
A Generalized de Casteljau Approach to
3D Free-form Deformation

Yu-Kuang Chang and Alyn P. Rockwood

Department of Computer Science and Engineering
Arizona State University
Tempe, AZ 85287-5406

ABSTRACT

This paper briefly presents an efficient and intuitive 3D free-
form deformation approach based on iterative affine
transformations, a generalized de Casteljau algorithm,
whereby the object warps along a Bézier curve as its
skeleton.

CR Categories and Subject Descriptors: I.3.5
[Computer Graphics]: Computational Geometry and Object
Modeling - Curve, surface, solid, and object representations;
Hierarchy and geometric transformations.

Additional Key Words: The de Casteljau algorithm,
affine transformation, Bézier curve, B-spline, geometric
modeling, deformation.

1. INTRODUCTION

Free-form deformation (FFD) has become important tool in
computer-assisted geometric design and animation. Barr first
suggested a set of hierarchical transformations for deforming
an object including stretching, bending, twisting, and
tapering operators [1]. It is a very efficient and useable
method if somewhat constrained. Sederberg and Parry [2]
proposed a general technique for deformation which is based
on trivariate Bernstein polynomials and enables the
deformation of objects by manipulating control points (see
also [3]). Another successful approach with an initial lattice
and a scheme of B-spline control points that approximate
the shape of the intended deformation is given by Coquillart
[4].

1. TEL: (602)965-4154
Internet: ychang@enws120.cagd.eas.asu.edu

2. TEL: (602)965-8267
Internet: rockwood@asu.edu

We propose a technique that deforms by repeatedly
applying affine transformations in space. The object warps
along a user defined curve. Our approach reduces the
definition of the free-form deformation from a crowded set of
control points to a single Bézier curve and a few affine maps
controlled by readily understood "handles." It also
generalizes the well-known de Casteljau algorithm for curve
evaluation [5].

2. PRELIMINARIES

We assume some familiarity with curves and surfaces (see
Farin [5]). The de Casteljau Algorithm for evaluating a
Bézier curve of degree n with control points pi and at a
parameter u is

pi
j (u) = (1 − u) ⋅ pi

j−1(u) + u ⋅ pi+1
j−1(u), 1 ≤ j ≤ n, 0 ≤ i ≤ n - j ,

where pi
0 (u) = pi , 0 ≤ i ≤ n . (1)

The value p0
n (u) is the point on the curve at u.

(b)

(d)(c)

(a)

Figure 1: (a) Bézier curve, control polygon and user-
specified axes, (b) cube primitive, (c) first-level execution of
the generalized de Casteljau algorithm, and (d) second-level
execution of the generalized de Casteljau algorithm.

Equation (1) consists of repeated univariate linear
interpolation. Our approach generalizes the de Casteljau

algorithm to a trivariate scheme. Each segment of the
Bézier control polygon is given with two user-specified
axes, called handles, at one endpoint which defines a local
coordinate system [2]. Objects in u-v-w space are mapped
along an embedded Bézier curve by iterative affine
transformations derived from the handles and control
polygon segments. For example, Figure 1(a) shows a
quadratic Bézier curve, control polygon, and two local axes
on each segment. Figure 1(b) is a cube to be deformed.
After executing the first level of the generalized de Casteljau
algorithm, the cube is mapped affinely to each segment of
the control polygon in Figure 1(c). In Figure 1 (d), the
second level of the algorithm warps the original cube along
the Bézier curve.

3. THE DEFORMATION ALGORITHM

Observe that in 3-space each iteration of the de Casteljau
algorithm is just the execution of a degenerate affine
transformation. It maps space to a line. Therefore the de
Casteljau algorithm can be generalized to an iterative
transformation scheme simply by raising the rank of the
transformation matrix.

If vectors r, s, and t span an affine space, the function
Φ [p, q]: R3 → R3 is defined as an affine transformation

from parameter space into affine space in homogeneous
form as

Φ [p , q]

u

v

w

1

=

qx − px sx tx px

qy − py sy ty py

qy − py sz tz pz

0 0 0 1

u

v

w

1

=

x

y

z

1

 (2)

where r=(qx-px,qy-py,qz-pz), s=(sx,sy,sz), and t=(tx,ty,tz). Note
especially that the interval [0,1] on u is mapped to [p , q]

on r. The generalized de Casteljau algorithm is given by

p
i
0 (u) = p

i
, 0 ≤ i ≤ n ,

 (3)

p
i
j (u) = Φ p

i
j-1, p

i+1
j-1[](u), 1 ≤ j ≤ n, 0 ≤ i ≤ n - j,

where n is the degree and p
0
n (u) is the deformed point on an

object at u=(u,v,w). The deformation algorithm performs
iterative affine transformations and as a result the
deformation of space includes the Bézier curve.

In the first level of the generalized de Casteljau
algorithm, if s in the transformation matrix is a zero vector,
then a solid will be mapped into just a surface patch because
the depth information is lost. The case where elements of
vector t are all zero is similar except the degeneration occurs
on a different axis. The deformation process is reduced to the

classic de Casteljau algorithm if and only if both s and t are
zero vectors. Under these circumstances, the solid is mapped
to a curve since the parameter v and w are no longer
effective.

For the second level or above, the vectors, s and t, could
be zero or nonzero. If they are all zero, the function of
second-level execution linearly blends the result of the first-
level execution and similarly for higher levels. If sx, sy, or
sz is nonzero, the deformed object is sheared by an amount
proportional to the v value along the direction of (sx,0,0),
(0,sy,0), or (0,0,sz). The same applies to vector t except that
the shearing is proportional to w instead of v. The effects of
the shearing operations are hierarchical. For instance, there
are three levels of affine transformations in the cubic case.
A nonzero vector s or t in second-level transformation
matrix shears only a portion of the object related to the
appropriate control polygon segments, while one in the
third-level affects the whole object.

4. IMPLEMENTATION

Figure 2 shows examples of stretch, taper, swell, twist, and
bend operations applied to a cube primitive (upper left).
They mimic Barr's deformations, but are polynomial.

Figure 2: "Barr"-like deformations applied to a cube.

Our deformation algorithm can be applied to any
geometric model. Figure 3 and Figure 4 show polygons
before and after deformation. A figure similar to Figure 4
could also be generated with the Sederberg and Parry's
approach. It would require specification of more, loosely
related control points. Moreover, the generalized de
Casteljau approach is computationally more efficient than
trivariate de Casteljau, because it is an affine transformation
plus a univariate interpolation in space vs. one that iterates
over three variables. A comparison of computation times is
given in Table 1.

Figure 3: Undeformed polygons.

Figure 4: Deformed polygons.

Figure 5: The user interface for the free-form deformation.

Figure 6: The design of a logo.

Deformation method \ Degree Linear Quadratic Cubic

Bézier lattice method
(Sederberg and Parry's approach)

42 multiplications
21 additions

90 multiplications
45 additions

144 multiplications
 72 additions

Generalized de Casteljau method
(Our approach)

 9 multiplications
 9 additions

27 multiplications
27 additions

 54 multiplications
 54 additions

Table 1: Comparison of computation complexity.

The design interface supports user two functions: First,
specification of a curved spline by Bézier control points and
second, definition of two local axes on each control polygon
segment. These are intuitive and simple to use (see Figure
5).

Tangent continuity (C1) between two volumes that

share local coordinate systems at the endpoints is
guaranteed if adjacent local systems are linearly dependent.
Figure 7 shows two pieces of cubic Bézier curves which are
joined smoothly (C2 with B-splines, for instance). The axis
triple (ri,si,ti) is associated with the ith segment of control
polygon where r i = p

i+1
− p

i
. At the junction point p

3
 of

the consecutive Bézier curves, two volumes defined on
those two curves are connected with C1 continuity if the
derivative vectors at the boundary are the same. By
calculating partial derivatives (refer to [5]) at a point on the
boundary, it induces the following constraints:

p
3

= 1
2 (p

2
+ p

4
)

s3 = 1
2 (s2 + s4), (4)

t3 = 1
2 (t2 + t4).

P0

P1
P2 P3

P5

P6

s0

s1 s2 s3 s4

s5

s6

t0

t1

t2 t3 t4

t6

t5

n0

m1m0

n1

P4

Figure 7: Local coordinate systems defined over piecewise
Bézier curves.

Tangent direction continuity (G1) requires only the
collinearity of the cross-boundary derivatives. It results in

p
4

− p
3

= µ0 (p
3

− p
2

)

m1 = µ1 m0 , (5)

n1 = µ2 n0 ,

where µ i ≠ 0 for i=0 to 2. It is C1 if µ0 =µ1=µ2 =1. If µ0 ,
µ1 , and µ2 are all equal, then s2, s3 and s4 are linearly
dependent as are t2, t3 and t4. However, linear dependence is
only the sufficient condition for continuity. For example, if
µ0 and µ1 differ, then s 3 and t3 are still affine
transformations of the adjacent handles.

Figures 6 shows the design of a logo which is generated
on a piecewise Bézier (B-spline) basis. The primitives are
cubes and the deformed shapes are chosen somewhat
arbitrarily.

5. CONCLUSIONS

The proposed approach replaces the sometimes
overwhelming problem of control point clutter with a

simple design scheme for a broadly useful set of
deformations, and does so with greater computational
efficiency.

We have only used polygons and cube primitives in the
paper. Clearly any object defined in R3 could be warped.
Extensions in higher dimensions are also straightforward.

Finally and most importantly, the deformation algorithm
is just one example of the generalized de Casteljau idea.
Other applications such as interpolation to local affine
systems are yet to be investigated. The idea is applicable to
any iterative scheme like de Casteljau's. One might
consider, for instance, a generalized de Boor scheme directly
for B-splines or an Aitken scheme for Lagrange
interpolation.

ACKNOWLEDGEMENTS

We thank faculty and students of the Computer Aided
Geometric Design (CAGD) group of the Arizona State
University for their comments and support.

REFERENCES

[1] Barr, A. H., Global and Local Deformations of Solid
Primitives, Proceedings of SIGGRAPH '84, Computer
Graphics 18, 3 (July 1984), 21-30.

[2] Sederberg, T. W. and Parry, S. R., Free-Form
Deformation of Solid Geometric Models, Proceedings
of SIGGRAPH '86, Computer Graphics 20, 4 (August
1986), 151-159.

[3] Bézier, P., Mathematical and Practical Possibilities of
UNISURF, In Barnhill, R. E. and Riesenfeld, R. F.
(eds), Computer Aided Geometric Design, Academic
Press (1974), New York, 127-152.

[4] Coquillart, S., Extended Free-Form Deformation: A
sculpturing Tool for 3D Geometric Modeling,
Proceedings of SIGGRAPH '90, Computer Graphics
24, 4 (August 1990), 187-196.

[5] Farin, G. E., Curves and Surfaces for Computer Aided
Geometric Design, Academic Press (1993), 3rd Edition,
Boston.

