
Snapshots in Hadoop Distributed File System

Sameer Agarwal
UC Berkeley

Dhruba Borthakur
Facebook Inc.

Ion Stoica
UC Berkeley

Abstract

The ability to take snapshots is an essential functionality
of any file system, as snapshots enable system adminis-
trators to perform data backup and recovery in case of
failure. We present a low-overhead snapshot solution for
HDFS, a popular distributed file system for large clusters
of commodity servers. Our solution obviates the need for
complex distributed snapshot algorithms, by taking ad-
vantage of the centralized architecture of the HDFS con-
trol plane which stores all file metadata on a single node,
and alleviates the need for expensive copy-on write oper-
ations by taking advantage of the HDFS limited interface
that restricts the write operations to append and truncate
only. Furthermore, our solution employs new snapshot
data structures to address the inherent challenges related
to data replication and distribution in HDFS. In this pa-
per, we have designed, implemented and evaluated a fast
and efficient snapshot solution based on selective-copy-
on-appends that is specifically suited for HDFS like dis-
tributed file systems.

1 Introduction

File systems supporting critical large scale distributed
data-intensive applications require frequent automated
system backups with zero or minimal application down-
time. As a result, the ability to take snapshots has
emerged as an essential feature of any file system. Not
surprisingly, developing such snapshots schemes and
mechanisms has received considerable attention in the
past [9, 7, 8, 6].

However, the previously proposed snapshot solutions
are not a good match for the recently developed dis-
tributed file systems such as GFS [6] and HDFS [2], as
these file systems are different in several important as-
pects form traditional file systems.

First, file systems such as GFS and HDFS logically
separate the file system metadata and the data itself. A

master node (known as the Namenode in HDFS) tracks
the file metadata and each file is replicated and divided
into fixed sized data blocks which are spread across the
cluster nodes. While presence of the metadata on a sin-
gle node considerably simplifies the snapshot solution,
tracking the state of multiple data blocks and their repli-
cas requires more evolved data structures in addition to
the snapshot tree.

Second, these file systems target applications that read
and write large volumes of data, such as MapReduce
[5, 1], and BigTable [4]. As a result, these file systems
are optimized for sequential disk access, and expose a
very limited interface: the write operations are restricted
to appends and truncates only. Given these constraints,
using the standard copy-on-write snapshot solutions re-
sults in unnecessary overhead. We will show that unless
an append follows a truncate operation, file appends and
truncates do not result in overwriting existing data and
their state across different snapshots could be tracked us-
ing data pointers. This forms the basis of our selective-
copy-on-appends snapshot scheme.

While many of the techniques described in this paper
can be generalized to most of the existing file systems,
we believe that our key contribution lies in highlighting
how can we design very low overhead file system fea-
tures by taking into account the specific architecture and
constraints recently proposed distributed file systems for
data intensive applications.

The rest of the paper focuses on the design and
implementation of snapshot support in HDFS and is
outlined as follows. In Section 2, we present the details
of the current HDFS architecture, and in Section 3 we
describe our snapshot solution. Finally, we present the
evaluation our solution in Section 4.

Figure 1: HDFS Files

2 Background: HDFS Design

Similarly to Google File System [6], Hadoop Distributed
File System (HDFS) [2] is a fault tolerant distributed
file system designed to run on large commodity clus-
ters, where the storage is attached to the compute nodes.
HDFS employs a master-slave architecture [3] where
the master (or the Namenode) manages the file system
namespace and access permissions. Additionally, there
are a large number of slaves (or the Datanodes) which
manage the storage attached to the physical nodes on
which they run. Each file in HDFS is split into a num-
ber of blocks which are replicated and stored on a set
of Datanodes. The Namenode manages the file system
namespace as well as the metadata about file and block(s)
associations as shown in Figure 1. Each data block is
identified by a Block ID which specifies its position in
the file and a unique, monotonically increasing Genera-
tion Timestamp. Since these are assigned by the Namen-
ode, no two HDFS blocks can ever have the same Gen-
eration Timestamp. Another distinctive aspect of HDFS
is that it relaxes a few POSIX requirements (disabling
writes/locks anywhere other than the tail of the file) to
enable high speed data streaming access. Being designed
for batch processing applications as opposed to interac-
tive usage, it chooses high throughput access to applica-
tion data over low latency.

2.1 File Creations and Appends

Figure 2 shows the sequence of steps involved in creat-
ing/appending a file in HDFS. When the client invokes
the API, it requests a new block storage from the Na-
menode. Depending on the size of the file, a client can
make many such requests serially. Upon receiving the re-
quest, the Namenode updates its namespace and assigns
a datanode, block ID and generation timestamp to the
block and sends it back to the client. Then the client di-
rectly updates the metadata on the assigned datanode and
streams the rest of the data through a cache. The datan-

Figure 2: HDFS File Create and Appends

Figure 3: HDFS File Deletes and Truncations

ode generally replicates this data to a fixed number of
other datanodes for reliability and efficiency. Finally, it
sends an ACK back to the namenode on successful trans-
fer and it updates its metadata to reflect the same. In
case of appends, the namenode returns the metadata as-
sociated with the last block of the file to the client and
assigns subsequent blocks once the last block has been
completely written. A key observation here is that unless
an append operation follows a truncation, file appends
never result in overwriting existing data.

2.2 File Deletions and Truncations

Figure 3 shows the sequence of steps involved in delet-
ing and/or truncating a file in HDFS. When the client in-
vokes the API, the namenode removes the file entry from
the namespace and directs all the corresponding datan-

2

Figure 4: Directory/Snapshot Tree

odes to delete their corresponding metadata. In case of
file truncations, the namenode directs the corresponding
datanode(s) to update their block size metadata to reflect
the change. Since file truncations only result in updating
the metadata in datanodes, they never result in overwrit-
ing existing data.

3 Snapshots in HDFS

This section describes our snapshot solution in detail.
To track all the files referenced by different snapshots,
we maintain a fault tolerant in-memory snapshot tree as
shown in Figure 4. Each node corresponds to a file or a
directory in HDFS which are referenced by zero or more
system snapshots. Further, each file or directory is asso-
ciated with an integer SNAPSHOT REF COUNT which
denotes the number of snapshots that are pointing to it or
its children in the hierarchy tree.

In order to manage the file system namespace and pre-
vent the garbage collector from permanently deleting or
overwriting blocks, we modified the existing Trash func-
tionality in HDFS. Trash is a pluggable module in HDFS
which is analogous to a recycle bin. When a file is
deleted, the data still remains intact and only the names-
pace reflects the deletion. This allowed us to easily man-
age the file system metadata and the garbage collector
functionality.

3.1 Design Details

This section describes our low-overhead snapshot solu-
tion for HDFS. HDFS differs from traditional file sys-
tems in two important aspects. First, HDFS separates
the metadata and the data. While the metadata is stored
at a single node, the actual data is replicated and spread

Figure 5: Snapshot Workflow

throughout the cluster. Using a single node to manage
the metadata enables us to use a single logical global
clock, thereby obviating the need for more complex vec-
tor clock based snapshot solutions [?]. Second, target-
ing primarily data intensive frameworks such as MapRe-
duce, HDFS like file systems expose a limited interface,
as data writes are restricted to append and truncate oper-
ations. Given these constraint, using standard copy-on-
write snapshot solutions result in unnecessary overhead.
As we observed in Section 2, unless an append follows
a truncate operation, file appends and truncates do not
result in overwriting existing data and their state across
different snapshots could be tracked using data pointers.
This observation represents the basis of our selective-
copy-on-appends snapshot scheme. Whenever a snap-
shot is taken, a node is created in the snapshot tree (as
shown in in Figure 4) that keeps track of all the files in the
namespace by maintaining a list of its blocks IDs along
with their unique generation timestamps. The following
subsections discuss how the snapshot tree is updated dur-
ing various file system operations.

3.2 Selective Copy-on-Append

In this section, we describe our selective copy on ap-
pends snapshot scheme. As long as the data does not
get overwritten, we need only to store the end point-
ers to the data in each block over consecutive updates.
Thus, when a series of zero or more consecutive appends
are followed by a series of zero or more truncates on a
single block, a pointer based solution will suffice. Only
when there are one or more append operations after one
or more truncates, data gets overwritten and we make

3

Figure 6: Truncate Semantics

a new copy of the block (known as copy on write). In
summary, we use pointers as long as there are only ap-
pends (AAA), only truncates (TTT) or appends followed
by truncates (AAATTT), and employ copy-on-write to
create two copies of the original block when an append
follows one or more truncates (TTTA).

We discuss the detailed of our solution next. As shown
in Figure 4, a creation or update operation in HDFS con-
sists of four stages: (1) Namenode generates a Gener-
ation Timestamp, (2) the client writes metadata to the
datanode (3), the client streams data to the datanode (4),
and the datanode(s) notify the namenode on successful
operation. If a snapshot is taken during the time one
or more data block(s) are being updated, the snapshot
tree can be atomically updated as soon as the namenode
is notified of successful operation without affecting any
existing operations. We have implemented the selected
copy-on-append functionality as a HDFS wrapper.

3.2.1 File Truncates

As described in Figure 6, a truncate operation can never
result in overwriting existing data. For every file trunca-
tion operation, we create a mapping between the block’s
generation timestamp, length and existing physical loca-
tion.

3.2.2 File Appends

As described in Figure 7, an append operation can only
result in overwriting existing data if directly follows a
file truncate operation. In this case, we make a new copy
of the existing block atomically and create a mapping
between the block’s generation timestamp, length and its

Figure 7: Append Semantics

physical location. In all other cases, we just create a map-
ping between the block’s generation timestamp, length
and existing physical location.

4 Evaluation

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 100 200 300 400 500 600 700 800 900 1000

Sn
ap

sh
ot

 C
re

at
io

n
O

ve
rh

ea
d

(m
s)

Number of Files

Time Overhead in Creating Snapshot

Figure 8: Time Overheads

We implemented the entire snapshot support for HDFS
in about 1, 200 lines of code. The snapshot tree and
garbage collection is managed by the Namenode and the
rest of the code involves writing wrappers for the HDFS
interface to implement selective copy on appends and
modifying the Trash functionality. Being designed for
a production system which requires frequent snapshots,

4

 60

 80

 100

 120

 140

 160

 180

 100 200 300 400 500 600 700 800 900 1000

N
am

en
od

e
M

em
or

y
U

sa
ge

 (K
B)

Number of Files

No Snapshots
With Snapshots

Figure 9: Memory Overheads

!"#$%
!"&$%
!#$$%
!#'$%
!#($%
!##$%
!#&$%
!)$$%

*% '% !% (% "%

!"
#
$%
&"'

%($
)*
'+

(,
%

-.#/$0%*1%2'34(5*6(%

+,%-./012,3% 4,05%,.%-67689:6%;006.<1% 4,05%,.%=>?36%

Figure 10: Hive Overheads

aiming for very low overheads were a fundamental as-
pects of our design. In order to evaluate our design, we
conducted various experiments on an Amazon EC2 clus-
ter consisting of 100 small instances and measured scal-
ability in terms of time and memory overheads. The file
trace for our experiments came from a 3, 000 node Face-
book cluster. Figure 8 shows that the snapshot creation
overhead is as low as 0.1 second for about 1, 000 files
and scales almost linearly with the number of files in the
system.

Figure 9 plots the size of the in memory metadata at
the Namenode versus the number of files. We observe
that the additional memory overhead is virtually constant
(i.e., around 5 KB) for the Facebook trace we used. This
is because the additional overhead is primarily due to ap-
pend and truncate operations, which are not only infre-
quent but are also limited to a very small number of files.

To evaluate the efficiency gain of our selective-copy-
on-append solution over the traditional copy-on-write
solutions, we have mounted the Hive transaction log
on HDFS. This log exhibits frequent appends, as every

transaction generates an append. We ran five instances
of approximately an hour long Hive workload trace on
our cluster and measured the time overhead between our
solution and a modified solution using always copy-on-
write respectively. Figure 10 plots the median time taken
by the trace to complete using both solutions as a func-
tion of number of snapshots taken. As expected, the
selective-copy-on-append solution incurs a much lower
overhead than the copy-on-write solution.

5 Conclusion

In this paper, we have designed, implemented and evalu-
ated a low overhead snapshot solution for the Hadoop
Distributed File System. Our solution has linear time
complexity for creating snapshots with respect to the
number of files, and has negligible namenode memory
overhead. Our solution relies on using a selective copy-
on-append scheme that minimizes the number of copy-
on-write operations. This optimization is made possible
by taking advantage of the restricted interface exposed
by HDFS, which limits the write operations to appends
and truncates only.

References

[1] Apache hadoop mapreduce. http://hadoop.apache.org/
mapreduce/.

[2] Hadoop distributed file system. http://hadoop.apache.
org/hdfs/.

[3] BORTHAKUR, D. The hadoop distributed file system: Architec-
ture and design. http://hadoop.apache.org/common/
docs/r0.18.0/hdfs_design.pdf.

[4] CHANG, F., DEAN, J., GHEMAWAT, S., HSIEH, W. C., WAL-
LACH, D. A., BURROWS, M., CHANDRA, T., FIKES, A., AND
GRUBER, R. Bigtable: A distributed storage system for structured
data. In OSDI (2006), pp. 205–218.

[5] DEAN, J., AND GHEMAWAT, S. Mapreduce: Simplified data pro-
cessing on large clusters. In OSDI (2004), pp. 137–150.

[6] GHEMAWAT, S., GOBIOFF, H., AND LEUNG, S.-T. The google
file system. In SOSP (2003), pp. 29–43.

[7] PAWLOWSKI, B., JUSZCZAK, C., STAUBACH, P., SMITH, C.,
LEBEL, D., AND HITZ, D. Nfs version 3: Design and implemen-
tation. In USENIX Summer (1994), pp. 137–152.

[8] RODEH, O., AND TEPERMAN, A. zfs - a scalable distributed file
system using object disks. In IEEE Symposium on Mass Storage

Systems (2003), pp. 207–218.

[9] WEIL, S. A., BRANDT, S. A., MILLER, E. L., LONG, D.
D. E., AND MALTZAHN, C. Ceph: A scalable, high-performance
distributed file system. In OSDI (2006), USENIX Association,
pp. 307–320.

5

