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Lecture 23

1 Fast Max-Flow

Given undirected graph G(V, E) where each edge has capacity 1, the objective is to find
the maximum flow from s to ¢, such that the flow on an edge does not exceed its capacity.
The running time for the best known max flow algorithm until recently was O(m?/?). We
discuss the algorithm from [1] for finding e-approximate max-flows in time O(m*/3/e).

1.1 Electrical Flows

Finding electrical flows: Let L be the Laplacian for graph G(V, E) where edge e has
weight R%. The potential vector ¢ for the electric flow and the current vector ¢ whose j-th
component is the outgoing current at vertex j are related as follows,

Lo =i Lti=¢ (1)

The Laplacian linear system solver can be used to find the electrical flow for any ¢ in time
O(m), by finding ¢ and then the current through each edge using Ohm’s law.

Energy minimization: The energy dissipated in the network by flow f. is Y., 2R,

as a function of ¢ the energy is E(¢) = >, W. Consider the problem of finding

the minimum energy flow if some vertex potentials are fixed. The partial derivative of the
energy with respect to free variables must be 0,

0E(9) _ N~ 2(du—¢0) _ o
7o, = S =2, (2)

R'U/U
The outflowing current at free vertices is 0 for the minimum energy flow, that is the Kirchoff
current laws are satisfied. The electrical flow is therefore the unique energy minimizing flow.

v~u

1.2 Experts for max flow

Binary search: Suppose we have an algorithm that constructs a flow of value f if one
exists. The value of the max flow F* can be found in logm iterations by binary search and
the max flow can be found by running the algorithm with input F*.

Flow game: The max flow game is played between the edge and flow players, the edge
player plays edge e, the flow player plays flow f with value F' and the gain for the edge
player is fe.

Suppose the flow player can guarantee an average loss (1 + €) and a maximum loss of p
against any strategy played by the edge player. This is formalized as an (e, p) oracle,

Zwefe < (1—#6)23106

fe < p
lfl = F (3)
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Then the following algorithm converges to a (14+O(¢)) approximate flow in T' = O(pl‘;#)

rounds.

1. The edge player follows the experts algorithm with initial weights w(e) = 1 and update
rule wit = wi(1+ £ f).
2. The flow player plays the flow f; output by the (¢, p) oracle against weights w;.

CrLAM 1

The average flow f* = %ZZET fi has value F and satisfies all the capacity constraints on

edges within a factor of e, for T > plﬁ’;".

PrOOF: The oracle ensures that the gain for the edge player is at most (1 + €) in each
round. The gain of the best expert in retrospect against the flow f* is max. f*(e). The
analysis of the experts algorithm with gains yields,

plnm

(14T > G > max f*()T(1—¢) - (4)

The average flow f* at the end of the procedure therefore satisfies all the capacity constraints
up to a factor of 1 4+ O(e). O

€

1.3 Implementing the oracle

The (¢, p) oracle can be implemented in time O(m) by finding electrical flows. The running
time of the ¢ algorithm is O(%Zf). We will first construct an oracle of width O(m'/?) and

then improve the width to O(m!/3).

1.3.1 A width /m oracle

An oracle of width 6(m1/ 2) can be implemented by finding an electrical flow of value F
from s to t with resistances as in the claim below,

CLAIM 2
The electrical flow with resistances R, = we + % has average congestion (1 + €) and

maximum congestion O(m'/?).

PROOF: We know that there is a feasible flow f’ of value F such that f’(e) < 1 for all e.
The energy of the electrical flow is bounded by,

DR < Y (fIPRe<) Re=(1+eW

The average congestion can be bounded using the Cauchy Schwarz inequality,

(Sen) = (Sett) (£)

< (Z Refez) W< (1+ew? (5)
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Taking square roots, we have ) wefe < v/1+ €W < (1+€)W. To bound on the maximum
congestion for the electrical flow, we note that the energy dissipated on an edge is at most
the total energy of the electrical flow,

2
JZ%WSO‘Fﬁ)WéfeS M
€

(6)

1.4 Improving the width of the oracle

The width of the oracle is improved by changing the algorithm to the following:

rule wit' = wi(1 + £ f).

is an edge with congestion more than p in f; delete edge and repeat.

1. The edge player follows the experts algorithm with initial weights w(e) = 1 and update

2. The flow player plays the flow f; outputs the electrical flow with R, = we + %, if there

The running time of this algorithm is O(pmi# + km), to analyze the algorithm we
need to bound k the number of edges removed and argue that the max flow does not change
significantly due to removal of the edges.

1.5 Effective Resistance Lemma

The analysis relies on a lemma that bounds the change in effective resistance when an edge
contributing a § fraction of the energy of the electrical flow is removed.

LEMMA 3

Let R(r) be the effective resistance between (s,t) when edges have resistances r.,

(i) If re > r., then R(r) > R(r').

(ii) Suppose f is an electrical low and e an edge such that f2r. > BE.(f). The effective
resistance on removing e is at least %.

PrOOF: (i) For all potential vectors ¢ such that ¢(s) = 1 and ¢(¢) = 0 the energy of the
electrical flow corresponding to resistances r is less than the energy for resistances 7’.

_ 2 _ 2
Bg) = 30 el (B m Ol ) ©

Taking the minima we have % = ming E,(¢) < ming £,/ (¢) = R’#(r)'

(ii) Let ¢ be the potential vector corresponding to the electrical flow with potential
difference 1 across s and t.
1 (pu— ¢0)* | B
- > AL T VAT 8
R~ Z Te + R (8)
c€E(G)\h

The energy of ¢ with respect to resistances r. is at least %, therefore (11_%6 ) > 1.
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(iii) Let us analyze the more general case when the resistance on an edge that carries a
B fraction of the energy is increased by (1 + ¢),

1-— 1

1+e¢ es
R " R(l4+e¢ ~ R L+e(1-p) 2

> (1
_(+2

)R

The last inequality is a more convenient form for later use, obtained by brute force.
O

1.6 Bounding the number of edges removed

THEOREM 4 B
For p = O(m'/?), the number of edges removed by the algorithm is O(m'/?), the total
capacity of the edges removed is O(eF).

PROOF: We analyze the change in the effective resistance between (s,t) over the course of
the algorithm. The effective resistance R is the energy of the electrical flow of value 1.
The capacity of the (s,t) min-cut is equal to F* by the max-flow min-cut theorem.

There must be an edge with flow 1«1 across the min-cut so the initial energy R(0) > ﬁ

The energy dissipated of an edge with congestion p is at least p?R, > epjnw, while the

total energy is at most (1+¢€)W. If k edges get removed during the course of the algorithm,
by part (ii) of the effective resistance lemma,

R(T) > R(0) (1 - m(fﬂ))k

The energy of the flow of value F' is at most (1 + €)W (T'), hence we have an upper bound
on R(T),
(14+e)W(T)
2
The increase in weight over a single iteration is bounded as follows,

W(t+1) = we(t) (1 + ;fg> < W(t) (1 G 6)> (9)

> R(T)

p

The weight W (T) after T' = 2227 rounds can is at most e2m™/¢.

€

F? ep? —*
1 2Inn/e 1_ 10
S O ( m(l+e) (10)
The ratio between F'* and F' can be at most m, taking logarithms we have k < M =

- ln(l_ 7nflp+5) )

o(:)
€4p :

Choosing p = O(m'?(Inm)'/3/€) we find that at most O((mInm)'/3) edges get re-

moved. The congestion p on an edge can be at most F' [for the unit capacity case F'/p > 1],

so the total capacity of the edges removed is < O (%) =O0(eF). O
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1.7 The Cut Algorithm

An (s,t) cut can be found from potential vector ¢ such that ¢(s) = 1 and ¢(t) = 0 by
choosing the minimum sweep cut. The expected value of a sweep cut obtained by choosing
t € [0,1] uniformly at random is 3, [¢(u) — ¢(v)].

This can be bounded in terms of effective resistances using the Cauchy Schwartz in-

pos((H) () e e

ecE Reff

equality,

Here is an algorithm that produces approximately minimum cuts,

1. Initialize weights we(0) = 1 for all edges, in iteration ¢ find electric flow with resistances
r(e) = we(t).

2. Update weights as we(t + 1) = we(t) + 5 fe(t) + %W(t).

3. If the minimum sweep cut has value less than (1 + 6¢)F output the min sweep cut.

CLAIM 5
The algorithm produces a (1 + O(e)) min-cut in N = O(m'/3logm) iterations with p =
O(m'/3).

PRrROOF: If we manage to show that within N iterations the effective resistance Rcpr >
(1—6¢)W (t)
2

We will work under the assumption R.zy < (1_6;%. The total weight can be bounded
as follows:

, the expected value of the sweep cut is at most F'(1 4+ O(e)) by equation (11).

2

Wis =W (145) 4 £ S wer <wio (14 42)

The average congestion > wefe < \/E(f)W < /1 —6eW < (1 — 3¢)W the first inequality
by Cauchy Schwartz and second by the assumption on effective resistance.

We want to argue that a large fraction of the weight is concentrated on edges in the min-
cut, we introduce the following potential function, (Note that v(t) < maxeee we(t) < W (t)).

1/|C|
v(t) = (H we(t)>

ecC

For all rounds such that congestion is less than p, the change in v(t) can be bounded as
follows:

1/1C| c(1—e) fe e(1—¢)
vt +1) =v(t) [] (1 + i) > u(t)e 7 Ze€CTE > p(t)e s
ecC

We used the inequality (1 + ez) > e*(1=9) for the second inequality and that |F|/|C] > 0
for the third.
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The number of rounds a for which the maximum congestion is less than p can be bounded
as follows,
ae(l—e¢) e(1-29)T
e » <vT)<W(T)<me »r
Taking logs and rearranging, a < (1 —€)T + 2logm.
Now we need to bound b the number of rounds where there is an edge with congestion
more than p, for such rounds the effective resistance increases significantly,

e(1—26)T

<1 + Ef)bR(O) < (1+0(e))yme 7

The energy fraction 3 = % and the initial resistance is 1/poly(m), taking logs and approx-

imating (not accurate but ok essentially),

m el ~mT m
b< — <lnm—i—) =0(—+—

pe? p ( p p2)
Th ebound on a suggests choosing T' = p and the bound on b suggests T' = % so p = O(ml/s)

p
is an optimal choice of parameters. O
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