �/� � .

Proof: By Theorem 5, the distributions �	�
� ? � � ( ���
and �	� �� ? � �� ( �� � are within �/��! of � � . Therefore, by
the triangle inequality, they are within ��� � of each other.
By part 2 of Lemma 1, we can couple the chains so that
they are equal with probability at least ��� �/� � .

4.4 Constructing a coupling

Let � 3 denote the decayed MCMC dynamics with in-
verse polynomial decay � 3 �
��� . We want to bound the
mixing time using Corollary 1. To do this, we need to
find a constant

�
, and, for all � � �� F � , a coupling

�	�
� ? � �� ? � � ( ��� �� ( �� � with the appropriate marginals,
such that �	��� ?� ( �� ?� � � ( � � �� ( �� � � ��� � .
Our strategy will be to couple the evolution � $ � ?

to
an instance of the decayed window dynamics � $ � �
with �	��� � � � � given by � ?3 # � , and similarly couple the

evolution
�� $ �� ?

to
�� $ �� � . By the results of the

previous section, we can choose
� ( 0�� � �� 3 �����,� � ��� ,

then � � and
�� � can be coupled so that they are equal

with high probability. However, we will also need to make
sure (in Lemma 3), that with high probability, � ?� and
� �� do not become different (and similarly for

�� ?� and�� �� ). This will allow us to conclude, in Theorem 6, that
� ?� ( � �� ( �� �� ( �� ?� where

�
is constant (because �

will be chosen independently of � ).

Lemma 3 If
� ( 0�� � �� 3 ������� � ��� , then for sufficiently

large � , there is a conditional distribution �	�
� ? ��� � � � �
such that �	�
� ? � � � is given by � ?3 , �	�
� � � � � is given by
� ?3 # � , and, �%� �	�
� �� ,( � ?� � � ( � ��� ��� � .

Proof: Let � E * � , ( � � * � , ( � . For � . � pick
� � according to the distribution ��3 . If � �

� � �
� , �'E * � �  , ( � � * � �  , , and � E * � �� , ( � � * � �� , , then
sample � ��� from �	�
������� � E * � �  ,� � �  � � E * � �  ,� � �� � �����-� and let

� E * � ,��� ( � � * � ,��� ( � � � . If, instead, � � � � �#� , then only

change � E * � ,� . Finally, if � �
� � � � but � E * � �  ,

mb
* � � , ,(

� � * � �  ,mb
* ��� , , generate � E * � ,� � and � � * � ,� � independently. Set

� ? ( � E * ? , and � � ( � � * ? , .
Let

� � be the first time such that � ?�� ( � � � , and for� � 6 , let
���

be the first time after
��� �  such that

� ?
	 ( � � � � �
. Initially, � E * � , ( � � * � , , and so, by

definition of our coupling, the only way it could happen
that � E * ? ,� ,( � � * ? ,� is that

� � � �
. Intuitively, for a

“disagreement” to reach timestep � , it has to start before
� � � and “percolate” towards � , one step at a time.

Each
� � � � � �  is a geometric variable with parameter� �
� �!�$� � � ( & 3 � ��� � � � � � ��

3
, and so

' � � � � � ��� (
�<
��� 
' � �� � �� �  �

( & 3
�<
��� 

� �� 3�� �
9 � 3

But by assumption,
� ( 0�� � �� 3 �����,� � ��� �

0�� �
9 � 3 � ( ' � � � � � � � . So, for large enough � ,

by a Chernoff bound, it happens with probability greater
than � � ��� � that

� � . � � � � � . �
, in which case

� ?� ( � �� .

Combining the couplings from Corollary 2 and Lemma 3,

Theorem 6 For a DBN with mixing parameter D , there ex-
ists

�
such that for all � and all evidence sequences of

length � , the decayed MCMC algorithm with polynomial
decay � 3 mixes in at most

�
steps.

Proof: Let � � 6 , and � � �� F � . Pick � large
enough that the conclusion of Lemma 3 holds with� ( � 9 �-D)� � �� 3 �����,� � �������,� ��� � � , so there is a distri-
bution � 3 ��� ? � � � � � ( � � such that � 3 �
� ? � � ( ���
is given by � ?3 , � 3 ��� � � � ( � � is given by � ?3 # � ,
and � 3 �
� ?� ( � �� � � ( ��� � � � ��� � . Next,
by Corollary 2, there exists a joint distribution
� � # 3 �
� � � �� ��� � ( ��� �� ( ���� having the same marginal
on � � as � 3 , such that � � # 3 �
� � ( �� � � � ( ��� �� ( �� �@.
��� �/� � . Since we have already generated � � , we
can generate

�� � from the conditional distribution
� � # 3 � �� � � � ( ��� �� ( ���� � �-� . Finally, by Lemma 3, there
is a joint distribution

�� 3 � �� � � �� ? � �� ( �� � with the correct
marginals, such that

�� 3 � �� �� ( �� ?� � �� ( �� � � � � ��� � ,
and we generate

�� ?
from

�� 3 � �� ? � �� ( �� � �� ��� . We have
specified a distribution �	��� ? � � ��� �� ? � �� ��� � � ��+� and,
by a union bound, �	�
� ?� ,( �� ?� � � ( ��� �� ( ������ � . Now
marginalize out � � and

�� � , and apply Corollary 1 to get
the desired mixing time bound.

5 Empirical analysis

We now give some experimental results, on both synthetic
and real-world example DBNs, performed using Kevin
Murphy’s toolbox [Murphy, 2001]. We first look at some
simple, artificial DBNs. The advantages of doing this are
that we can compute the exact posterior and therefore the
error of our algorithm, and also that it is easy to precisely
control the mixing parameter of such DBNs. In general,
the performance of Monte Carlo approximation algorithms
depends not so much on the complexity of the underlying
graph as on the determinism in the transition model. So we
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Figure 2: Mixing time ( � ( � 6�� ) as a function of history
length.
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Figure 3: Error as a function of number of samples for an
HMM with slow mixing parameter.
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Figure 4: Error as a function of number of samples for an
HMM with fast mixing parameter.
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Figure 5: Error as a function of time for the WATER DBN,
using � 6 6$6 samples.
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Figure 6: Error versus time for a Switching Kalman Filter,
for Decayed MCMC with quadratic decay using 500 sam-
ples with gap 3, and Particle Filter with 500 particles.

expect that the qualitative behaviour that we observe here
will carry over to larger models.

We begin by performing an experiment to verify our the-
orems on bounded convergence. Figure 2 shows mixing
time (for a quadratic decay) as a function of history length
for various DBNs with � ( � 6�� . As can be seen, the mix-
ing time depends strongly on the mixing parameter of the
DBN. Determinism in the transition model increases the
mixing time, while determinism in the observation model
decreases it (since the increasing importance of the obser-
vations means that history becomes less relevant). How-
ever, for given transition and observation models, the mix-
ing time remains bounded as the history length increases.

The second experiment demonstrates the convergence of
the various decay functions for DBNs with different mix-
ing parameters. Figures 3 and 4 show error as a function of
number of samples, for two different HMMs with fixed his-



tory length � 6$6$6 . The first point is that the fixed-window
error converges very fast, but not to 0, since it ignores his-
tory beyond a certain point. In Figure 3, which is an HMM
with a slow mixing parameter, the fast exponential decay
does well initially, but then the rate of convergence slows
because the decay function rarely samples beyond a cer-
tain point. The slow exponential decay performs better on
this example. On the other hand, in Figure 4, the situation
is reversed, and the fast exponential outperforms the slow
one, because in this case it is a better match for the forget-
ting rate of the DBN. The quadratic decay is more robust,
performing well for both HMMs.

We next consider a larger DBN – the WATER network
[Jensen et al., 1989], used for monitoring a water purifi-
cation plant. Figure 5 shows error as a function of history
length, using � 6 6$6 samples. Undecayed MCMC shows the
expected increase in error, as the samples are forced to
cover more ground. Among the other algorithms, fixed-
window MCMC does slightly worse than the other two,
because it ignores history beyond a certain point. Particle
filtering and MCMC with a quadratic decay have almost
identical performance. The error of decayed MCMC re-
mains bounded, as suggested by our theoretical results.

Finally, we consider an example with continuous state for
which exact inference is intractable, namely a switching
Kalman filter. It consists of a switch variable

� � taking
finitely many values, a continuous state variable � � (
� �&�  � � � ��� � , and observation � � ( � � ��� � , where � � and
� � are Gaussian. This can model, for example, noisy obser-
vations of the position of a maneuvering object. Figure 6
shows error (measured as the distance between the mean of
the samples to the true value) versus history length.

6 Conclusions

We have described a simple approximate filtering algo-
rithm called decayed MCMC. Experimentally, it has per-
formance comparable to other filtering algorithms. Also,
being an MCMC algorithm, it is amenable to theoretical
analysis, and we have shown that it comes with strong con-
vergence guarantees.

Directions for future work include generalizing the conver-
gence proofs to continuous state spaces and improving the
algorithm using parallel chains. Another interesting possi-
bility is to choose the number of samples adaptively based
on recent evidence – an option not available with sequential
methods.
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