
Smooth GPU Tessellation
CS284 Final Project

Brandon Wang

Figure 1: An input coarse mesh (left) is subjected to tessellation using Curved PN Triangles (middle) and

Phong Tessellation (right).

Abstract
Models used in real-time graphics are commonly rendered using triangular boundary

representations. Triangulation approximates flat surfaces very well, but requires many fine

triangles to accurately represent curved surfaces. This project implements two methods for

smoothing coarse input meshes using GPU tessellation shaders to obtain smooth surfaces.

1 Introduction
Triangular boundary representations are common for many 3D models. Because triangles are

planar, they represent flat surfaces with hard edges well. When attempting to represent a

curved surface, such as a sphere, many triangles are needed, when compared to a flat surface,

such as a parallelogram. Because of the additional space required, it is common to represent

curved surfaces with jagged edges, as seen in the left picture of Figure 1. This project

implements two methods to remedy this situation, in the context of real-time applications.

2 Background
Real-time applications commonly use OpenGL or Direct3D to interface with a graphics

processing unit, or GPU, a specialized electronic circuit designed to rapidly render images for

display. Modern commodity GPUs have a rendering pipeline that involves multiple

programmable stages for per-vertex operations and per-fragment operations. This project

utilizes the programmable stage built around the GPU’s hardware tessellator.

The number of triangles affects the speed of rendering in modern real-time GPU-based

approaches in two ways. First, the GPU must rasterize every triangle. Second, the CPU must

pass the triangles into graphics memory. Because these constraints are kept in mind, many

models are coarsely triangulated, to reduce their rendering cost. However, when an object is

large on a screen, the triangulation’s approximation artifacts are very visible, shown as jagged

edges on what should be a smooth surface, shown in the left picture in Figure 1.

Subdivision surfaces can represent curved surfaces by utilizing a coarse control point mesh.

These subdivision surfaces are commonly defined recursively [Catmull and Clark 1978]. To be

implemented in a GPU tessellator, a limit-surface representation [Stam 1998] is common, as

new points can be generated in a single pass. However, a limit-surface method involves pre-

computation on the mesh before tessellation, has issues at extraordinary vertices, and can be

quite slow when implemented on a GPU [Loop and Schaefer 2008]. Furthermore, meshes used

with subdivision schemes are typically modeled with the scheme in mind, and may generate

vastly inconsistent meshes with differing subdivision methods [Stam and Loop 2003].

Representations other than boundary representations can exhibit curved surfaces. However,

for real-time applications, these representations are often triangulated to interface with the

existing GPU rasterization pipeline that typically accepts only planar geometry. Alternative real-

time approaches exist, such as real-time ray-tracing [Parker et al. 2010] that may handle more

representations of geometry. This project, however, will focus on using the GPU rasterization

pipeline.

2 Tessellation
Tessellation, in its most basic form, is breaking down polygons into finer pieces. A square can be

tessellated into two triangles by splitting the shape along its diagonal. Although tessellation can

be done on the CPU, doing so would increase the number of polygons that must be transmitted

to the GPU. This may impact performance when using a large number of polygons, as the

memory bandwidth between the CPU and GPU is finite. Additionally, GPUs are typically

designed with parallelism in mind. Because tessellation is independent per-polygon, doing

many tessellations in parallel will speed up the computation. The actual speed-up can be seen

in the results section.

The current rasterization pipeline used in commodity GPUs is shown in Figure 2. The input to

the pipeline are polygons, and typically specified by a CPU program. The polygons then undergo

per-vertex operations in a vertex program, such as multiplication with transformation matrices.

These vertices are then optionally tessellated, to yield additional vertices. The vertices are then

assembled into primitives, and rasterized. Finally, a fragment program determines the color at

each pixel, and an image then typically shown on a display.

Figure 2: A modern GPU rasterization pipeline. Steps shown in blue are fixed-function. Steps shown in

green are programmable. Steps with a dotted border are optional.

The Tessellation Control Program (TCP) controls the number of additional polygons to generate,

per input polygon. The tessellation step of actually generating the additional vertices is not

programmable. The Tessellation Evaluation Program (TEP) controls the location of additional

points within an input polygon.

The TCP operates on a per-vertex level. We will revisit this program in adaptive tessellation. For

uniform tessellation, this can simply set a user-defined variable for the number of new triangles

to generate.

The tessellator will generate additional vertices within a given polygon. These additional

vertices are then passed to the TEP, along with barycentric coordinates of the generated vertex

relative to the input polygon. We smooth our input geometry by moving the generated vertices

in the TEP.

3 Smooth Tessellation
By manipulating the location of an additional vertex in the TEP, we can smooth the model by

more closely approximating a smooth surface. This project implement two existing methods,

and I discuss a third possible option. For the two methods implemented, placement of

additional vertices depend on the input polygon vertices 𝑉1, 𝑉2, 𝑉3 ∈ ℝ3, their associated

normal vectors 𝑁1, 𝑁2, 𝑁2 ∈ ℝ3, and barycentric coordinates of the newly generated vertex

𝑢, 𝑣, 𝑤 ∈ ℝ, 𝑢 + 𝑣 + 𝑤 = 1.

Figure 3: The inputs to a smooth Tessellation Evaluation Program. Image from Vlachos et al. 2001

Input Vertex

Program

Tessellation

Control

Program

Tessellation Tessellation

Evaluation

Program

Primitive

Assembly

Geometry

Program
Rasterization Fragment

Program
Frame Buffer

Operations

V3

V1

V2

3.1 Curved PN Triangles
From the input vertices and normals, Curved PN Triangles [Vlachos et al. 2001] generates

control points to represent a smooth, cubic Bezier triangle that interpolates across the three

input vertices.

Figure 4: Generated control points for a cubic Bezier triangle patch. Image from Vlachos et al. 2001.

The cubic Bezier triangle can be evaluated given these control points with the following formula

[Vlachos et al. 2001]

𝑝∗(𝑢, 𝑣, 𝑤) = 𝑏300𝑤
3 + 𝑏030𝑢

3 + 𝑏003𝑣
3 + 3𝑏210𝑤

2𝑢 + 3𝑏120𝑤𝑢
2 + 3𝑏201𝑤

2𝑣

+3𝑏021𝑢
2𝑣 + 3𝑏102𝑤𝑣

2 + 3𝑏012𝑢𝑣
2 + 6𝑏111𝑤𝑢𝑣

The control points are generated by interpolating geometric vertex locations, and projecting

them along their nearest normal, and in the case of the center control point, the averaged

normal. The formulae for generating these control points are given in the appendix.

3.2 Phong Tessellation
Phong Tessellation draws inspiration from Phong Shading, a method that shades boundary

representations smoothly by interpolating normals used for lighting calculations. Phong

Tessellation [Boubekeur and Alexa 2008] generates tangent planes for each input vertex,

aligned to each input normal, and performs barycentric interpolation within the three defining

tangent planes of a triangle to find a newly generated point.

This process is illustrated in Figure 5. A newly generated vertex p is projected onto the three

tangent planes, shown by the dotted green lines. The new vertex location p* is found by

barycentric interpolation of the tangent plane projections.

Figure 5: Phong Tessellation principle. The interpolation of vertex tangent planes defines a curve

geometry for each triangle. Image from Boubekeur and Alexa 2008.

We can define the projection operation of a point q onto the tangent plane associated with

vertex vi and normal ni, following Boubekeur and Alexa 2008..

𝜋𝑖(𝑞) = 𝑞 − ((𝑞 − 𝑣𝑖) ⋅ 𝑛𝑖)𝑛𝑖

Given this projection, we can find the new location p* of an input vertex p by a simple matrix

multiplication.

𝑝∗(𝑢, 𝑣, 𝑤) = (𝑢, 𝑣, 𝑤)(

𝜋1(𝑝(𝑢, 𝑣, 𝑤))

𝜋2(𝑝(𝑢, 𝑣, 𝑤))

𝜋3(𝑝(𝑢, 𝑣, 𝑤))

)

3.3 Subdivision Surfaces
Although this project does not implement subdivision surfaces, it is possible to evaluate

subdivision surfaces in a tessellation program. Because each stage in the tessellation pipeline is

evaluated only once, we cannot utilize a recursive subdivision strategy without doing multiple

render passes, which will involve multiple evaluations of the other portions of the rasterization

pipeline. A limit surface evaluation of subdivision surfaces can be used, such as Stam’s method

[Stam 1998]. However, computation of Stam’s method on extraordinary vertices will exhibit

poor performance, and much research is done to approximate subdivision surfaces at

extraordinary vertices [Loop and Schaefer 2008]. Subdivision surfaces also require adjacency

information of the input mesh [Catmull and Clark 1978], which may not be readily available in

some 3D meshes, and also require a pre-computation pass if implemented in a tessellation

program.

4 Adaptive Tessellation
Phong Shading will shade shapes smoothly in lighting calculations. This smoothness is

interrupted at edges of the geometry, due to coarse triangulation. Phong Tessellation and

Curved PN Triangles address the issue at silhouette edges by generating a smooth tessellation

over the surface of each triangle. However, the tessellation levels needed to generate a smooth

curve do not need to be uniform throughout the mesh. The approach this project takes to

adaptively tessellate geometry considers both the distance from the camera and the normal of

the polygon.

The tessellation levels can be specified by heuristic metrics in the TCP, which control the

number of vertices to generate by tessellation.

Intuitively, we can see errors due to triangulation the closer an object is to the camera.

Therefore, we only need to tessellate the triangles which are closer to the camera. A further

extension on this metric would be to consider the screen-space projected triangle size.

This project also utilizes Boubekeur et al.’s contour metric to find a function to find polygons

facing almost parallel to the camera.

Combining these two metrics, we can obtain the following measure to control tessellation

𝑑𝑖 = (1 − |
𝑛𝑖
𝑇(𝑐 − 𝑣𝑖)

|𝑐 − 𝑣𝑖|
|)
𝑚

𝑧

With 𝑐 as the camera position, 𝑣𝑖 and 𝑛𝑖 as the vertices and normals corresponding to the input

polygon, 𝑚 as the user-defined maximum tessellation value, and 𝑧 as a measure of zoom.

Adaptively tessellating very coarse meshes can result in visible tears in the model. Although a

continuous field is generated at every edge, the number of samples from the two bordering

triangles can generate a hole in the mesh. The tessellation level difference between two

neighboring triangles must be minimized to reduce the holes generated in the mesh.

Figure 6: Left: Adaptive tessellation of the Stanford bunny. Middle: Close-up view. Right: Visualization of

areas with high tessellation

5 Results
Example outputs of Curved PN Triangles and Phong Tessellation can be seen in Figure 1 and

Figure 6. We can measure the speed of doing these computations using a tessellation shader,

versus doing the computations on the CPU. It is clear that doing these computations on the

GPU maintains a higher frame rate, which is important for real-time applications.

Adaptive tessellation is not included on the table, as no noticeable frame rate difference occurs

until about 9000x triangle tessellation, due to the smaller number of triangles that must be

tessellated.

 CPU Averaging Averaging Curved PN
Triangles

Phong
Tessellation

6x 60 60 60 60

54x 40 60 60 60

96x 22 43 35 39

150x 14 37 32 35

216x 10 17 14 16

294x 7 19 16 18

384x 6 14 12 13

486x 5 12 10 11

600x 4 8 7 8

726x 3 8 7 8
Table 1: Frames-per-second values (capped at 60) of various tessellation values on different tessellation

methods. Horizontally, the table shows differing methods. Vertically, the table shows a multiplier on

number of triangles generated. Measured on a 10,000 triangle Stanford Dragon model, on a computer

running a NVIDIA GeForce GTX 680 GPU.

Figure 7: Chart of Table 1. Vertical FPS axis is logarithmic.

1

2

4

8

16

32

64

6x 54x 96x 150x 216x 294x 384x 486x 600x 726x

Fr
am

es
 P

er
 S

ec
o

n
d

Tessellation level

Comparison of Tessellation Method Performance

CPU Averaging Averaging Curved PN Triangles Phong Tessellation

 6 Conclusion
This project presents results and comparisons between various smooth tessellation methods.

Although these curved surfaces do not have as strong a guarantee of continuity as subdivision

surfaces [Boubekeur and Alexa 2008, Vlachos et al. 2001], they are very fast to compute. I

believe the project was a success, as the speed of these methods are well-suited for real-time

applications, as can be seen in Table 1.

7 References
Boubekeur, T. and Alexa, M. 2008. Phong Tessellation. Proceedings of SIGGRAPH Asia 2008.

Catmull, E. and Clark, J. 1978. Recursively Generated B-Spline Surfaces on Toplogical Meshes.

Computer-Aided Design Vol. 10.

Loop, C. and Schaefer S. 2008. Approximating Catmull-Clark Subdivision Surfaces with Bicubic

Patches. ACM Transaction on Graphics, Vol. 27.

Parker, S., Bigler, J., Dietrich, A., Friedrich, H., Hoberock, J., Luebke, D., McAllister, D., McGuire,

M., Morley, K., Robinson, A., and Stitch, M. 2010. Optix: A General Purpose Ray Tracing Engine.

Proceedings of SIGGRAPH 2010.

Stam, J. 1998. Exact Evaluation of Catmull-Clark Subdivision Surfaces at Arbitrary Parameter

Values. Proceedings of SIGGRAPH 1998.

Stam, J. and Loop, C. 2003. Quad/Triangle Subdivision. Computer Graphics Forum Vol. 22.

Vlachos A., Peters J., Boyd C., and Mitchell J. 2001. Curved PN Triangles. Symposium on

Interactive 3D Graphics 2001.

8 Appendix
8.1 Curved PN Triangle Weights

𝑤𝑖𝑗 = (𝑃𝑗 − 𝑃𝑖) ⋅ 𝑁𝑖 ∈ 𝑅
𝑏300 = 𝑃1
𝑏030 = 𝑃2
𝑏003 = 𝑃3

𝑏210 =
1

3
(2𝑃1 + 𝑃2 − 𝑤12𝑁1)

𝑏120 =
1

3
(2𝑃2 + 𝑃1 − 𝑤21𝑁2)

𝑏021 =
1

3
(2𝑃2 + 𝑃3 − 𝑤23𝑁2)

𝑏012 =
1

3
(2𝑃3 + 𝑃2 − 𝑤32𝑁3)

𝑏102 =
1

3
(2𝑃3 + 𝑃1 − 𝑤31𝑁3)

𝑏201 =
1

3
(2𝑃1 + 𝑃3 − 𝑤13𝑁1)

𝐸 =
1

6
(𝑏210 + 𝑏120 + 𝑏021 + 𝑏012 + 𝑏102

+ 𝑏201)

𝑉 =
1

3
(𝑃1 + 𝑃2 + 𝑃3)

𝑏111 = 𝐸 + (𝐸 − 𝑉)/2

