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Fair, G2- and C2-Continuous Circle Splines 

for the Interpolation of Sparse Data Points 

Carlo H. Séquin, Kiha Lee, Jane Yen

ABSTRACT

This paper presents a carefully chosen curve blending scheme between circles, which is based on angles, rather than point 

positions. The result is a class of circle-splines that robustly produce fair-looking G2-continuous curves without any cusps or 

kinks, even through rather challenging, sparse sets of interpolation points. With a simple reparameterization the curves can 

also be made C2-continuous. The same method is usable in the plane, on the sphere, and in 3D space. 
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1. INTRODUCTION, MOTIVATION 

Fair, interpolatory spline curves are useful constructs for many application domains and design environments, ranging 

from the construction of ship hulls and aerodynamic profiles, through key-frame animation, to smooth camera motions for 

flying around objects of interests. For certain applications, such as aesthetic designs or camera paths, smooth, nicely rounded 

paths – free of cusps and abrupt hairpin turns – are more important than the property of affine invariance. In these situations, 

schemes based on circles can more easily satisfy such demands than polynomial splines. A few blending schemes have been 

developed that aim to accommodate circular arcs whenever possible. Biarcs generate segments of the overall curve with pairs 

of circular arcs connected with tangent continuity [2][15][9][16][8]. Other schemes use a gradual blending between 

corresponding points on two circular arcs; they can achieve smooth looking paths with G1- or G2-continuity, depending on the 

exact blending procedure used [18][6][14]. The most ambitious approaches involve global curve optimization, such as the 

Minimum Energy Curve (MEC) [4], or the Minimum Variation Curve (MVC) [7] [10], in which circles result as the zero-cost 

solution whenever permitted by the constraints. 

   

 (a)                                          (b) 
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Figure 1:    (a) A circle spline and its control polygon on a sphere;  

(b) a sculpture model derived from a sweep along such circle spline. 

The original motivation for the development of circle splines [11] was to provide smooth, pleasing curves embedded in 

the surface of a sphere, either for a special class of geometrical sculpture (Fig.1), or for the definition of a camera path that 

flies around a stationary object approximating a Grand Tour [1], looking inward to inspect that object from “all sides.”  

However, the new robust solution presented in this paper gives equally good results in the plane and for space curves in three- 

or higher-dimensional Euclidean space. The primary goal still is to define aesthetically pleasing curves with just a few “ fix-

points.”  Artists often like to construct a well-rounded fair curve, with a “natural”  look such as the shape of a stiff steel wire, 

confined in space at only a few points, but with the additional capability to adjust its length locally so as to give each loop an 

optimal bulge that leads to the smoothest possible transitions in curvature. Currently such shapes seem to be realizable only in 

the virtual world of a good CAD environment. Our goal for these curves was to achieve as much of the behavior of a MVC as 

possible, but with a strictly local support domain. The result is a new class of interpolating circle splines that not only achieve 

the desired goal on the sphere, but also improve the properties of the circle-blending schemes previously described in 2- or 3-

dimensional Euclidean space. 

2. BACKGROUND, PREVIOUS WORK 

The simplest circle spline schemes look at four consecutive points Pi-1, Pi, Pi+1, Pi+2 to calculate the curve segment between 

points Pi and Pi+1. These points alone determine the shape of that segment. Thus, these curves have tightly limited local 

support. For the special case where all but one interpolation point, Pi, lie on a straight line (Fig.2), only four curve segments 

will deviate from a perfect straight line. In the special case depicted in Figure 3, where all the interpolation points lie on two 

circular arcs, only the single transition segment will deviate from a perfect circular arc.  

     

Figure 2:   Influence zone of point Pi. 

 

Figure 3:   Zones of perfect circles. 

In general, the curve segment between points Pi and Pi+1 is formed by first fitting a circular arc, arci, through points Pi-1, Pi, 

Pi+1, in sequence, and a second arc, arci+1, through points Pi, Pi+1, and Pi+2 (Fig.4). Then, in the region between Pi and Pi+1 the 

two circular arcs are blended together by gradually shifting the weight from arci to arci+1, as the parametric curve point moves 

from Pi to Pi+1. The crucial question is, how exactly should one perform this blending operation? 
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Figure 4:   Generic blending approach using four consecutive data points. 

Wenz [18] achieves this blending operation by performing a linear positional interpolation between corresponding points 

on the two base arcs that have the same parameter values. The two arcs, arci(u)  and arci+1(u) , are parameterized so that they 

are traced from Pi to Pi+1 as the parameter u goes from 0 to 1. Using a simple linear blending scheme (Fig.5a), the new 

parametric curve point is then found as:   

 P(u)   =  (1-u) * arci(u)  + u * arci+1(u).  (1) 

Szilvasi-Nagi and Vendel [14] improved on that scheme, by replacing the linear interpolation function with a 

trigonometrically weighted blending function (Fig.5b):   

 P(u)   =  cos2(u π/2) * arci(u)  + sin2(u π/2) * arci+1(u).  (2) 

This has the effect that the blend curve clings more strongly to the base arcs near the end points Pi and Pi+1, and thereby 

picks up the curvature of the base arcs in addition to their tangents at Pi and Pi+1, respectively. This guarantees that the 

individually generated blend segments will join with G2-continuity across all the interpolation points. 

 

Figure 5:   Blending functions: (a) linear and (b) trigonometric. 

However, both these schemes can produce undesirable loops or even cusps, when the control polygon through the 

sequence of given data points shows large turning angles at some point (Fig.6). The main problem is that the straight 

parameter lines that connect equivalent points on the two base arcs, along which the positional interpolation is performed, 

may intersect one another, which in turn can lead to self-intersections of the blending segment itself. 
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Figure 6:   Interpolation of point positions on two circles, using (a) linear [18] and (b) trigonometric [14] blending. 

In a 2001 SIGGRAPH sketch [11], we proposed to remedy that situation by using an angle-based interpolation scheme 

that could prevent excessive looping and cusps. This method was based on a subdivision approach. In each step it only 

constructed a new segment midpoint SA between the interpolation points, Pi and Pi+1. The new segment midpoint SA was 

found by constructing the halfway point on an intermediary circular arc through Pi and Pi+1 that averaged the turning angles, 

angle(PiSiPi+1) and angle(PiSi+1Pi+1), found at the midpoints Si and Si+1 of the two base arcs (Fig.7). As Figure 7 shows, this 

scheme produced a new subdivision data point SA that lies much closer to points Pi and Pi+1 than the point SP produced by 

positional interpolation between the two arc midpoints Si and Si+1. This makes it easier for the solid blend curve through SA 

than for the dashed curve through SP to reach the data point Pi+1 with the proper tangent direction, without producing 

extraneous loops or cusps. However, with this subdivision scheme we were unable to make any formal claims about the 

degree of continuity of the curves it produced – even though visually the curves looked very pleasing. Indeed, it appears, that 

the achievable continuity might be G1 (tangent continuity) at best. Another shortcoming of this subdivision approach arose 

from potential numerical instabilities when the scheme was extended to general 3D space curves, since the approach 

described required the explicit calculation of the sphere that could be fitted through the four control points Pi-1, Pi, Pi+1, Pi+2. 

As these points approached a nearly coplanar configuration, and the radius of the sphere thus became extremely large, the 

accuracy of the evaluation became questionable.  
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Figure 7:   Comparison of positional (SP), and angle-based (SA) blending. 

With this paper we present an approach that overcomes all these deficiencies. The key ideas of circle splines are retained: 

for each segment of the control polygon, a blend between two conceptual circular arcs is constructed. The main contribution 

of this paper is to show a simple and robust scheme that works in almost exactly the same way in 2D, in 3D, or on a sphere, so 

that the same algorithm can be used in all three cases.  The scheme does not calculate the radius or the center of these arcs or 

spheres explicitly and thereby offers a smooth transition to linear segments and to planar blend curves. A second key point is 

to demonstrate that the angle-averaging technique is indeed crucial to the good behavior of these circle splines. Finally, the 

new approach allows proper analysis of the continuity properties of the new scheme. It is shown that strict G2-continuity can 

be achieved for all points of the curve and that C2-continuous curves can be obtained with a simple reparameterization. 

3. CURVE CONSTRUCTION 

We assume that the curve is defined by a sequence of interpolatory constraint points P0, P1,…Pi,…Pn (the “control 

polygon”). To form a circle spline, we form a blend between two circular arcs for every segment (Pi, Pi+1). Arci is defined to 

go through points Pi-1, Pi, Pi+1 in sequence, and arci+1 through points Pi, Pi+1, Pi+2. These two base arcs define the tangent 

vectors ti and ti+1 and the curvatures of the composite curve at points Pi and Pi+1, respectively. Our approach guarantees that 

the blend curve picks up these end conditions at points Pi, Pi+1, that it is well-behaved in between (i.e., has no cusps and no 

self-intersections), and that it has finite curvature, as long as the control polygon does not have a joint with a turning angle of 

180o. If one of the two base arcs is undefined, because we are dealing with an end-segment of the control polygon where 

either Pi-1 or Pi+2 are missing, we use the remaining base arc directly without any blending. 

Figure 8 shows the construction in the plane. The blend between arci (top) and arci+1 (bottom) does not occur by simply 

interpolating circle point positions, as was the case in Figure 6. Instead, as the point P(u)  travels across an arc, arc (u)  from 

Pi to Pi+1, the arc morphs from arci (u =0) to arci+1 (u =1). Any intermediate arc (u)  is defined by the two points Pi and Pi+1 and 
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by its tangent t(u)  at Pi.  The direction angle τ(u)  of this tangent is used to parameterize the morphing process of these arcs. 

If we use a linear blend (Fig.8a), we will obtain G1-continuity at the junctions between subsequent segments. To obtain G2-

continuity (Fig.8b), we use a trigonometric blend between the two extreme direction angles τi and τi+1 given by the tangent 

vectors ti and ti+1 of the base arcs, arci and arci+1: 

���������������������������������������������������������������������������  τ(u)  = τi cos2(u π/2) + τi+1 sin
2(u π/2).                               (3) 

The advantage of this angle-based morphing from one base arc to the other is that the parameter lines for constant u do not 

intersect; this is a key reason why cusps or self-intersections do not occur in these curve segments. Note that in the case of 

trigonometric blending (Fig.8b), the blend curve “hugs”  the base arcs much longer, thus producing junctions with G2-

continuity. 
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(a)                                                 (b) 

Figure 8:   Family of arcs for forming the blend curves: (a) linearly, (b) trigonometrically interpolated circle splines. 

3.1 Robust Calculations 

To handle robustly the case of arcs of arbitrary large radii, including straight-line connections between Pi and Pi+1, we 

avoid calculations that involve the centers or radii of the circular arcs. When “ fitting a circle through Pi–1, Pi, Pi+1”  we only 

need to determine the tangent direction of arci at Pi and its relevant turning angle with respect to the control segment b 

between Pi and Pi+1. First we calculate several unit direction vectors for the control polygon: 

                a = (Pi  – Pi–1) / | Pi  – Pi–1 | ;   b = (Pi+1 – Pi) / | Pi+1 – Pi | ;   c = (Pi+1 – Pi-1) / | Pi+1 – Pi–1 | ;  

                                                               d = (Pi+2 – Pi+1) / | Pi+2 – Pi+1 | ;   e = (Pi+2 – Pi) / | Pi+2 – Pi |.       (4) 

Then we calculate the relevant tangent angles at Pi and at Pi+1: 

                τi = angle(Pi, Pi-1, Pi+1) = arccos (a•c);      τi+1 = angle(Pi+1, Pi+2, Pi) = arccos (e•d); (5) 

The actual tangent directions, ti and ti +1, that define the two arcs, arci and arci+1, can be found by rotating the direction vector 

b around the appropriate rotation axes by the amounts indicated in Eqn.(5): 

          axisi = b×a;    axisi+1 = b×d  (6) 



Submitted to CAD, October 2003, Revised May 2004  7 

The tangent angle τi+1
m = –τi+1, required to calculate the angle-interpolated arc(u)  from its starting point at Pi, is obtained by 

mirroring the tangent ti+1  at the perpendicular bisector between Pi and Pi+1. In this way we can obtain all the elements needed 

for the computation of the intermediate arc, arc(u),  without explicit reference to any circles (Fig.9a). 

  

         (a)                                                                                       (b) 

Figure 9:   Robust calculations of (a) the tangent angles at Pi and (b) the position of an intermediate blend point P(u). 

In the same fashion, the point P(u)  traveling on arc (u)  is parametrically described as a distance from endpoint Pi: 

 f(u)  = b sin(u τ(u)) / sin(τ(u))  (7) 

and a deviation angle from line segment (Pi, Pi+1):  

 φ(u)  = (1-u) τ(u),  (8) 

where b is the length |Pi, Pi+1| of line segment (Pi, Pi+1). It should be pointed out that this constitutes a constant-velocity 

parameterization along the arc, and that the angle φ(u)  linearly decreases from an initial value of τ(u)  to a final value of zero 

(Fig.9b). For the case of a straight segment between Pi and Pi+1, implying an infinite radius, φ(u)  is simply constant at value 

zero, and the distance function f(u)  converges towards f(u)  = u b. Note that this calculation is applicable, regardless whether 

we draw a circle spline in a given plane, on a given sphere, or freely in 3D space. Once the base tangent directions have been 

determined, the swiveling, interpolated tangent vectors determine the intermediate arcs, and for each one of them, the 

procedure above determines the point P(u)  needed to form the blend curve. 

3.2 Circle Splines in Space  

If the data points happen to lie in an arbitrary configuration in 3- or higher-dimensional space, the above construction for 

the plane needs to be enhanced by an additional degree of freedom. For that purpose we introduce a Swivel-Plane that rotates 

around the line segment (Pi, Pi+1), from a position coplanar with Pi-1, Pi, Pi+1, to a position coplanar with Pi, Pi+1, Pi+2., as the 

parameter u increases from 0 to 1 (Fig.10). For any value of u, we conceptually construct that Swivel_Plane(u), and arc(u)  

embedded in it, and than a single curve point P(u)   on that arc. To find that point P(u)   it is sufficient to determine a tangent 

vector t(u)   at point Pi, which implicitly defines the intermediate arc(u)  . This tangent t(u)   is found by a swivel operation in 

the plane spanned by ti and by ti+1
m, the mirrored tangent ti+1 drawn at Pi, rotating around the axis given by: 

 axisi_t = t i×t i+1
m  (9) 
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 This swivel operation could simply be done at a linear rate, but with the aim for G2-continuity, we use again the trigonometric 

blending function of Eqn.(3). With t(u)  defined, the point P(u)  is then found in the plane defined by t(u), Pi and Pi+1 using 

equations Eqn.(7) and Eqn.(8). In reality this means that we rotate the vector f(u)  that defines P(u)  around an axis: 

 axisi_f = t(u) ×b  (10) 

by the amount φ(u), rather than around the z-axis as in the planar case. 

 

Figure 10:   Planes and tangents in 3D space. 

With this construction, each blended curve segment will individually lie on a sphere that passes through four consecutive 

points of the control polygon, and which has the plane spanned by ti and by ti+1
m as a tangent plane at point Pi. The new 

trigonometrically-weighted, angle-based blending will guarantee that adjoining curve segments adopt the same osculating 

circles at their junction point; this results in common tangent directions, osculating planes, and curvatures, i.e., G2-continuity. 

Again, cusps and excessive loops in these segments are avoided; and this same scheme thus also produces very pleasing, 

smooth space curves. An example of a Figure-8-Knot defined by only 8 control points is shown in Figure 11. 

 

Figure 11:   Circle-splines forming a Figure-8-Knot in 3-space (cross-eye stereo view). 

In summary, here is a unified description of how to construct circle splines in (n-dimensional) Euclidean space. First, 

construct circles through three consecutive data points; these define the tangent directions at the middle points. Next, look at 
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the two base arcs that span the control segment Pi, Pi+1, and determine the unit tangents to both arcs at both points, Pi and Pi+1. 

The two tangents at each point define a plane in which the angle-based swivel operation will be carried out. For any value of 

the parameter u, the interpolated tangents at Pi and Pi+1 will define an intermediary arc(u)  from Pi to Pi+1, and the point with 

parameter value u on this arc will be point P(u)  of the blended curve segment. 

3.3 Circle Splines on the Sphere 

The construction of a circle spline on a sphere automatically follows from the approach described above for 3D space. 

The only difference is that now all the data points lie on a single sphere. Since each blend curve segment lies on a sphere 

defined by four consecutive data point, the whole curve will now also lie on the given sphere. Figure 12 shows the 

construction of an arbitrary curve point P(u)  on the intermediate arc(u)  within Swivel_Plane(u). 

 

Figure 12:   Construction of an intermediate curve point of a circle spline embedded in a sphere. 

Thus, for one blend segment at a time, the construction is identical in 3D space and on a sphere. The implied spheres for 

subsequent blend segments share the same base arc through the common junction point. Also, using the approach discussed in 

Section 3.1, there is no need to calculate the parameters of these spheres explicitly, and thus the transition from a very large 

sphere to a plane is smooth and natural. Figure 13 shows examples of circle splines on spheres where the control polygons 

offer only very sparse data sets. The same local “spherical confinement”  for consecutive blending segments also produces 

very pleasing looking splines for free-form 3D space curves in a rather robust manner (Fig.11).  

  

Figure 13:   Examples of circle splines and their control polygons on spheres. 
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3.4 G2-Continuity of Individual Blend Segments 

Circle splines offer strict G2-continuity. To prove this, we first analyze the smoothness of an individual blend curve, and 

then the continuity at the junctions between them.  

A single blend curve is best analyzed in the context of the family of parameterized arcs (Fig.8). For the planar case, the 

motion of the point P(u)  has two components: a “ tangential”  component that carries the point along an arc from Pi towards 

Pi+1, and a “radial”  component due to the change in the shape of the arc as its tangent angle τ(u)  with (Pi, Pi+1) varies. Both 

these motion components are smooth and infinitely differentiable; thus C2-continuity is guaranteed. To assert G2-continuity, 

we have to show that the combination of these movements cannot produce any cusps, as may occur for polynomial curves 

when all component velocities simultaneously drop to zero. Both the above two motions are monotonic and without turn-

around points, so the respective velocity components never go to zero. They also do not align anywhere, so that their 

individual velocities could cancel each other.  

 In the case of space curves, we also have to consider the “swivel”  component (Fig.10) produced by the rotation of the arc 

plane around the axis (Pi, Pi+1). The tangent t(u)  can be found by rotating ti(u)  by the amount of Eqn.(3) around axis Eqn.(9). 

Thus for u=0 the Swivel_Plane is identical to Planei and for u=1 it is coplanar with Planei+1. This motion has a velocity 

component that drops to zero only on the rotation axis. However, since neither the tangential nor the radial velocity ever drop 

to zero, no cusps can form on this axis either. 

An attempt was made to combine the expressions for the three individual component movements into a single explicit 

formula, which could then be differentiated to find the extremas of the velocities of P(u). But this explicit formulation 

becomes too complicated to formulate a rigorous proof that under no combinations of parameters the length of the derivative 

vector ever assumes the value zero. A few minutes with the interactive graphics applet [12], wildly moving around the various 

control points, makes a much more convincing statement about the robust behavior of the interpolating curve segment. 

3.5 G2-Continuity of the Junctions 

To analyze the continuity of the junction between two consecutive blend segments at Pi, we use the base arc through Pi–1, 

Pi, and Pi+1 as a reference and study the rate at which the two blend curves on either side of point Pi deviate from this arc. Of 

course, we cannot expect to obtain C1-continuity through this junction, unless we reparameterize the base arc segments on 

either side according to their relative arc lengths (see Section 3.6).  

For the planar case, each blend segment is calculated in polar coordinates (f, φ) as a point P(u)  moving away from point Pi 

(Section 3.1). By converting to Cartesian coordinates and substituting τ(u)  from Eqn.(3), we obtain a single continuous 

vector expression that explicitly describes the shape of the blend segment as a function of the parameter u ∈ [0,1]:  

 P(u)  = [ f(u)  cos φ(u),  f(u)  sin φ(u)  ].  (11) 

We differentiate this expression twice, and collect the non-zero terms for u = 0. The first derivative at point Pi evaluates to:  

 P'(0) = [ b τi cos(τi) / sin(τi),  b τi ],  with b = |Pi-Pi+1|, (12) 
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which is the proper tangent velocity on arci through Pi. In order to calculate the curvature κ at point Pi, we evaluate the 

expression κ = | P' x P'' | / | P' |3 for u = 0.  Using trigonometric blending (Eqn.(3)), the curvature κ becomes:  

 κ(0) = 2 sin(τi) / b,  (13) 

which is equal to the curvature of the arci through Pi. The same analysis applies at point Pi+1. More intuitively, the quadratic 

term in the trigonometric blending formula forces the deviation of curvature from the base arc near the junction to be at least 

linear, thus going to zero at the junction itself; therefore the curvatures of both segments match that of the base arc and thus 

are equal to each other. 

For the case of space curves, there is an additional degree of freedom to be concerned about, but conceptually the situation 

is the same. Again, the deviation from the common base arc is governed by the swiveling tangent vector t(u), but now the two 

deviations of the two segments may lie in different planes. However, since that deviation is a function of the same degree as in 

the planar case, it does not matter; the two curve segments will still meet at the junction with the curvature of the base arc. 

With trigonometric blending, G2-continuity can be maintained at all junctions, as long as we avoid degenerate control 

polygons with zero-length control segments. With a simple linear angular blending, on the other hand, not as many terms 

vanish, and some terms containing τi+1 remain in the expression for the curvature at point Pi. Thus the curvatures of the two 

blend curves joining together at point Pi are not solely dependent on the curvature of the base arc through Pi, and curvature 

continuity can thus not be guaranteed. 

3.6 Reparameter ization for  C2-Continuity 

In order to also obtain parametric continuity at the segment junctions, we need to reparameterize the velocities with which 

the individual segments are traversed. One possible adjustment would be to find an explicit arc-length parameterization, so 

that we can traverse all segments with uniform velocity; however, the necessary calculations are rather involved, and there is a 

simpler way. Assuming trigonometric blending, the blended curve segments pick up the behavior of the base arcs near the 

interpolation points to the second degree. Thus we may change the parameterization of all base arc segments so as to maintain 

a predefined fixed arc-length velocity on all base arc segments, valid on both sides of any interpolation point. To obtain C1-

continuity on the circle spline, we then need a parameterization for the blend segments that matches these end-velocities 

defined on the base arcs. For this we need at least a quadratic function to provide enough degrees of freedom to meet all the 

constraints. If we aim for C2-continuity, we need a quartic function, so that we can also set the accelerations at the junctions to 

zero: 

u(t) = a + b t + c t2 +d t3 + e t4. 

Now we use the following constraints: 

u(0) = 0, implies a=0; 

u'(0) = vi, implies b= vi; 

u"(0) = 0, implies c=0; 

u(tmax) = 1; 

u'(tmax) = vi+1; 

u"(tmax) = 0; 
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A few lines of arithmetic resolve these constraints to: 

tmax = 2/(vi + vi+1); 

d = (vi+1 – vi) (vi + vi+1)
2 / 4; 

e = (vi – vi+1) (vi + vi+1)
3 / 16; 

By applying this reparameterization, we get C2-continuity at the junctions and a reasonably regular spacing of the time tick 

marks along the whole curve, as shown in Figure 14b compared to the original spacing which employed a fixed number of 

tick marks on each segment (Fig.14a). 

  
 

(a)                           (b)  

Figure 14:   Comparison of  (a) original parameterization with a fixed number of tick marks along every arc segment,  

and (b) C2-continuous parameterization; also shown at every tick mark are “bristles”  proportional in length to the  

curvature at that point.  

4. RESULTS AND PROPERTIES OF CIRCLE SPLINES 

Figure 15 shows a direct comparison of the new angle-based circle-spline (Fig.15a) with two previous circle blending 

schemes using either linear [18] (Fig.15b) or trigonometric interpolation [14] (Fig.15c) of point positions. Note that the latter 

two schemes look much “ loopier”  and that they may produce cusps for certain control polygons. 

    

(a)                                (b)                                (c) 
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 (d)                                (e)                                 (f) 

Figure 15:   Comparison of  (a) the circle spline, (b) linearly [18] and (c) trigonometrically [14] blended circular arcs,  

(d) a cubic subdivision scheme [19], and (e) uniform [17] and (f) non-uniform Waring-Lagrange interpolation [13]. 

Figure 15 further compares some polynomial interpolation schemes; (d) is a cubic subdivision scheme [19], and (e) and (f) 

use Waring-Lagrange interpolation [17],[13]. These schemes all exhibit rather sharp turns near some of the control points, 

accompanied with excessive values in curvature. The subdivision scheme also features some extraneous sign inversions in the 

middle of some segments. The basic Lagrange interpolation exhibits some excessive overshoots (Fig.15e), which can be 

mitigated somewhat by using non-uniform knot intervals, proportional in length to the lengths of the corresponding control 

polygon segments (Fig.15f). None of these schemes can compete with the smooth, curvy appearance (Fig.15a) of the angle-

based circle spline. In the following section we will summarize some of the other properties of these new splines. 

4.1 Linear  and Circular  Precision 

If all given points are distinct and monotonically ordered along a circular arc or straight line, then the whole result curve 

will also fall onto this path – which corresponds to the behavior of an ideal Minimum-Variation Curve (MVC) [7]. Figure 3 

shows a situation where all the control points lie on two circles. In this case, the deviation from these ideal shapes is strictly 

limited to the blended central segment (Pi, Pi+1).  

4.2 Transformation Invar iance 

The circle spline construction is independent of the position, orientation, and uniform scaling of the coordinate system in 

which it is carried out.  However, it is not invariant to non-uniform scaling or to general affine distortions of the coordinate 

system. This is a direct consequence of our circle-fitting step through three consecutive points of the control polygon, which 

counteracts any non-uniform scaling effects and gives equal weights to all dimensions in Euclidean space. 

4.3 Symmetry Preservation 

Circle splines preserve all symmetries exhibited by the original set of control points. The curve is not dependent on 

evaluation order – unlike some quaternion splines [5] – and thus also exhibits “ front-to-back”  symmetry. 

4.4 Continuity   

Circle splines offer strict G2-continuity, and after suitable reparameterization even C2-continuity, as shown in Sections 3.4-

5 and 3.6, respectively. 
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4.5 Fairness 

G2-continuity is a major step towards providing fair-looking curve shapes, but the notion of fairness also entails a lack of 

gratuitous non-monotonicities, e.g., no unneeded inflection points. However, interpolating curves cannot possess the 

variation-diminishing property exhibited by many approximating splines. Consider a control polygon with a collinear 

sequence of points P0, … Pi, a sharp bend at Pi, and another collinear sequence Pi, … Pn after that (Fig.16). If we want the 

curve to pass smoothly through the corner point Pi, it will clearly have to exhibit some overshoot with respect to the two 

collinear sequences on either side of it. The second segments on either side, however, will remain perfectly straight.  

 

Figure 16:   Non-variation-diminishing property of circle splines. 

4.6 Stability 

The globally optimized MEC and MVC have the undesirable property that they may run away to infinity during the global 

optimization process under certain constellations of data points. Special techniques have to be introduced to make them scale- 

invariant and thereby unconditionally stable [10]. In our context, dynamic run-away is not a problem, and each blended curve 

segment lies entirely between its two base arcs. 

4.7 Discontinuous Behavior  

Stable – and thus predictable – behavior also means that when a small change is made to the input constraints, i.e., to the 

given control points, then we also expect to see a small change in the resulting curve. This is generally true, unless the input 

modification implies a topological change. For instance, if point Pi+2 is moved across the line segment (Pi, Pi+1), then the base 

arc, arci+1, through Pi+1 will “ flip”  to the other side of the segment, and thus the resulting curve will show a discrete change. In 

the plane, the curve must “ flip”  from one side of the line segment (Pi, Pi+1) to the other side when the turning angle at one end 

exceeds 180° and thus changes sign. We must expect such discontinuous behavior, since we have ruled out the dimensional 

collapse associated with affine invariance. On a sphere, however, the curve segment may smoothly swing around the back of 

the sphere (Fig.17). 

  
Figure 17:   Smooth transition around the back of the sphere. 

In other situations, some “ flipping behavior”  is unavoidable even on the sphere. If the tangent angles at Pi and Pi+1 are 

increased in an anti-symmetrical manner, a wave with an inflection point appears, which then grows into a sweeping S-curve 

(Fig.18a). Eventually, as the two turning angles get closer to ±180°, a helical loop around the backside of the sphere is the 
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preferred solution (Fig.18b). The question thus arises: what is the exact point at which the curve should flip into this other 

mode? This is equivalent to asking: through which of the two possible sweep angles between τi and τi+1 should we swivel the 

tangent vectors to produce the intermediate arcs for the blending process? A straightforward choice is to swivel them through 

the angle that is less than 180°. Figure 18 shows this approach. The flip to the backside occurs when the two planes containing 

the two base arcs are more then 180° apart. 

Since we would like to see a smooth transition in behavior when going from a very large sphere to a plane, the size of the 

sphere should be taken into account; i.e., it does not seem appropriate to avoid a slight wiggle and an inflection point for the 

price of going around the backside of a very large sphere. The scheme illustrated in Figure 18 does this in an implicit manner. 

As the segment (Pi, Pi+1) spans an ever larger fraction of a great circle on the sphere, the condition of coplanarity for the four 

points, Pi-1, Pi, Pi+1, Pi+2, is reached for ever smaller turning angles of the control polygon at points Pi and Pi+1. 

           

(a)                                         (b) 

Figure 18:   A flip-point with four coplanar control points. 

5. DISCUSSION  

We have built an applet [12] that lets one explore in real time the behavior of the circle splines discussed in this paper. 

Interactively moving points around with a mouse and watching the effect on the resulting curve is a quick and effective way to 

compare different circle-blending schemes and to spot problems with any of them. Only a few minutes of playing with this 

applet are sufficient to confirm one of the key insights of this work: when blending circles, the turning angles are the 

preferred variables for carrying out the interpolation. In all the schemes that interpolate point positions between the two 

original base arcs, one can readily produce weird behavior, i.e., cusps, unnecessary inflection points, and unexpected flips of 

state, within seconds of moving a few control point positions. The angle-based schemes are less prone to such effects. This 

advantage was already visible in the angle-based subdivision scheme [11]; it did indeed yield nice and pleasing looking 

curves. 

The swept (or iterated) variant of the circle spline described in this paper produces even better results. It is at least as 

pleasing as the subdivided circle spline, but gives more robust and more predictable results in extreme situations. Most 

importantly, with this approach we can now make quantitative claims about the continuity of these curves. In particular, we 

can guarantee strict G2-continuity at all curve points, something not possible for traditional polynomial splines. 

Curve constructions that guarantee G1 or even G2-continuity, do not necessarily guarantee a “ fair”  curve. There may be 

unnecessary undulations (wrinkles, wiggles) due to sign inversions of curvature, or uneven bends due to sign changes in the 

derivative of curvature. Often such artifacts result because the surface is represented with underlying primitives that are of a 

higher order than is needed to represent the basic smooth shape desired. Best results are obtained, if the fewest, simplest 
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primitives are used to form the desired shape, and if these primitives closely correspond to the desired goal shapes. If one 

prefers circular shapes wherever they are compatible with the constraints, then it is advantageous to use circles in the 

construction process itself. This reasoning motivated our study of circle blending schemes with the aim of obtaining a class of 

fair, interpolating curves. 

One of our inspirations was the Minimum Variation Curve or MVC [7], since its superior fairness has been pointed out 

earlier [10]. This curve also produces circles wherever possible. Fitting circles through 3 consecutive data points destroys the 

invariance under general affine transformations, e.g., non-uniform scaling. We consider this a positive feature; it prevents 

dimensional collapse when all data points approach collinearity and thus avoids the generation of hairpin turns. The circle 

construction always considers the given constraints in a truly two-dimensional way that gives equal weights to both coordinate 

axes. 

However, even the best circle splines fall short of the performance of the globally optimized MVC. A typical case is 

shown in Figure 19. Five data points define an S curve with an inflection point near the central control point. Since the central 

three points are collinear, a straight line segment is fitted at the center point, and the tangent direction at the central inflection 

point is chosen solely based on information from the nearest neighbor data points; clearly this is not optimal from a more 

global perspective.  

 

Figure 19:   Extra inflection points due to localized support domain. 

The extra undulations in Figure 19 are a direct consequence of the very limited local support domain. To find a better 

choice for the tangent direction at the midpoint, we would have to include information from the second-nearest neighbors as 

well. This may then require the use of a higher-order primitive for the blending operation. The Cornu spiral or clothoid [3] is 

a natural candidate. These curves have a monotonically changing curvature that varies linearly with arc length. If we must 

connect two points with different curvatures, then the clothoid is an MVC solution, since any non-uniform change in curvature 

would lead to a larger integral value when the square of the curvature change is summed. Thus, the clothoid is a natural 

primitive for constructing higher order approximations to an MVC. 

Of course, this raises many new challenges: how difficult is it to find the best matching clothoid through four consecutive 

points? How robust is the determination of the solution? How do we then blend the overlapping clothoid segments together? 

How does this translate into 3D space? The first improvement we might want to make for the 3D domain is to obtain a natural 

match for helices – thus helices should be a primitive. However, to be compatible with the 2D domain, we would still need to 

employ clothoids. This in turn may then prompt us to also consider curves with linearly varying torsion. The investigation of 

such higher-order primitives is beyond the scope of this paper. 
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6. CONCLUSIONS 

Circle splines provide a smooth transitional blend between two circular primitives. This shape transition can be seen as a 

gradual morph from one arc to the other as we move along the blend curve. Contrary to a simple positional interpolation 

between corresponding pairs of points on the two arcs, this morphing operation can be carried out in a way that does not 

produce undesirable artifacts such as loops or cusps. Circle splines using angle-based blending robustly produce fair-looking 

G2-continuous curves even under extreme control point constellations, which can be enhanced to C2-continuity with a simple 

reparameterization. They appear to be the best approximation to the desirable behavior of Minimum Variation Curves with 

the restriction of using a support domain of only four data points. 
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