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Lecture 23

1 Fast Max-Flow

Given undirected graph G(V,E) where each edge has capacity 1, the objective is to find
the maximum flow from s to t, such that the flow on an edge does not exceed its capacity.
The running time for the best known max flow algorithm until recently was O(m3/2). We
discuss the algorithm from [1] for finding ε-approximate max-flows in time Õ(m4/3/ε).

1.1 Electrical Flows

Finding electrical flows: Let L be the Laplacian for graph G(V,E) where edge e has
weight 1

Re
. The potential vector φ for the electric flow and the current vector i whose j-th

component is the outgoing current at vertex j are related as follows,

Lφ = i L+i = φ (1)

The Laplacian linear system solver can be used to find the electrical flow for any i in time
Õ(m), by finding φ and then the current through each edge using Ohm’s law.

Energy minimization: The energy dissipated in the network by flow fe is
∑

e f
2
eRe,

as a function of φ the energy is E(φ) =
∑

u∼v
(φu−φv)2
Ruv

. Consider the problem of finding
the minimum energy flow if some vertex potentials are fixed. The partial derivative of the
energy with respect to free variables must be 0,

∂E(φ)

∂φu
=
∑
v∼u

2(φu − φv)
Ruv

= 2iu (2)

The outflowing current at free vertices is 0 for the minimum energy flow, that is the Kirchoff
current laws are satisfied. The electrical flow is therefore the unique energy minimizing flow.

1.2 Experts for max flow

Binary search: Suppose we have an algorithm that constructs a flow of value f if one
exists. The value of the max flow F ∗ can be found in logm iterations by binary search and
the max flow can be found by running the algorithm with input F ∗.

Flow game: The max flow game is played between the edge and flow players, the edge
player plays edge e, the flow player plays flow f with value F and the gain for the edge
player is fe.

Suppose the flow player can guarantee an average loss (1 + ε) and a maximum loss of ρ
against any strategy played by the edge player. This is formalized as an (ε, ρ) oracle,∑

e

wefe ≤ (1 + ε)
∑
e

we

fe ≤ ρ

|f | = F (3)
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Then the following algorithm converges to a (1+O(ε)) approximate flow in T = O(ρ logn
ε2

)
rounds.

1. The edge player follows the experts algorithm with initial weights w(e) = 1 and update
rule wt+1

e = wte(1 + ε
ρf

t
e).

2. The flow player plays the flow fi output by the (ε, ρ) oracle against weights wi.

Claim 1
The average flow f∗ = 1

T

∑
i∈T fi has value F and satisfies all the capacity constraints on

edges within a factor of ε, for T > ρ lnn
ε2

.

Proof: The oracle ensures that the gain for the edge player is at most (1 + ε) in each
round. The gain of the best expert in retrospect against the flow f∗ is maxe f

∗(e). The
analysis of the experts algorithm with gains yields,

(1 + ε)T ≥ G ≥ max
e
f∗(e)T (1− ε)− ρ lnm

ε
(4)

The average flow f∗ at the end of the procedure therefore satisfies all the capacity constraints
up to a factor of 1 +O(ε). 2

1.3 Implementing the oracle

The (ε, ρ) oracle can be implemented in time Õ(m) by finding electrical flows. The running
time of the ε algorithm is Õ(mρ

ε2
). We will first construct an oracle of width Õ(m1/2) and

then improve the width to Õ(m1/3).

1.3.1 A width
√
m oracle

An oracle of width Õ(m1/2) can be implemented by finding an electrical flow of value F
from s to t with resistances as in the claim below,

Claim 2
The electrical flow with resistances Re = we + εW

m has average congestion (1 + ε) and

maximum congestion Õ(m1/2).

Proof: We know that there is a feasible flow f ′ of value F such that f ′(e) ≤ 1 for all e.
The energy of the electrical flow is bounded by,∑

e

f2eRe ≤
∑
e

(f ′e)
2Re ≤

∑
e

Re = (1 + ε)W

The average congestion can be bounded using the Cauchy Schwarz inequality,(∑
e

wefe

)2

≤

(∑
e

wef
2
e

)(∑
e

we

)

≤

(∑
e

Ref
2
e

)
W ≤ (1 + ε)W 2 (5)
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Taking square roots, we have
∑

ewefe ≤
√

1 + εW < (1 + ε)W . To bound on the maximum
congestion for the electrical flow, we note that the energy dissipated on an edge is at most
the total energy of the electrical flow,

f2e εW

m
≤ (1 + ε)W ⇒ fe ≤

√
m(1 + ε)

ε
(6)

2

1.4 Improving the width of the oracle

The width of the oracle is improved by changing the algorithm to the following:

1. The edge player follows the experts algorithm with initial weights w(e) = 1 and update
rule wt+1

e = wte(1 + ε
ρf

t
e).

2. The flow player plays the flow fi outputs the electrical flow with Re = we + εW
m , if there

is an edge with congestion more than ρ in fi delete edge and repeat.

The running time of this algorithm is O(ρm logm
ε2

+ km), to analyze the algorithm we
need to bound k the number of edges removed and argue that the max flow does not change
significantly due to removal of the edges.

1.5 Effective Resistance Lemma

The analysis relies on a lemma that bounds the change in effective resistance when an edge
contributing a β fraction of the energy of the electrical flow is removed.

Lemma 3
Let R(r) be the effective resistance between (s, t) when edges have resistances re,
(i) If re > r′e then R(r) ≥ R(r′).
(ii) Suppose f is an electrical flow and e an edge such that f2e re ≥ βEr(f). The effective
resistance on removing e is at least R

1−β .

Proof: (i) For all potential vectors φ such that φ(s) = 1 and φ(t) = 0 the energy of the
electrical flow corresponding to resistances r is less than the energy for resistances r′.

Er(φ) =
∑
u∼v

(φu − φv)2

ruv
≤
∑
u∼v

(φu − φv)2

r′uv
= Er′(φ) (7)

Taking the minima we have 1
R(r) = minφEr(φ) ≤ minφEr′(φ) = 1

R′(r) .

(ii) Let φ be the potential vector corresponding to the electrical flow with potential
difference 1 across s and t.

1

R
≥

∑
e∈E(G)\h

(φu − φv)2

re
+
β

R
(8)

The energy of φ with respect to resistances r′e is at least 1
R′ , therefore (1−β)

R ≥ 1
R′ .
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(iii) Let us analyze the more general case when the resistance on an edge that carries a
β fraction of the energy is increased by (1 + ε),

1− β
R

+
β

R(1 + ε)
≥ 1

R′
⇒ R′ ≥ R 1 + ε

1 + ε(1− β)
≥ (1 +

εβ

2
)R

The last inequality is a more convenient form for later use, obtained by brute force.
2

1.6 Bounding the number of edges removed

Theorem 4
For ρ = Õ(m1/3), the number of edges removed by the algorithm is Õ(m1/3), the total
capacity of the edges removed is O(εF ).

Proof: We analyze the change in the effective resistance between (s, t) over the course of
the algorithm. The effective resistance R is the energy of the electrical flow of value 1.

The capacity of the (s, t) min-cut is equal to F ∗ by the max-flow min-cut theorem.
There must be an edge with flow 1

F ∗ across the min-cut so the initial energy R(0) ≥ 1
(F ∗)2 .

The energy dissipated of an edge with congestion ρ is at least ρ2Re ≥ ερ2W
m , while the

total energy is at most (1+ ε)W . If k edges get removed during the course of the algorithm,
by part (ii) of the effective resistance lemma,

R(T ) ≥ R(0)

(
1− ερ2

m(1 + ε)

)−k
The energy of the flow of value F is at most (1 + ε)W (T ), hence we have an upper bound
on R(T ),

(1 + ε)W (T )

F 2
≥ R(T )

The increase in weight over a single iteration is bounded as follows,

W (t+ 1) =
∑
e

we(t)

(
1 +

ε

ρ
f te

)
≤W (t)

(
1 +

ε(1 + ε)

ρ

)
(9)

The weight W (T ) after T = ρ lnn
ε2

rounds can is at most e2 lnn/ε.

(1 + ε)e2 lnn/ε ≥ F 2

(F ∗)2

(
1− ερ2

m(1 + ε)

)−k
(10)

The ratio between F ∗ and F can be at mostm, taking logarithms we have k ≤ 2 lnm+2 lnn/ε

− ln(1− ερ2

m(1+ε)
)

=

O
(
m lnm
ε2ρ2

)
.

Choosing ρ = O(m1/3(lnm)1/3/ε) we find that at most O((m lnm)1/3) edges get re-
moved. The congestion ρ on an edge can be at most F [for the unit capacity case F/ρ > 1],

so the total capacity of the edges removed is ≤ O
(
m lnmF
ε2ρ3

)
= O(εF ). 2
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1.7 The Cut Algorithm

An (s, t) cut can be found from potential vector φ such that φ(s) = 1 and φ(t) = 0 by
choosing the minimum sweep cut. The expected value of a sweep cut obtained by choosing
t ∈ [0, 1] uniformly at random is

∑
u,v |φ(u)− φ(v)|.

This can be bounded in terms of effective resistances using the Cauchy Schwartz in-
equality, ∑

e∈E
φ(e) ≤

((∑
e

φ2e
re

)(∑
e

re

))1/2

=

√
R

Reff
(11)

Here is an algorithm that produces approximately minimum cuts,

1. Initialize weights we(0) = 1 for all edges, in iteration t find electric flow with resistances
r(e) = we(t).

2. Update weights as we(t+ 1) = we(t) + ε
ρfe(t) + ε2

mρW (t).
3. If the minimum sweep cut has value less than (1 + 6ε)F output the min sweep cut.

Claim 5
The algorithm produces a (1 + O(ε)) min-cut in N = O(m1/3 logm) iterations with ρ =

O(m1/3).

Proof: If we manage to show that within N iterations the effective resistance Reff ≥
(1−6ε)W (t)

F 2 , the expected value of the sweep cut is at most F (1 +O(ε)) by equation (11).

We will work under the assumption Reff ≤ (1−6ε)W (t)
F 2 . The total weight can be bounded

as follows:

W (t+ 1) = W (t)

(
1 +

ε2

ρ

)
+
ε

ρ

∑
wefe ≤W (t)

(
1 +

ε(1− 2ε)

ρ

)
The average congestion

∑
wefe ≤

√
E(f)W ≤

√
1− 6εW ≤ (1− 3ε)W the first inequality

by Cauchy Schwartz and second by the assumption on effective resistance.
We want to argue that a large fraction of the weight is concentrated on edges in the min-

cut, we introduce the following potential function, (Note that ν(t) ≤ maxe∈ewe(t) < W (t)).

ν(t) =

(∏
e∈C

we(t)

)1/|C|

For all rounds such that congestion is less than ρ, the change in ν(t) can be bounded as
follows:

ν(t+ 1) = ν(t)
∏
e∈C

(
1 +

εfe
ρ

)1/|C|
≥ ν(t)e

ε(1−ε)
ρ

∑
e∈C

fe
|C| ≥ ν(t)e

ε(1−ε)
ρ

We used the inequality (1 + εx) ≥ exε(1−ε) for the second inequality and that |F |/|C| > 0
for the third.
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The number of rounds a for which the maximum congestion is less than ρ can be bounded
as follows,

e
aε(1−ε)

ρ ≤ ν(T ) ≤W (T ) ≤ me
ε(1−2ε)T

ρ

Taking logs and rearranging, a ≤ (1− ε)T + ρ
ε logm.

Now we need to bound b the number of rounds where there is an edge with congestion
more than ρ, for such rounds the effective resistance increases significantly,(

1 +
εβ

2

)b
R(0) ≤ (1 +O(ε))me

ε(1−2ε)T
ρ

The energy fraction β = ρ2ε
m and the initial resistance is 1/poly(m), taking logs and approx-

imating (not accurate but ok essentially),

b ≤ m

ρ2ε2

(
lnm+

εT

ρ

)
= Õ(

mT

ρ3
+
m

ρ2
)

Th ebound on a suggests choosing T = ρ and the bound on b suggests T = m
ρ2

so ρ = O(m1/3)
is an optimal choice of parameters. 2
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