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Lecture 18

1 Principal Components Analysis

The lecture will be in two parts, first we will discuss the singular value decomposition
and low rank approximations for matrices, then we will discuss an application of spectral
methods (PCA) to the Gaussian clustering problem.

2 SV D and least squares

2.1 The singular value decomposition

A matrix A ∈ Rm×n defines a map A : Rn → Rm via left multiplication. The singular value
decomposition of A is a factorization A = V DU where U is an n× n orthogonal matrix, V
is an m ×m orthogonal matrix and D is an m × n diagonal matrix with positive entries.
The map A is a composition of a rotation on Rn, scaling by the singular values to obtain
vectors in Rm followed by a rotation on Rm. If we choose suitable bases for Rn and Rm
then A is described by a diagonal matrix.

Denote the orthonormal bases for Rn,Rm given by matrices U, V by u1, u2, · · · , un and
v1, v2, · · · , vm. A convenient way to write the singular value decomposition for A is the
following,

A =
∑
i

σiviu
t
i (1)

It can be verified that the above expression represents A as Aui = σivi by the singular
value decomposition. For symmetric matrices, the matrices U and V are identical and
SV D reduces to the spectral decomposition,

A =
∑
i

λiviv
t
i (2)

The spectral decomposition of the matrices AAT and ATA can be expressed in terms of
the singular value decomposition of A,

AAT =
∑
i

σ2i viv
t
i

ATA =
∑
i

σ2i uiu
t
i (3)

The singular vectors can therefore be computed by finding the eigenvectors of AtA and AAt

respectively.
An intuitive proof of the SV D can be found in Gilbert Strang’s paper on ‘The funda-

mental theorem of linear algebra’ [?].
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2.2 Least squares

Consider the following algorithmic problem: we are givenm data pointsA = {a1, a2, · · · , am}
in Rn and wish to find a k dimensional subspace S such that the squared distance

∑
i∈[m] d(ai, S)2

is minimized.
One dimensional line fitting: Let us first consider the one dimensional problem of finding

the line through the origin that minimizes the least squares error with respect to the data
set. The data points ai ∈ Rn are taken to be the rows of an m × n matrix A and the line
is specified by the unit vector u ∈ Rn.∑

i∈[m]

|A|2 =
∑
i∈[m]

d(ai, l)
2 + (ai.u)2 (4)

Minimizing the least squares error is equivalent to finding the vector umaximizing
∑

i∈[m](ai.u)2 =

|Au|2 = uTATAu. The solution is the largest eigenvector of ATA which is equal to the sin-
gular vector u1 by equation (3).

k dimensions: The k dimensional subspace minimizing the least squares error is the
span of the k largest singular vectors. We prove this by induction, having proved the base
case k = 1 above. Let Vk denote the k dimensional subspace minimizing the least squares
error.

Select an orthonormal basis w1, w2, · · · , wk for Vk such that wk is orthogonal to Vk−1.
Analogous to equation (4) we have,∑

i∈[m]

|A|2 =
∑
i∈[m]

d(ai, Vk)
2 +

∑
i∈[m],j∈[k]

(ai.wj)
2 (5)

The problem of finding the best k dimensional subspace is equivalent to maximizing,∑
i∈[k]

wTi A
TAw =

∑
i∈[k−1]

wTi A
TAw + max

w⊥Vk−1

wTATAw

=
∑

i∈[k−1]

σ2i + max
w⊥Vk−1

wTATAw

=
∑
i∈[k]

σ2i (6)

In the second step we used the induction hypothesis and for the final step we used the fact
that the maximum norm of wTATAw over the space orthogonal to the span of the first
k − 1 eigenvectors of ATA is λk = σ2k.

2.2.1 Gaussian clustering

Sequencing technology processes genomes to identify single nucleotide polymorphisms (SNP s)
that account for most of the differences between individuals. The number of SNP s identi-
fied is proportional to the length |xi| of the processed sequence. The SNP s can be modeled
as features fi : xi → R, the SNP s are far on the genome so we assume that the param-
eters fi are mutually independent. The processing cost is proportional to the number of
parameters k.
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Suppose we have genetic data for a large number of people representing two distinct
populations and the problem is to classify people into populations. The feature param-
eters fi and f ′i for people from the two populations are distributed according to normal
distributions with mean and variance (µi, σi) and (µ′i, σ

′
i) respectively.

The normal distribution: The reason that the normal distribution models population
characteristics such as the heights of people or the lengths of tails of horses, is the central
limit theorem which says that the sum of a large number of independent random variables
tends to the normal distribution. The density function for the normal distribution with

mean and variance (µ, σ) is φ(x) = 1
σe
−πx

2

σ2 . The normal distribution is strongly concen-
trated around the mean,

Pr
x∼N(µ,σ)

[|x− µ| ≥ tσ] ≤ e−t2/2 (7)

Example: For the purpose of illustrating the classification problem, we assume that the
variances σi, σ

′
i are all equal to σ. The measure of difference between two people represented

by x, y ∈ Rd is the distance in the feature space d(x, y) =
∑

i(fi(x) − fi(y))2. We next
compute the expected distances between people belonging to the different populations.

Variables x1, x2 represent people from population 1 while y1, y2 are people from popu-
lation 2. Using the concentration bounds (7) for the normal distribution,

Pr[|fi(x1)− fi(x2)| ≥ O(
√

log k)σ] ≤ 1

poly(k)

Pr[d(x1, x2)
2 ≥ O(k log kσ2)] ≤ 1

poly(k)
(8)

The second inequality follows from the union bound, the expected distance between two
people from the same population is O(

√
k log kσ). A similar bound holds for people y1, y2

drawn from the population 2.
Let µi and µ′i be the mean values of fi over the two populations, the distance between

people from different populations can be bounded using the triangle inequality,

d(x1, y1) ≤ d(x1, µ) + d(µ, µ′) + d(y1, µ
′) (9)

From the concentration bounds we know that d(y1, µ
′) and d(x1, µ) are both O(

√
k log kσ).

The distances between points from the two different clusters can be expressed as,

d(x1, x2) = d(y1, y2) = Õ(
√
kσ)

d(x1, y2) = d(µ, µ′) + Õ(
√
kσ) (10)

It is possible to separate the clusters if the difference between the means d(µ, µ′) is
greater than the variance Õ(

√
kσ). Suppose there is an algorithm that classifies people

according to the clusters if the following geometric separation condition holds, d(µi, µ
′
i) ≥

βσ. For example the threshold clustering algorithm that finds pairwise distances between
points and outputs all points at a distance of at most t as one cluster, works for β ≥

√
k.

The idea is to project the input data onto a lower dimensional subspace so that the
clustering problem is easier on the low dimensional data. We are looking for a projection
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that preserves the distance d(µ, µ′) while decreasing the variance of the data. A random
projection onto an l dimensional subspace would compress both d(µ, µ′) and σ by a factor
of
√
kl as discussed in the previous lecture, this leaves the ratio between the variance and

the distance between clusters unchanged and offers no advantage.
The means µ, µ′ are unknown else we could project onto the line spanned by µ and µ′.

The projection preserves d(µ, µ′) and reduces the variance σ by a factor of
√
k.

If the data consists of t Gaussian clusters, the span of the means of the clusters is the
subspace spanned by the largest t singular vectors of the n× k matrix X. Computing the
largest singular vectors and projecting the data onto this subspace effectively reduces the
dimension of Gaussian clustering problem.


