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Abstract

Sequential decision problems are often ap-
proximately solvable by simulating possible
future action sequences. Metalevel decision
procedures have been developed for select-
ing which action sequences to simulate, based
on estimating the expected improvement in
decision quality that would result from any
particular simulation; an example is the re-
cent work on using bandit algorithms to con-
trol Monte Carlo tree search in the game
of Go. In this paper we develop a theo-
retical basis for metalevel decisions in the
statistical framework of Bayesian selection
problems, arguing (as others have done) that
this is more appropriate than the bandit
framework. We derive a number of basic
results applicable to Monte Carlo selection
problems, including the first finite sampling
bounds for optimal policies in certain cases;
we also provide a simple counterexample to
the intuitive conjecture that an optimal pol-
icy will necessarily reach a decision in all
cases. We then derive heuristic approxima-
tions in both Bayesian and distribution-free
settings and demonstrate their superiority to
bandit-based heuristics in one-shot decision
problems and in Go.

1 Introduction

The broad family of sequential decision problems in-
cludes combinatorial search problems, game playing,
robotic path planning, model-predictive control prob-
lems, Markov decision processes (MDP), whether fully
or partially observable, and a huge range of applica-
tions. In almost all realistic instances, exact solution
is intractable and approximate methods are sought.
Perhaps the most popular approach is to simulate a
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limited number of possible future action sequences, in
order to find a move in the current state that is (hope-
fully) near-optimal. In this paper, we develop a the-
oretical framework to examine the problem of select-
ing which future sequences to simulate. We derive a
number of new results concerning optimal policies for
this selection problem as well as new heuristic policies
for controlling Monte Carlo simulations. As described
below, these policies outperform previously published
methods for “flat” selection and game-playing in Go.

The basic ideas behind our approach are best ex-
plained in a familiar context such as game playing.
A typical game-playing algorithm chooses a move by
first exploring a tree or graph of move sequences and
then selecting the most promising move based on this
exploration. Classical algorithms typically explore in a
fixed order, imposing a limit on exploration depth and
using pruning methods to avoid irrelevant subtrees;
they may also reuse some previous computations (see
Section 6.2). Exploring unpromising or highly pre-
dictable paths to great depth is often wasteful; for a
given amount of exploration, decision quality can be
improved by directing exploration towards those ac-
tions sequences whose outcomes are helpful in selecting
a good move. Thus, the metalevel decision problem is
to choose what future action sequences to explore (or,
more generally, what deliberative computations to do),
while the object-level decision problem is to choose an
action to execute in the real world.

That the metalevel decision problem can itself be for-
mulated and solved decision-theoretically was noted
by Matheson (1968), borrowing from the related con-
cept of information value theory (Howard, 1966). In
essence, computations can be selected according to
the expected improvement in decision quality resulting
from their execution. I. J. Good (1968) independently
proposed using this idea to control search in chess, and
later defined “Type II rationality” to refer to agents
that optimally solve the metalevel decision problem
before acting. As interest in probabilistic and decision-



theoretic approaches in Al grew during the 1980s, sev-
eral authors explored these ideas further (Dean and
Boddy, 1988; Doyle, 1988; Fehling and Breese, 1988;
Horvitz, 1987). Work by Russell and Wefald (1988,
1991a,b) formulated the metalevel sequential decision
problem, employing an explicit model of the results of
computational actions, and applied this to the control
of game-playing search in Othello with encouraging re-
sults.

An independent thread of research on metalevel con-
trol began with work by Kocsis and Szepesvari (2006)
on the UCT algorithm, which operates in the context
of Monte Carlo tree search (MCTS) algorithms. In
MCTS, each computation takes the form of a simula-
tion of a randomized sequence of actions leading from
a leaf of the current tree to a terminal state. UCT
is primarily a method for selecting a leaf from which
to conduct the next simulation, and forms the core of
the successful MoGoO algorithm for Go playing (Gelly
and Silver, 2011). The UCT algorithm is based on
the the theory of bandit problems (Berry and Frist-
edt, 1985) and the asymptotically near-optimal UCB1
bandit algorithm (Auer et al., 2002). UCT applies
UCBI recursively to select actions to perform within
simulations.

It is natural to consider whether the two indepen-
dent threads are consistent; for example, are bandit
algorithms such as UCB1 approximate solutions to
some particular case of the metalevel decision prob-
lem defined by Russell and Wefald? The answer, per-
haps surprisingly, is no. The essential difference is
that, in bandit problems, every trial involves execut-
ing a real object-level action with real costs, whereas
in the metareasoning problem the trials are simula-
tions whose cost is usually independent of the util-
ity of the action being simulated. Hence, as Audibert
et al. (2010) and Bubeck et al. (2011) have also noted,
UCT applies bandit algorithms to problems that are
not bandit problems.

One consequence of the mismatch is that bandit poli-
cies are inappropriately biased away from exploring ac-
tions whose current utility estimates are low. Another
consequence is the absence of any notion of “stopping”
in bandit algorithms, which are designed for infinite se-
quences of trials. A metalevel policy needs to decide
when to stop deliberating and execute a real action.

Analyzing the metalevel problem within an appropri-
ate theoretical framework ought to lead to more effec-
tive algorithms than those obtained within the bandit
framework. For Monte Carlo computations, in which
samples are gathered to estimate the utilities of ac-
tions, the metalevel decision problem is an instance
of the selection problem studied in statistics (Bech-

hofer, 1954; Swisher et al., 2003). Despite some recent
work (Frazier and Powell, 2010; Tolpin and Shimony,
2012b), the theory of selection problems is less well
understood than that of bandit problems. Most work
has focused on the probability of selection error rather
than optimal policies in the Bayesian setting (Bubeck
et al., 2011). Accordingly, we present in Sections 2
and 3 a number of results concerning optimal policies
for the general case as well as specific finite bounds on
the number of samples collected by optimal policies
for Bernoulli arms with beta priors. We also provide a
simple counterexample to the intuitive conjecture that
an optimal policy should not spend more on deciding
than the decision is worth; in fact, it is possible for an
optimal policy to compute forever. We also show by
counterexample that optimal index policies (Gittins,
1989) may not exist for selection problems.

Motivated by this theoretical analysis, we propose in
Sections 4 and 5 two families of heuristic approxi-
mations, one for the Bayesian case and one for the
distribution-free setting. We show empirically that
these rules give better performance than UCBI1 on
a wide range of standard (non-sequential) selection
problems. Section 6 shows similar results for the case
of guiding Monte Carlo tree search in the game of Go.

2  On optimal policies for selection

In a selection problem the decision maker is faced with
a choice among alternative arms®. To make this choice,
they may gather evidence about the utility of each of
these alternatives, at some cost. The objective is to
maximize the net utility, i.e., the expected utility of
the final arm selected, less the cost of gathering the
evidence. In the classical case (Bechhofer, 1954), evi-
dence might consist of physical samples from a product
batch; in a metalevel problem with Monte Carlo simu-
lations, the evidence consists of outcomes of sampling
computations:

Definition 1. A metalevel probability model is
a tuple (Uy, ..., Uy, &) consisting of jointly distributed
random variables:

e Real random variables Uy, ..., Uy, where U; is the

utility of arm i, and

e A countable set £ of random variables, each vari-
able E € £ being a computation that can be per-
formed and whose value is the result of that com-
putation, where e € E will denote that e is a po-
tential value of the computation E.

! Alternative actions are known as arms in the bandit

setting; we borrow this terminology for uniformity.



For simplicity, in the below we’ll assume the utilities
U, are bounded, without loss of generality in [0, 1].

Example 1 (Bernoulli sampling). In the Bernoulli
metalevel probability model, each arm will either
succeed or not U; € {0,1}, with an unknown latent
frequency of success ©;, and a set of stochastic sim-
ulations of possible consequences € = {E;;|1 < i <
k,7 € N} that can be performed:

O, S Uniform[0, 1]
U | ©; ~ Bernoulli(©;)
Eij | 62 1’13 Bernoulli(@i)

forie{l,... k}
forie{l,... k}

forie{l,... )k}, j€N

The one-armed Bernoulli metale'vel probability
model has k = 2, ©; = X € [0,1] a constant, and
O3 ~ Uniform|0, ]

A metalevel probability model, when combined with a
cost of computation ¢ > 0,2 defines a metalevel deci-
sion problem: what is the optimal strategy with which
to choose a sequence of computations E € £ in order
to maximize the agent’s net utility? Intuitively, this
strategy should choose the computations that give the
most evidence relevant to deciding which arm to use,
stopping when the cost of computation outweighs the
benefit gained. We formalize the selection problem as a
Markov Decision Process (see, e.g., Puterman (1994)):

Definition 2. A (countable state, undiscounted)
Markov Decision Process (MDP) is a tuple M =
(S, s0, As, T, R) where: S is a countable set of states,
so € S is the fixed initial state, As is a countable set
of actions available in state s € S, T(s,a,s’) is the
transition probability from s € S to s’ € S after per-
forming action a € As, and R(s,a,s’) is the expected
reward received on such a transition.

To formulate the metalevel decision problem as an
MDP, we define the states as sequences of computa-
tion outcomes and allow for a terminal state when the
agent chooses to stop computing and act:

Definition 3. Given a metalevel probability model®
(U1,...,Ux,E) and a cost of computation ¢ > 0, a
corresponding metalevel decision problem is any

2The assumption of a fixed cost of computation is a
simplification; precise conditions for its validity are given
by Harada (1997).

3Definition 1 made no assumption about the compu-
tational result variables E; € &, but for simplicity in the
following we’ll assume that each E; takes one of a count-
able set of values. Without loss of generality, we’ll further
assume the domains of the computational variables E € £
are disjoint.

MDP M =

S={L}u{{e1...,en) € € E; foralli,
for finite n > 0 and distinct E; € £}

(S, 50, As, T, R) such that

80 = ()
As = {J-} Ué&s

where 1. € S is the unique terminal state, where £, C €
is a state-dependent subset of allowed computations,
and when given any s = (e1,...,e,) € S, computa-
tional action E € £, and s’ = (e1,...,en,€) € S where
e € E, we have:

T(s,E,s") = P( =e|Ei=e€1,....,B, =¢yp)
T(s,1,1)=
R(s,E,s') =
R(s, L, 1) fmaxul( )
where p;(s) =E[U; | By =eq,...,Ey, = ey).

Note that when stopping in state s, the expected util-
ity of action ¢ is by definition y;(s), so the optimal ac-
tion to take is ¢* € argmax; p;(s) which has expected
utility g« (s) = max; p;(s).

One can optionally add an external constraint on the
number of computational actions, or their total cost,
in the form of a deadline or budget. This bridges with
the related area of budgeted learning (Madani et al.,
2004). Although this feature is not formalized in the
MDP, it can be added by including either time or past
total cost as part of the state.

Example 2 (Bernoulli sampling). In the Bernoulli
metalevel probability model (Example 1), note that:

O, | Ei,..., Eini ~ Beta(si +1, fz + 1) (1)

s+ 1
=) ©
(si +1)/(n; +2) (3)

Eini+1) | Ei1y ..., Ein, ~ Bernoulli (

E[U; | Eir,...,Em,) =
by standard properties of these distributions, where
S; = Z;“Zl By, is the number of simulated successes of
arm i, and f; = n; — s; the failures. By Equation (1),
the state space is the set of all k pairs (s;, f;); Fqua-
tions (2) and (3) suffice to give the transition proba-
bilities and terminal rewards, respectively. The one-
armed Bernoulli case is similar, requiring as state just
(s, f) defining the posterior over ©s.

Given a metalevel decision problem M =
(S, s0,As, T, R) one defines policies and value
functions as in any MDP. A (deterministic, station-
ary) metalevel policy 7 is a function mapping states
s € S to actions to take in that state m(s) € A,.



The value function for a policy 7 gives the expected
total reward received under that policy starting from a
given state s € S, and the Q-function does the same
when starting in a state s € S and taking a given
action a € Aj:

N

Vir(s) = B3y | Y R(Si,m(Si), Siv1) [ So=s| (4)
=0

where N € [0,00] is the random time the MDP is
terminated, i.e., the unique time where 7(Sy) = L,
and similarly for the Q-function Q7,(s,a).

As usual, an optimal policy 7*, when it exists, is one
that maximizes the value from every state s € S, i.e.,
if we define for each s € S

Var(s) = sup Vi (s),

then an optimal policy 7* satisfies VJ (s) = Vi (s) for
all s € S, where we break ties in favor of stopping.

The optimal policy must balance the cost of computa-
tions with the improved decision quality that results.
This tradeoff is made clear in the value function:

Theorem 4. The value function of a metalevel deci-
sion process M = (S, so, As, T, R) is of the form

Vir(s) =ER;[—¢ N 4+ max u;(Sy) | So = ]

where N denotes the (random) total number of com-
putations performed; similarly for Q7,(s,a).

In many problems, including the Bernoulli sampling
model of Example 2, the state space is infinite. Does
this preclude solving for the optimal policy? Can in-
finitely many computations be performed?

There is in full generality an upper bound on the ez-
pected number of computations a policy performs:

Theorem 5. The optimal policy’s expected number of
computations is bounded by the value of perfect infor-
mation (Howard, 1966) times the inverse cost 1/c:

E™ [N | So=s] < % (]E[max Ui | So=s]— max,ui(s)) .

Further, any policy m with infinite expected number of
computations has negative infinite value, hence the op-
timal policy stops with probability one.

Although the expected number of computations is al-
ways bounded, there are important cases in which the
actual number is not, such as the following inspired by
the sequential probability ratio test (Wald, 1945):

Example 3. Consider the Bernoulli sampling model
for two arms but with a different prior: ©; = 1/2,

and Oz is 1/3 or 2/3 with equal probability. Simu-
lating arm 1 gains nothing, and after (s, f) simulated
successes and failures of arm 2 the posterior odds ratio
18

_eRrasy
PO =1/3]s.) (/37—

Note that this ratio completely specifies the posterior
distribution of O, and hence the distribution of the
utilities and all future computations. Thus, whether it
is optimal to continue is a function only of this ratio,
and thus of s— f. For sufficiently low cost, the optimal
policy samples when s — f equals —1, 0, or 1. But
with probability 1/3, a state with s — f = 0 transitions
to another state s — f = 0 after two samples, giving
finite, although exponentially decreasing, probability to
arbitrarily long sequences of computations.

However, in a number of settings, including the orig-
inal Bernoulli model of Example 1, we can prove an
upper bound on the number of computations. For
reasons of space, and for its later use in Section 4,
we prove here the bound for the one-armed Bernoulli
model.

Before we can do this, we need to get an analytical
handle on the optimal policy. The key is through a
natural approximate policy:

Definition 6. Given a metalevel decision problem
M = (S, so, As, T, R), the myopic policy 7™ (s) is de-
fined to equal argmax,c o Q™ (s,a) where Q™ (s, L) =
max; p;(s) and

Q" (s, E) = Epr[—c + max 1;(S1) | So = s, Ag = EJ.

The myopic policy (known as the metalevel greedy ap-
proximation with single-step assumption in (Russell
and Wefald, 1991a)) takes the best action, to either
stop or perform a computation, under the assump-
tion that at most one further computation can be per-
formed. It has a tendency to stop too early, because
changing one’s mind about which real action to take
often takes more than one computation. In fact, we
have:

Theorem 7. Given a metalevel decision problem M =
(S, s0,As, T, R) if the myopic policy performs some
computation in state s € S, then the optimal policy
does too, i.e., if T (s) # L then 7*(s) # L.

Despite this property, the stopping behavior of the my-
opic policy does have a close connection to that of the
optimal policy:

Definition 8. Given a metalevel decision problem
M = (S,s0,A45,T,R), a subset 8" C S of states
is closed under transitions if whenever s’ € S,
a€Ay,s" €S, andT(s,a,s") >0, we have s € S’.



Theorem 9. Given a metalevel decision problem M =
(S, 80, As, T, R) and a subset S" C S of states closed
under transitions, if the myopic policy stops in all
states s’ € S" then the optimal policy does too.

Using these results connecting the behavior of the op-
timal and myopic policies, we can prove our bound:

Theorem 10. The one-armed Bernoulli decision pro-
cess with constant arm X € [0,1] performs at most
A1 —=AX)/c—3 < 1/4c — 3 computations.

Proof. Using Definition 6 and Example 2, we deter-
mine which states the myopic policy stops in by bound-
ing Q™ (s, E). For a state (s, f), let p = (s+1)/(n+2)
be the mean utility for arm 2, where n = s+ f. Fixing
n and maximizing over u, we get sufficient condition
for stopping Since the set of states satisfying Equa-
tion (5) is closed under

>N LMY

(n+3) c

Since the set of states satisfying Equation (5) is closed
under transitions (n only increases), by Theorem 7.
Finally, note maxyep,1] A(1 = A) = 1/4. O

A key implication is that the optimal policy can be
computed in time O(1/c?), i.e., quadratic in the in-
verse cost. This is particularly appropriate when the
cost of computation is relatively high, such as in simu-
lation experiments (Swisher et al., 2003), or when the
decision to be made is critical.

3 Context effects and non-indexability

The Gittins index theorem (Gittins, 1979) is a famous
structural result for bandit problems. It states that in
bandit problems with independent reward distribution
for each arm and geometric discounting, the optimal
policy is an index policy: each arm is assigned a
real-valued index based on its state only, such that it
is optimal to sample the arm with greatest index.

The analogous result does not hold for metalevel de-
cision problems, even when the action’s values are in-
dependent (this formalized later in Definition 13):

Example 4 (Non-indexability). Consider a metalevel
probability model with three actions. Uy is equally
likely to be —1.5 or 1.5 (low mean, high variance), Us
is equally likely to be 0.25 or 1.75 (high mean, low vari-
ance), and Us = X has a known value (the context).
The two computations are to observe exactly Uy and
Us, respectively, each with cost 0.2. The corresponding
metalevel MDP has 9 states and can be solved ezxactly.
Figure 1 plots Q%(so,Ui) — Q3 (s0, L) as a function of

the known value X. As the context A varies the op-
timal action inverts from observing 1 to observing 2.
Inversions like this are impossible for index policies.
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£ 02} -]
)

_0 3 1 1 1 1 1 1 1

-2 -15 -1 05 0 05 1 15 2

Utility of fixed alternative (A\)

Figure 1: Optimal Q-values of computing relative to
stopping as a function of the utility of the fixed alter-
native. Note the inversion where for low A observing
action 1 is strictly optimal, while for medium A\ ob-
serving action 2 is strictly optimal.

There is, however, a restriction on what kind of influ-
ence the context can have:

Definition 11. Given a metalevel decision problem
M = (S, s0,A4s,T,R), and a constant A € R, define
My = (S,s0,As,T,Ry) to be M with an additional
action of known value A, defined by:

Ry (S, E7 Sl) = R(‘S? E7 S/)
Ry(s, L, L) =max{\ R(s, L, 1)}

Note this is equivalent to adding an extra arm with
constant value Uiy = A.

Theorem 12. Given a metalevel decision problem
M = (S,s0,As, T, R), there exists a real interval I(s)
for every state s € S such that it is optimal to stop in
state s in M, iff i ¢ I(s). Furthermore, I(s) contains
max; 1;(s) whenever it is nonempty.

4 The blinkered policy

The myopic policy is an extreme approximation, often
stopping far too early. A better approximation can be
obtained, at least for the case where each computation
can only affect the value of one action. The technical
definition (closely related to subtree independence in
Russell and Wefald’s work) is as follows:

Definition 13. A metalevel probability model
(U1, ...,Uk, E) has independent actions if the com-
putational variables can be partitioned £ = E1U- - -UE



such that such that the sets {U;} U&; are independent
of each other for different i.

With independent actions, we can talk about metalevel
policies that focus on computations affecting a sin-
gle action. These policies are not myopic—they can
consider arbitrarily many computations—but they are
blinkered because they can look in only a single direc-
tion at a time:

Definition 14. Given a metalevel decision prob-
lem M = (S,s0,As, T, R) with independent actions,
the blinkered policy 7° is defined by w°(s) =
argmax,c 4 Q°(s,a) where Q%(s, L) = L and for E; €
&

Q"(s, E;) = sup Q" (s, E;) (6)

mell?

where 1Y is the set of policies ™ where m(s) € & for
alls € S.

Clearly, blinkered policies are better than myopic:
Q™ (s,a) < Q%(s,a) < Q*(s,a). Moreover, the blink-
ered policy can be computed in time proportional to
the number of arms, by breaking the decision problem
into separate subproblems:

Definition 15. Given a metalevel decision problem
M = (S,s0,As,T,R) with independent actions, a
one-action metalevel decision problem for i =
1,...,k is the metalevel decision problem Mil’)\ =
(Si, s0, Aso, T3, R;) defined by the metalevel probability
model (U(), U“(gl) with U() =\

Note that given a state s of a metalevel decision prob-
lem, we can form a state s; by taking only the results
of computations in & (see Definition 3). By action
independence, p;(s) is a function only of s;.

Theorem 16. Given a metalevel decision problem
M = (S,s9,As, T, R) with independent actions, let
MZIA be the ith one-action metalevel decision prob-
lem fori =1,...,k. Then for any s € S, whenever
E; € A; N E; we have:

Qh(s, E;) = Q?Milu* (81, i)

where p* ; = max;jz; j1;(s).

Theorem 16 shows that to compute the blinkered pol-
icy we need only compute the optimal policies for k
separate one-action problems.

For the Bernoulli problem with k actions, the one-
action metalevel decision problems are all one-action
Bernoulli problems (Example 1). By Theorem 10 these
policies perform at most 1/4c — 3 computations. As
a result, the blinkered policy can be numerically com-
puted in time O(D/c?) independent of k by backwards
induction, where D is the number of points A € [0,1]

for which we compute Q%,, (s).* This will be worth

the cost in the same situations as mentioned at the
end of Section 2.

Figure 2 compares the blinkered policy to several other
policies from the literature, using a Bernoulli sampling
problem with k& = 25 and a wide range of values for
the step cost c¢. Performance is measured by expected
regret, where the regret includes the cost of sampling:
R = (max; U;) —U;+cn where n is the number of com-
putations and j is the action actually selected. The
blinkered policy significantly outperforms all others.
The myopic policy plateaus as it quickly reaches a po-
sition where no single computation can change the final
action choice. ESPb performs quite well given that is
making a normal approximation to the Beta posterior.
The curves for UCB1-B and UCB1-b show that even
given a good stopping rule, UCB1’s choice of actions
to sample is not ideal.

Regret

Blinkered
Myopic ======-

01F ESPhD =reeree

0.1 0.01
Cost

Figure 2: Average regret of various policies as a func-
tion of the cost in a 25-action Bernoulli sampling prob-
lem, over 1000 trials. Error bars omitted as they are
negligible (the relative error is at most 0.03).

5 Upper bounds on Value of
Information

In many practical applications of the selection prob-
lem, such as search in the game of Go, prior distri-
butions are unavailable.® In such cases, one can still
bound the value of information of myopic policies us-
ing concentration inequalities to derive distribution-
independent bounds on the VOI. We obtain such
bounds under the following assumptions:

“In our experiments below, D = 129 points are equally
spaced, using linear interpolation between points.

5The analysis is also applicable to some Bayesian set-
tings, using “fake” samples to simulate prior distributions.



1. Samples are iid given the value of the arms
(variables), as in the Bayesian schemes such as
Bernoulli sampling.

2. The expectation of a selection in a belief state is
equal to the sample mean (and therefore, after
sampling terminates, the arm with the greatest
sample mean will be selected).

When considering possible samples in the blinkered
semi-myopic setting, two cases are possible: either the
arm o with the highest sample mean X, is tested, and
X o, becomes lower than X 5 of the second-best arm f3;
or, another arm i is tested, and X; becomes higher
than X,.

Our bounds below are applicable to any bounded dis-
tribution (without loss of generality bounded in [0, 1]).
Similar bounds can be derived for certain unbounded
distributions, such as the normally distributed prior
value with normally distributed sampling. We derive
a VOI bound for testing an arm a fixed N times, where
N can be the remaining budget of available samples or
any other integer quantity. Denote by A% the intrinsic
VOI of testing the ¢th arm N times, and the number
of samples already taken from the ith arm by n;.

Theorem 17. AY is bounded from above as

~-NB

A < =8 pr(Xh

(e}

—no+N

< Yg”)
N(1—-X.%)

Lz

itN ~Na
A2|z;£a < Pr(Xn > X : ) (7)
The probabilities can be bounded from above using
the Hoeffding inequality (Hoeffding, 1963):

Theorem 18. The probabilities in Equation (7) are
bounded from above as

n,,+N

Pr(Xo S X < 2exp (—p(X0" - X))
~ Mo+

Pr(Xrlaz X57) < 2exp (—p(X0 = X1")ni) ()

s 14+n/N \2 ) _ _1\2
where ¢ = min (2(1+ n/N) ) =8(vV2—-1)%2 > 1.37.
Corollary 19. An upper bound on the VOI estimate
Ab is obtained by substituting Equation (8) into (7).

K2

R INX e —m
AL <AL = Tﬁ exp (*@(Xaa* XaB)Q”a> 9)
o 2N(1—X.° e —,
A?‘#a <Al = % exp (“P(Xaa_ X 1)2”1‘)

More refined bounds can be obtained through tighter
estimates on the probabilities in Equation (7), for
example, based on the empirical Bernstein inequal-

ity (Maurer and Pontil, 2009), or through a more care-
ful application of the Hoeffding inequality, resulting in:

Ny

A= SV fert (030 v ) et (X=X v )|
AZ < n]Z\/\/; {erf( \/@) —erf (( nﬁ)\/ﬂ)}

(10)

Selection problems usually separate out the decision
of whether to sample or to stop (called the stopping
policy), and what to sample. We’ll examine the first
issue here, along with the empirical evaluation of the
above approximate algorithms, and the second in the
following section.

Assuming that the sample costs are constant, a semi-
myopic policy will decide to test the arm that has the
best current VOI estimate. When the distributions
are unknown, it makes sense to use the upper bounds
established in Theorem 17, as we do in the following.
This evaluation assumes a fixed budget of samples,
which is completely used up by each of the candidate
schemes, making a stopping criterion irrelevant.
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Figure 3: Average regret of various policies as a func-
tion of the fixed number of samples in a 25-action
Bernoulli sampling problem, over 10000 trials.

The sampling policies are compared on random
Bernoulli selection problem instances. Figure 3 shows
results for randomly-generated selection problems with
25 Bernoulli arms, where the mean rewards of the arms
are distributed uniformly in [0, 1], for a range of sample
budgets 200..2000, with multiplicative step of 2, aver-
aging over 10000 trials. We compare UCB1 with the
policies based on the bounds in Equation (9) (VOI)
and Equation (10) (VOI+). UCBLI is always consider-
ably worse than the VOI-aware sampling policies.

6 Sampling in trees

The previous section addressed the selection problem
in the flat case. Selection in trees is more compli-
cated. The goal of Monte-Carlo tree search (Chaslot



et al., 2008) at the root node is usually to select an
action that appears to be the best based on outcomes
of search rollouts. But the goal of rollouts at non-root
nodes is different than at the root: here it is impor-
tant to better approximate the value of the node, so
that selection at the root can be more informed. The
exact analysis of sampling at internal nodes is outside
the scope of this paper. At present we have no better
proposal for internal nodes than to use UCT there.

We thus propose the following hybrid sampling scheme
(Tolpin and Shimony, 2012a): at the root node, sample
based on the VOI estimate; at non-root nodes, sample
using UCT.

Strictly speaking, even at the root node the station-
arity assumptions® underlying our belief-state MDP
for selection do not hold exactly. UCT is an adap-
tive scheme, and therefore the values generated by
sampling at non-root nodes will typically cause val-
ues observed at children of the root node to be non-
stationary. Nevertheless, sampling based on VOI esti-
mates computed as for stationary distributions works
well in practice. As illustrated by the empirical eval-
uation (Section 6), estimates based on upper bounds
on the VOI result in good sampling policies, which ex-
hibit performance comparable to the performance of
some state-of-the-art heuristic algorithms.

6.1 Stopping criterion

When a sample has a known cost commensurable with
the value of information of a measurement, an upper
bound on the intrinsic VOI can also be used to stop
the sampling if the intrinsic VOI of any arm is less
than the total cost of sampling C: max; A; < C.

The VOI estimates of Equations (7) and (9) include
the remaining sample budget N as a factor, but given
the cost of a single sample ¢, the cost of the remaining
samples accounted for in estimating the intrinsic VOI
is C' = ¢N. N can be dropped on both sides of the
inequality, giving a reasonable stopping criterion:
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The empirical evaluation (Section 6) confirms the via-
bility of this stopping criterion and illustrates the in-
fluence of the sample cost ¢ on the performance of the
sampling policy. When the sample cost ¢ is unknown,

5This is not a restriction, however, of the general for-
malism in Section 2.

one can perform initial calibration experiments to de-
termine a reasonable value, as done in the following.

6.2 Sample redistribution in trees

The above hybrid approach assumes that the informa-
tion obtained from rollouts in the current state is dis-
carded after an real-world action is selected. In prac-
tice, many successful Monte-Carlo tree search algo-
rithms reuse rollouts generated at earlier search states,
if the sample traverses the current search state during
the rollout; thus, the value of information of a rollout
is determined not just by the influence on the choice of
the action at the current state, but also by its potential
influence on the choice at future search states.

One way to account for this reuse would be to incor-
porate the ‘future’ value of information into a VOI
estimate. However, this approach requires a nontriv-
ial extension of the theory of metareasoning for search.
Alternately, one can behave myopically with respect to
the search tree depth:

1. Estimate VOI as though the information is dis-
carded after each step,

2. Stop early if the VOI is below a certain threshold
(see Section 6.1), and

3. Save the unused sample budget for search in fu-
ture states, such that if the nominal budget is N,
and the unused budget in the last state is V,,, the
search budget in the next state will be N + N,,.

In this approach, the cost ¢ of a sample in the current
state is the VOI of increasing the budget of a future
state by one sample. It is unclear whether this cost can
be accurately estimated, but supposing a fixed value
for a given problem type and algorithm implemen-
tation would work. Indeed, the empirical evaluation
(Section 6.3) confirms that stopping and sample redis-
tribution based on a learned fixed cost substantially
improve the performance of the VOI-based sampling
policy in game tree search.

6.3 Playing Go against UCT

The hybrid policies were compared on the game Go, a
search domain in which UCT-based MCTS has been
particularly successful (Gelly and Wang, 2006). A
modified version of Pachi (Braudis and Loup Gailly,
2011), a state of the art Go program, was used for the
experiments:

e The UCT engine of Pachi was extended with VOI-
aware sampling policies at the first step.



e The stopping criterion for the VOI-aware policy
was modified and based solely on the sample cost,
specified as a constant parameter. The heuristic
stopping criterion for the original UCT policy was
left unchanged.

e The time-allocation model based on the fixed
number of samples was modified for both the orig-
inal UCT policy and the VOI-aware policies such
that

— Initially, the same number of samples is avail-
able to the agent at each step, independently
of the number of pre-simulated games;

— If samples were unused at the current step,
they become available at the next step.

While the UCT engine is not the most powerful en-
gine of Pachi, it is still a strong player. On the other
hand, additional features of more advanced engines
would obstruct the MCTS phenomena which are the
subject of the experiment. The engines were com-
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Figure 4: Winning rate of the VOI-aware policy in
Go as a function of the cost ¢, for varying numbers of
samples per ply.

pared on the 9x9 board, for 5000, 7000, 1000, and
15000 samples (game simulations) per ply, each exper-
iment repeated 1000 times. Figure 4 depicts a cali-
bration experiment, showing the winning rate of the
VOI-aware policy against UCT as a function of the
stopping threshold ¢ (if the maximum VOI of a sam-
ple is below the threshold, the simulation is stopped,
and a move is chosen). Each curve in the figure cor-
responds to a certain number of samples per ply. For
the stopping threshold of 107%, the VOI-aware policy
is almost always better than UCT, and reaches the
winning rate of 64% for 10000 samples per ply.

Figure 5 shows the winning rate of VOI against UCT
c = 1075 1In agreement with the intuition (Fig-
ure 6.2), VOI-based stopping and sample redistribu-
tion is most influential for intermediate numbers of
samples per ply. When the maximum number of sam-
ples is too low, early stopping would result in poorly

VOI wins, %

T T T T
5000 7000 10000 15000

Nsamples

Figure 5: Winning rate of the VOI-aware policy in
Go as a function of the number of samples, fixing cost
c=10765.

selected moves. On the other hand, when the maxi-
mum number of samples is sufficiently high, the VOI
of increasing the maximum number of samples in a
future state is low.

Note that if we disallowed reuse of samples in both
Pachi and in our VOI-based scheme, the VOI based-
scheme win rate is even higher than shown in Figure 5.
This is as expected, as this setting (which is somewhat
unfair to Pachi) is closer to meeting the assumptions
underlying the selection MDP.

7 Conclusion

The selection problem has numerous applications.
This paper formalized the problem as a belief-state
MDP and proved some important properties of the
resulting formalism. An application of the selection
problem to control of sampling was examined, and the
insights provided by properties of the MDP led to ap-
proximate solutions that improve the state of the art.
This was shown in empirical evaluation both in “flat”
selection and when extending the methods to game-
tree search for the game of Go.

The methods proposed in the paper open up several
new research directions. The first is a better approx-
imate solution of the MDP, that should lead to even
better flat sampling algorithms for selection. A more
ambitious goal is extending the formalism to trees—
in particular, achieving better sampling at non-root
nodes, for which the purpose of sampling differs from
that at the root.
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