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Figure 1: An input coarse mesh (left) is subjected to tessellation using Curved PN Triangles (middle) and 

Phong Tessellation (right). 

Abstract 
Models used in real-time graphics are commonly rendered using triangular boundary 

representations. Triangulation approximates flat surfaces very well, but requires many fine 

triangles to accurately represent curved surfaces. This project implements two methods for 

smoothing coarse input meshes using GPU tessellation shaders to obtain smooth surfaces. 

1 Introduction 
Triangular boundary representations are common for many 3D models. Because triangles are 

planar, they represent flat surfaces with hard edges well. When attempting to represent a 

curved surface, such as a sphere, many triangles are needed, when compared to a flat surface, 

such as a parallelogram. Because of the additional space required, it is common to represent 

curved surfaces with jagged edges, as seen in the left picture of Figure 1. This project 

implements two methods to remedy this situation, in the context of real-time applications. 

2 Background 
Real-time applications commonly use OpenGL or Direct3D to interface with a graphics 

processing unit, or GPU, a specialized electronic circuit designed to rapidly render images for 

display. Modern commodity GPUs have a rendering pipeline that involves multiple 

programmable stages for per-vertex operations and per-fragment operations. This project 

utilizes the programmable stage built around the GPU’s hardware tessellator. 



The number of triangles affects the speed of rendering in modern real-time GPU-based 

approaches in two ways. First, the GPU must rasterize every triangle. Second, the CPU must 

pass the triangles into graphics memory. Because these constraints are kept in mind, many 

models are coarsely triangulated, to reduce their rendering cost. However, when an object is 

large on a screen, the triangulation’s approximation artifacts are very visible, shown as jagged 

edges on what should be a smooth surface, shown in the left picture in Figure 1.  

Subdivision surfaces can represent curved surfaces by utilizing a coarse control point mesh. 

These subdivision surfaces are commonly defined recursively [Catmull and Clark 1978]. To be 

implemented in a GPU tessellator, a limit-surface representation [Stam 1998] is common, as 

new points can be generated in a single pass. However, a limit-surface method involves pre-

computation on the mesh before tessellation, has issues at extraordinary vertices, and can be 

quite slow when implemented on a GPU [Loop and Schaefer 2008]. Furthermore, meshes used 

with subdivision schemes are typically modeled with the scheme in mind, and may generate 

vastly inconsistent meshes with differing subdivision methods [Stam and Loop 2003]. 

Representations other than boundary representations can exhibit curved surfaces. However, 

for real-time applications, these representations are often triangulated to interface with the 

existing GPU rasterization pipeline that typically accepts only planar geometry. Alternative real-

time approaches exist, such as real-time ray-tracing [Parker et al. 2010] that may handle more 

representations of geometry. This project, however, will focus on using the GPU rasterization 

pipeline.  

2 Tessellation 
Tessellation, in its most basic form, is breaking down polygons into finer pieces. A square can be 

tessellated into two triangles by splitting the shape along its diagonal. Although tessellation can 

be done on the CPU, doing so would increase the number of polygons that must be transmitted 

to the GPU. This may impact performance when using a large number of polygons, as the 

memory bandwidth between the CPU and GPU is finite. Additionally, GPUs are typically 

designed with parallelism in mind. Because tessellation is independent per-polygon, doing 

many tessellations in parallel will speed up the computation. The actual speed-up can be seen 

in the results section. 

The current rasterization pipeline used in commodity GPUs is shown in Figure 2. The input to 

the pipeline are polygons, and typically specified by a CPU program. The polygons then undergo 

per-vertex operations in a vertex program, such as multiplication with transformation matrices. 

These vertices are then optionally tessellated, to yield additional vertices. The vertices are then 

assembled into primitives, and rasterized. Finally, a fragment program determines the color at 

each pixel, and an image then typically shown on a display. 

 

 



 

 

 

 

 

 
Figure 2: A modern GPU rasterization pipeline. Steps shown in blue are fixed-function. Steps shown in 

green are programmable. Steps with a dotted border are optional. 

The Tessellation Control Program (TCP) controls the number of additional polygons to generate, 

per input polygon. The tessellation step of actually generating the additional vertices is not 

programmable. The Tessellation Evaluation Program (TEP) controls the location of additional 

points within an input polygon.  

The TCP operates on a per-vertex level. We will revisit this program in adaptive tessellation. For 

uniform tessellation, this can simply set a user-defined variable for the number of new triangles 

to generate. 

The tessellator will generate additional vertices within a given polygon. These additional 

vertices are then passed to the TEP, along with barycentric coordinates of the generated vertex 

relative to the input polygon. We smooth our input geometry by moving the generated vertices 

in the TEP. 

3 Smooth Tessellation 
By manipulating the location of an additional vertex in the TEP, we can smooth the model by 

more closely approximating a smooth surface. This project implement two existing methods, 

and I discuss a third possible option. For the two methods implemented, placement of 

additional vertices depend on the input polygon vertices 𝑉1, 𝑉2, 𝑉3 ∈ ℝ3, their associated 

normal vectors 𝑁1, 𝑁2, 𝑁2 ∈ ℝ3, and barycentric coordinates of the newly generated vertex 

𝑢, 𝑣, 𝑤 ∈ ℝ, 𝑢 + 𝑣 + 𝑤 = 1. 

 

Figure 3: The inputs to a smooth Tessellation Evaluation Program. Image from Vlachos et al. 2001 
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3.1 Curved PN Triangles 
From the input vertices and normals, Curved PN Triangles [Vlachos et al. 2001] generates 

control points to represent a smooth, cubic Bezier triangle that interpolates across the three 

input vertices.  

 

Figure 4: Generated control points for a cubic Bezier triangle patch. Image from Vlachos et al. 2001. 

The cubic Bezier triangle can be evaluated given these control points with the following formula 

[Vlachos et al. 2001] 

𝑝∗(𝑢, 𝑣, 𝑤) = 𝑏300𝑤
3 + 𝑏030𝑢

3 + 𝑏003𝑣
3 + 3𝑏210𝑤

2𝑢 + 3𝑏120𝑤𝑢
2 + 3𝑏201𝑤

2𝑣 

+3𝑏021𝑢
2𝑣 + 3𝑏102𝑤𝑣

2 + 3𝑏012𝑢𝑣
2 + 6𝑏111𝑤𝑢𝑣 

The control points are generated by interpolating geometric vertex locations, and projecting 

them along their nearest normal, and in the case of the center control point, the averaged 

normal. The formulae for generating these control points are given in the appendix. 

3.2 Phong Tessellation 
Phong Tessellation draws inspiration from Phong Shading, a method that shades boundary 

representations smoothly by interpolating normals used for lighting calculations. Phong 

Tessellation [Boubekeur and Alexa 2008] generates tangent planes for each input vertex, 

aligned to each input normal, and performs barycentric interpolation within the three defining 

tangent planes of a triangle to find a newly generated point. 

This process is illustrated in Figure 5. A newly generated vertex p is projected onto the three 

tangent planes, shown by the dotted green lines. The new vertex location p* is found by 

barycentric interpolation of the tangent plane projections. 



 

Figure 5: Phong Tessellation principle. The interpolation of vertex tangent planes defines a curve 

geometry for each triangle. Image from Boubekeur and Alexa 2008. 

We can define the projection operation of a point q onto the tangent plane associated with 

vertex vi and normal ni, following Boubekeur and Alexa 2008.. 

𝜋𝑖(𝑞) = 𝑞 − ((𝑞 − 𝑣𝑖) ⋅ 𝑛𝑖)𝑛𝑖  

Given this projection, we can find the new location p* of an input vertex p by a simple matrix 

multiplication. 

𝑝∗(𝑢, 𝑣, 𝑤) = (𝑢, 𝑣, 𝑤)(

𝜋1(𝑝(𝑢, 𝑣, 𝑤))

𝜋2(𝑝(𝑢, 𝑣, 𝑤))

𝜋3(𝑝(𝑢, 𝑣, 𝑤))

) 

3.3 Subdivision Surfaces 
Although this project does not implement subdivision surfaces, it is possible to evaluate 

subdivision surfaces in a tessellation program. Because each stage in the tessellation pipeline is 

evaluated only once, we cannot utilize a recursive subdivision strategy without doing multiple 

render passes, which will involve multiple evaluations of the other portions of the rasterization 

pipeline. A limit surface evaluation of subdivision surfaces can be used, such as Stam’s method 

[Stam 1998]. However, computation of Stam’s method on extraordinary vertices will exhibit 

poor performance, and much research is done to approximate subdivision surfaces at 

extraordinary vertices [Loop and Schaefer 2008]. Subdivision surfaces also require adjacency 

information of the input mesh [Catmull and Clark 1978], which may not be readily available in 

some 3D meshes, and also require a pre-computation pass if implemented in a tessellation 

program. 



4 Adaptive Tessellation 
Phong Shading will shade shapes smoothly in lighting calculations. This smoothness is 

interrupted at edges of the geometry, due to coarse triangulation. Phong Tessellation and 

Curved PN Triangles address the issue at silhouette edges by generating a smooth tessellation 

over the surface of each triangle. However, the tessellation levels needed to generate a smooth 

curve do not need to be uniform throughout the mesh. The approach this project takes to 

adaptively tessellate geometry considers both the distance from the camera and the normal of 

the polygon. 

The tessellation levels can be specified by heuristic metrics in the TCP, which control the 

number of vertices to generate by tessellation. 

Intuitively, we can see errors due to triangulation the closer an object is to the camera. 

Therefore, we only need to tessellate the triangles which are closer to the camera. A further 

extension on this metric would be to consider the screen-space projected triangle size. 

This project also utilizes Boubekeur et al.’s contour metric to find a function to find polygons 

facing almost parallel to the camera. 

Combining these two metrics, we can obtain the following measure to control tessellation 

𝑑𝑖 = (1 − |
𝑛𝑖
𝑇(𝑐 − 𝑣𝑖)

|𝑐 − 𝑣𝑖|
|)
𝑚

𝑧
 

With 𝑐 as the camera position, 𝑣𝑖  and 𝑛𝑖  as the vertices and normals corresponding to the input 

polygon, 𝑚 as the user-defined maximum tessellation value, and 𝑧 as a measure of zoom. 

Adaptively tessellating very coarse meshes can result in visible tears in the model. Although a 

continuous field is generated at every edge, the number of samples from the two bordering 

triangles can generate a hole in the mesh. The tessellation level difference between two 

neighboring triangles must be minimized to reduce the holes generated in the mesh.  

 

Figure 6: Left: Adaptive tessellation of the Stanford bunny. Middle: Close-up view. Right: Visualization of 

areas with high tessellation  



5 Results 
Example outputs of Curved PN Triangles and Phong Tessellation can be seen in Figure 1 and 

Figure 6. We can measure the speed of doing these computations using a tessellation shader, 

versus doing the computations on the CPU. It is clear that doing these computations on the 

GPU maintains a higher frame rate, which is important for real-time applications. 

Adaptive tessellation is not included on the table, as no noticeable frame rate difference occurs 

until about 9000x triangle tessellation, due to the smaller number of triangles that must be 

tessellated. 

 CPU Averaging Averaging Curved PN 
Triangles 

Phong 
Tessellation 

6x 60 60 60 60 

54x 40 60 60 60 

96x 22 43 35 39 

150x 14 37 32 35 

216x 10 17 14 16 

294x 7 19 16 18 

384x 6 14 12 13 

486x 5 12 10 11 

600x 4 8 7 8 

726x 3 8 7 8 
Table 1: Frames-per-second values (capped at 60) of various tessellation values on different tessellation 

methods. Horizontally, the table shows differing methods. Vertically, the table shows a multiplier on 

number of triangles generated. Measured on a 10,000 triangle Stanford Dragon model, on a computer 

running a NVIDIA GeForce GTX 680 GPU. 

 

Figure 7: Chart of Table 1. Vertical FPS axis is logarithmic. 
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 6 Conclusion 
This project presents results and comparisons between various smooth tessellation methods. 

Although these curved surfaces do not have as strong a guarantee of continuity as subdivision 

surfaces [Boubekeur and Alexa 2008, Vlachos et al. 2001], they are very fast to compute. I 

believe the project was a success, as the speed of these methods are well-suited for real-time 

applications, as can be seen in Table 1. 
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8 Appendix 
8.1 Curved PN Triangle Weights 

𝑤𝑖𝑗 = (𝑃𝑗 − 𝑃𝑖) ⋅ 𝑁𝑖 ∈ 𝑅 
𝑏300 = 𝑃1 
𝑏030 = 𝑃2 
𝑏003 = 𝑃3 

𝑏210 =
1

3
(2𝑃1 + 𝑃2 − 𝑤12𝑁1) 

𝑏120 =
1

3
(2𝑃2 + 𝑃1 − 𝑤21𝑁2) 

𝑏021 =
1

3
(2𝑃2 + 𝑃3 − 𝑤23𝑁2) 

𝑏012 =
1

3
(2𝑃3 + 𝑃2 − 𝑤32𝑁3) 

𝑏102 =
1

3
(2𝑃3 + 𝑃1 − 𝑤31𝑁3) 

𝑏201 =
1

3
(2𝑃1 + 𝑃3 − 𝑤13𝑁1) 

𝐸 =
1

6
(𝑏210 + 𝑏120 + 𝑏021 + 𝑏012 + 𝑏102

+ 𝑏201) 

𝑉 =
1

3
(𝑃1 + 𝑃2 + 𝑃3) 

𝑏111 = 𝐸 + (𝐸 − 𝑉)/2 

 



 


