U.C. Berkeley - CS270: Algorithms

Professor Vazirani and Professor Rao

Lecture 10
Scribe: Anupam
Last revised

Lecture 10

1 Cheeger's inequality

In the last lecture we introduced the notion of edge expansion, eigenvalues of the adjacency matrix and the averaging interpretation of the action of the normalized adjacency matrix M and stated Cheeger's inequality that relates the spectral gap to the expansion.

$$
\begin{equation*}
\frac{1-\lambda_{2}}{2} \leq h(G) \leq \sqrt{2\left(1-\lambda_{2}\right)} \tag{1}
\end{equation*}
$$

Today we will prove the left side of Cheeger's inequality, the proof of the right side of the inequality is harder and we will see it in a future lecture.

Why is the left side of Cheeger easier? The left side of Cheeger's inequality is equivalent to proving that $\lambda_{2} \geq 1-2 h(G)$. It is easy to prove an inequality of the form $\lambda_{2} \geq c$ using the Rayleigh quotient characterization of the second eigenvalue from the previous lecture,

$$
\begin{equation*}
\lambda_{2}=\max _{x \perp 1} \frac{x^{T} M x}{x^{T} x} \tag{2}
\end{equation*}
$$

In order to prove that $\lambda_{2} \geq c$ it suffices to find a vector $v \in \mathbb{R}^{n}, v \perp \overrightarrow{1}$ such that the Rayleigh quotient $\frac{x^{T} M x}{x^{T} x} \geq c$. The averaging interpretation of the action of M is useful for bounding the Rayleigh quotient.

Proof idea: Given a partition (S, \bar{S}) of the vertices of G with edge expansion $h(S)$ the proof idea is to find vector $v \in \mathbb{R}^{n}, v \perp \overrightarrow{1}$ with Rayleigh quotient at least $1-2 h(S)$. Applying the argument to the sparsest cut in G yields the left side of Cheeger's inequality,

$$
\begin{equation*}
\lambda_{2} \geq 1-2 h(G) \tag{3}
\end{equation*}
$$

Claim 1
Given a partition (S, \bar{S}) of the vertices of G with $|S| \leq n / 2$, define vector v such that $v_{i}=-|\bar{S}|$ for $i \in S$ and $v_{i}=|S|$ for $i \in \bar{S}$.

$$
\frac{v^{T} M v}{v^{T} v} \geq 1-2 h(S)
$$

Proof: The vector $v \perp \overrightarrow{1}$ by design as the vertices in S contribute $-|S||\bar{S}|$ to $\sum v_{i}$ which is cancelled by the $|S||\bar{S}|$ contributed by vertices in \bar{S}. In order to bound the Rayleigh quotient, we compute the quantities $v^{T} v$ and $v^{T} M v$,

$$
\begin{equation*}
v^{T} v=\sum_{i \in S}|\bar{S}|^{2}+\sum_{i \in \bar{S}}|S|^{2}=|S| \cdot|\bar{S}| \cdot(|S|+|\bar{S}|)=n|S| \cdot|\bar{S}| \tag{4}
\end{equation*}
$$

If there are no edges in G crossing the partition (S, \bar{S}) then $M v=v$ and $v^{T} M v=v^{T} v$ by the averaging interpretation of the action of M. Consider the effect of adding an edge (i, j) across the partition. One of the terms in the average $\frac{1}{d} \sum_{k \sim i} v_{k}$ changes from $-|\bar{S}|$ to $|S|$, this results in a net increase of $\frac{|S|+|\bar{S}|}{d}=\frac{n}{d}$ in the average value. Arguing similarly, we find that the average value $\frac{1}{d} \sum_{k \sim j} v_{k}$ decreases by $\frac{n}{d}$.

Adding an edge (i, j) across the partition changes $M v_{i} \rightarrow M v_{i}+\frac{n}{d}$ and $M v_{j} \rightarrow M v_{j}-\frac{n}{d}$. The inner product between v and $M v$ changes by $-(|\bar{S}|+|S|) \frac{n}{d}=-\frac{n^{2}}{d}$ for the addition of every edge across (S, \bar{S}). Therefore,

$$
\begin{align*}
v^{T} M v & =v^{T} v-\frac{n^{2}}{d}|E(S, \bar{S})| \\
& =n|S||\bar{S}|-n^{2}|S| h(S) \tag{5}
\end{align*}
$$

The equality $|E(S, \bar{S})|=d|S| h(S)$ follows from the definition of edge expansion. The value of the Rayleigh quotient is,

$$
\begin{equation*}
\frac{v^{T} M v}{v^{T} v}=\frac{n|S||\bar{S}|-n^{2}|S| h(S)}{n|S||\bar{S}|}=1-\frac{n}{|\bar{S}|} h(S) \geq 1-2 h(S) \tag{6}
\end{equation*}
$$

1.1 The spectral gap as a relaxation of conductance

Another perspective on Cheeger's inequality is the observation that the spectral gap ($1-$ λ_{2}) is a relaxation of the optimization problem of computing the conductance $\phi(G)$. The spectral gap can be written in terms of the Rayleigh quotient,

$$
\begin{align*}
1-\lambda_{2} & =\min _{x \perp 1} \frac{x^{T} x-x^{T} M x}{x^{T} x}=\min _{x \perp 1} \frac{d \sum_{i} x_{i}^{2}-\sum_{i j} 2 A_{i j} x_{i} x_{j}}{d \sum_{i} x_{i}^{2}} \\
& =\min _{x \perp 1} \frac{\sum_{i j} A_{i j}\left(x_{i}-x_{j}\right)^{2}}{d \sum_{i} x_{i}^{2}} \tag{7}
\end{align*}
$$

The sum of the entries of x is equal to 0 as $x \perp 1$ so we have $\left(\sum x_{i}\right)^{2}=\sum x_{i}^{2}+\sum 2 x_{i} x_{j}=0$. The expression in the denominator of the above expression can be rearranged to obtain $d \sum_{i} x_{i}^{2}=\frac{d}{n} \sum_{i, j}\left(x_{i}-x_{j}\right)^{2}$,

$$
\begin{equation*}
1-\lambda_{2}=\min _{x \perp 1} \frac{n \sum_{i j} A_{i j}\left(x_{i}-x_{j}\right)^{2}}{d \sum_{i j}\left(x_{i}-x_{j}\right)^{2}} \tag{8}
\end{equation*}
$$

The expression for the spectral gap is invariant under shifting all the coordinates of x by a constant, so the constraint $x \perp 1$ can be changed to $x \in \mathbb{R}^{n} \backslash 0$. If x is restricted to the characteristic vector of a cut $\{0,1\}^{n} \backslash 0$ the value of the expression (8) is the conductance of the cut defined by x. The conductance $\phi(G)$ can therefore be viewed as a relaxation of the spectral gap,

$$
\begin{equation*}
\phi(G)=\min _{S \subset[n]} \frac{n E(S, \bar{S})}{d|S||\bar{S}|}=\min _{x \in\{0,1\}^{n} \backslash 0} \frac{n \sum_{i j} A_{i j}\left(x_{i}-x_{j}\right)^{2}}{d \sum_{i j}\left(x_{i}-x_{j}\right)^{2}} \tag{9}
\end{equation*}
$$

The conductance is obtained by minimizing the expression (8) over characteristic vectors of cuts in $\{0,1\}^{n} \backslash 0$ while the spectral gap is obtained by minimizing the same expression over $\mathbb{R}^{n} \backslash 0$. It follows that $\phi(G) \geq 1-\lambda_{2}$ and using $2 h(G) \geq \phi(G)$ we have another proof of the left side of Cheeger's inequality.

