
U.C. Berkeley — CS270: Algorithms Lectures 13, 14
Professor Vazirani and Professor Rao Scribe: Anupam

Last revised

Lectures 13, 14

1 Streaming Algorithms

The streaming model is one way to model the problem of analyzing massive data. The
model assumes that the data is presented as a stream (x1, x2, · · · , xm), where the items xi
are drawn drawn from a universe of size n. Realtime data like server logs, user clicks and
search queries are modeled by streams. The available memory is much less than the size of
the stream, so a streaming algorithm must process a stream in a single pass using sublinear
space.

We consider the problem of estimating stream statistics using O(logc n) space. The
number of occurrences of element i in the stream is denoted by mi. The frequency moments
Fk =

∑
im

k
i are natural statistics for streams.

The moment F0 counts the number of distinct items, an algorithm that estimates F0

can be used to find number of unique visitors to a website, by processing the stream of
ip addresses. The moment F1 is trivial as it is the length of the stream while computing
F2 is more involved. The streaming algorithms for estimating F0 and F2 rely on pairwise
independent hash functions, which we introduce next.

1.1 Counting distinct items

Exactly counting the number of distinct elements in a stream requires O(n) space, we
will present a randomized algorithm that estimates the number of distinct elements to to
a multiplicative factor of (1 ± ε) with high probability using poly(log n, 1ε) space. The
probabilities are over the internal randomness used by the algorithm, the input stream is
deterministic and fixed in advance.

1.1.1 Exact counting requires O(n) space

Suppose A is an algorithm that counts the number of distinct elements in a stream S with
elements drawn from [n]. After executing A on the input stream S it acts as a membership
tester for S. On input x ∈ [n] the count of distinct items increases by 1 if x /∈ S and stays
the same if x ∈ S. The internal state of A must contain enough information to distinguish
between the 2n possible subsets of [n] that could have occurred in S. The algorithm requires
O(n) bits of storage to distinguish between 2n possibilities.

1.1.2 A toy problem

Consider the following simpler version of approximate counting: The output should be ‘yes’
if the number of distinct items N is more than 2k, ‘no’ if N is less than k and we do not
care about the output if k ≤ N ≤ 2k.

Notes for Lectures 13, 14: Scribe: Anupam 2

1. Choose a uniformly random hash function h : [n] → [B], where the number of
buckets B = O(k).
2. Output ‘yes’ if there is some xi ∈ S such that h(xi) = 0 else output ‘no’.

The value h(x) is uniformly distributed on [B], so for all x ∈ U we have Prh∈H[h(x) =
0] = 1/B. If there are at most k distinct items in the stream, the probability that none of
the N items hash to 0 is,

Pr[A(x) = No | N ≤ k] =

(
1− 1

B

)N
≥
(

1− 1

B

)k
If the number of elements is greater than 2k then the probability that the algorithm outputs
no is,

Pr[A(x) = No | N > 2k] =

(
1− 1

B

)N
≤
(

1− 1

B

)2k

The gap between the probability of the output being ‘no’ for the two cases is a constant for
B = O(k).

However, specifying a random hash function requires O(n logB) bits of storage, the
truth table must be stored to evaluate the hash function. The memory requirement can be
reduced by choosing h from a hash function familyH of small size having good independence
properties.

2-wise independent hash functions: The property required from H is 2-wise inde-
pendence, informally a hash function family is 2 wise independent if the hash value h(x)
provides no information about h(y).

Claim 1
The family H : [n]→ [p] consisting of functions ha,b(x) = ax+ b mod p where p is a prime
number greater than n and a, b ∈ Zp is 2-wise independent,

Pr
a,b

[h(x) = c ∧ h(y) = d] =
1

p2
∀x 6= y

Proof: If h(x) = c and h(y) = d then the following linear equations are satisfied over Zp,

ax+ b = c ay + b = d

The linear system has a unique solution (a, b) as the determinant (x − y) 6= 0 for distinct
x, y. The claim follows as |H| = p2 and there is a unique function such that h(x) = c and
h(y) = d.

2

This construction of 2 wise independent hash function families generalizes to k wise
independent families by choosing degree k polynomials. For the streaming algorithm we
require a 2-wise independent hash function family H : [n] → [B] where B is not a prime
number, the family ha,b = (ax+b mod p) mod B for a prime larger than p is approximately
2 wise independent.

Notes for Lectures 13, 14: Scribe: Anupam 3

1.2 Analysis

We analyze the algorithm using a random hash function from a pairwise independent family
H : [n]→ [4k]. From claim 1, it follows that Pra,b[h(x) = 0] = 1/B for all x ∈ [U]. If there
are k elements in the stream the probability of some element being hashed to 0 can be
bounded using the union bound Pr[∪Ai] ≤

∑
Pr[Ai],

Pr[A(x) = Y es | N < k] ≤ k

B
=

1

4
(1)

The inclusion exclusion principle is used to show that the probability of the output being
yes is large if there are more than 2k elements in the stream. Truncating the inclusion
exclusion formula to the first two terms yields Pr[∪Ai] ≥

∑
Pr[Ai]−

∑
Pr[Ai ∩Aj]. Using

pairwise independence,

Pr[A(x) = Y es | N ≥ 2k] ≥ 2k

B
− 2k.(2k − 1)

2B
≥ 2k

B
(1− k

B
) =

3

8
(2)

The yes and no cases are separated by a gap of 1/8, the memory used by the algorithm
is O(log n) as numbers a, b need to be stored. Using a combination of standard tricks, the
quality of approximation can be improved to 1± ε.

1.3 A 1± ε approximation:

The probability of obtaining a correct answer is boosted to 1− δ by running the algorithm
with several independent hash functions using the following simplified version of Chernoff
bounds,

Claim 2
If a coin with bias b is flipped k = O(log(1/δ)

ε2
) times, with probability 1 − δ the number of

heads b̂ satisfies bk(1− ε) ≤ b̂ ≤ bk(1 + ε).

The algorithm is run for O(log 1/δ) independent iterations and the output is ‘yes’ if the
fraction of yes answers is more than 5/16. Applying the claim for the yes and no cases, it
follows that the correct answer is obtained with probability at least 1− δ.

The number of distinct items N can be approximated to a factor of 2 using the binary
search trick. The algorithm is run simultaneously for the log n intervals [2k, 2k+1] for k ∈
[log n]. If N ∈ [2k, 2k+1] then with high probability the first k − 1 runs answer ‘yes’, the
answer for the k-th run is indeterminate and the last log n − k − 1 runs answer ‘no’. The
first no in the sequence of answers occurs either for [2k, 2k+1] or [2k+1, 2k+2], the left end
point of the interval where the transition occurs satisfies N

2 ≤ L ≤ 2N .
The third trick is to replace 2 by 1 + ε in equations (1), (2) and change parameters

appropriately in the boosting part to approximate the number of distinct items in the
stream up to a factor of 1± ε.

The space requirement of the algorithm is O(log n. log1+ε n.
log(1/δ)

ε2
), the log n is the

amount of memory required to store a single hash function, the log1+ε n is the number of

intervals considered and log(1/δ)
ε2

is the number of independent hash functions used for each
interval.

Notes for Lectures 13, 14: Scribe: Anupam 4

2 Estimating F2

The hash function h is chosen from a 4-wise independent family H : [n] → ±1. The
algorithm outputs Z2 where Z =

∑
i h(xi), the memory requirement is O(log n). The

analysis will show that E[Z2] = F2 and that the variance is small. Denoting the hash value
h(j) by Yj we have,

Z =
∑
i∈[m]

h(xi) =
∑
j∈S

Yjmj

The expectation of Z2 can be computed by squaring and using the 2 wise independence of
the hash function to cancel out the cross terms,

E[Z2] =
∑
j

E[Y 2
j]m2

j +
∑
i,j

E[Yi]E[Yj]mimj =
∑
i

m2
i = F2

A variance calculation is required to ensure that we obtain the correct answer with suf-
ficiently high probability. Recall that the variance of a random variable X is equal to
E[X2]− E[X]2, the variance calculation requires computing the fourth moment of Z,

E[Z4] =
∑
i

E[Y 4
i m

4
i] + 6

∑
i,j

E[Y 2
i Y

2
j m

2
im

2
j] =

∑
i

m4
i + 6

∑
i,j

m2
im

2
j

The variance of Z2 can now be computed,

V ar(Z2) = E[Z4]− E[Z2]2 = 4
∑

m2
im

2
j < 2F 2

2

The Chebyshev inequality is useful for bounding the deviation of a random variable from
its mean,

Pr[|X − µ| ≥ εF2] ≤
V ar(X)

ε2F 2
2

The variance is too large for Chebyshev’s inequality to be useful. The variance can be
reduced by running the procedure over k = 2/δε2 independent iterations, with the output
being Z = 1

k

∑
i∈[k] Z

2
i .

The expectation E[Z] = µ by linearity and the the variance can be calculated using
relations V ar[cX] = c2V ar[X] and V ar(X + Y) = V ar(X) + V ar(Y) for independent
random variables X and Y .

V ar[Z] =
∑
i∈[k]

V ar

[
Z2
i

k

]
≤ 2F 2

2

k

Applying the Chebychev inequality for Z = 1
k

∑
i∈[k] Z

2
i with k = 2

δε2
yields Pr[|Z −µ| ≥

εF2] ≤ δ. The output of the algorithm Z is therefore a (1 ± ε) approximation for µ with
probability at least 1− δ. The memory requirement for the algorithm is O(logn

δε2
).

