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Abstract

We show that the shortest-path metric of any k-outerplanar

graph, for any fixed k, can be approximated by a probability

distribution over tree metrics with constant distortion, and

hence also embedded into `
1

with constant distortion. These

graphs play a central role in polynomial time approximation

schemes for many NP-hard optimization problems on gen-

eral planar graphs, and include the family of weighted k� n

planar grids.

This result implies a constant upper bound on the ratio

between the sparsest cut and the maximum concurrent flow

in multicommodity networks for k-outerplanar graphs, thus

extending a classical theorem of Okamura and Seymour [26]

for outerplanar graphs, and of Gupta et al. [17] for treewidth-

2 graphs. In addition, we obtain improved approximation

ratios for k-outerplanar graphs on various problems for

which approximation algorithms are based on probabilistic

tree embeddings. We also conjecture that our random tree

embeddings for k-outerplanar graphs can serve as a building

block for more powerful `
1

embeddings in future.

1 Introduction

1.1 Background Many optimization problems on graphs

and related combinatorial objects involve some finite metric

associated with the object. In particular, the shortest-path

metric on the vertices of an undirected graph with nonnega-

tive weights on the edges frequently plays an important role.

While for general metric spaces such an optimization prob-

lem can be intractable, it is often possible to identify a subset

of “nice” metrics for which the problem is easy. Thus, a natu-

ral approach to such problems — and one which has proved

highly successful in many cases — is to embed the origi-
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nal metric into a nice metric, solve the problem for the nice

metric, and finally translate the solution back to the original

metric.

When the optimization problem is monotone and scal-

able in the associated metric (as is usually the case), it is nat-

ural to restrict one’s attention to nice metrics which dominate

the original metric, i.e., in which no distances are decreased.

The maximum factor by which distances are stretched in the

approximating metric is called the distortion of the embed-

ding. Typically, the distortion translates more or less directly

into the approximation factor that one has to pay in trans-

forming the problem from one metric to the other, so obvi-

ously we seek an embedding with low distortion. The num-

ber of applications of this paradigm has exploded in the past

few years, and it has become a versatile and standard part of

the algorithm designer’s toolkit: see the recent survey by In-

dyk [19] and the forthcoming book by Matoušek [23, Chap-

ter 10]. These applications have also given impetus to the

study of the underlying theory of finite metric spaces.

In this paper we will be concerned with embedding fi-

nite metric spaces into `

1

, i.e., real space endowed with the

`

1

(or Manhattan) metric. Low distortion embeddings into

`

1

have been recognized, along with embeddings into Eu-

clidean space `
2

and into low-dimensional `
1

, to be of fun-

damental importance in applications of the above paradigm,

as well as for the underlying theory. One of several com-

pelling reasons for studying `
1

-embeddings comes from their

intimate connection with the maxflow-mincut ratio in a mul-

ticommodity flow network. Namely, if every shortest-path

metric on a given graph with arbitrary edge lengths can be

embedded into `
1

with distortion at most �, then the ratio be-

tween the sparsest cut and the maximum concurrent flow for

any set of capacities and demands on the graph is bounded

by � [22, 2, 17]1. For more details on the sparsest cut prob-

lem, its relation to embeddings, and its application to the

design of a host of divide-and-conquer algorithms, see the

survey by Shmoys [31].

Equally important in algorithmic applications are cer-

tain special `
1

embeddings known as embeddings into ran-

dom (dominating) trees, whereby the given metric is approx-

imated by a probability distribution over tree metrics. Since

every tree metric can be embedded isometrically (i.e., ex-

1Indeed, the distortion of an optimal `
1

embedding is exactly the worst

cut-flow ratio for any choice of capacities and demands.



actly, or with distortion 1) into `
1

, approximating a metric by

random trees with expected distortion � immediately yields

an embedding into `

1

with distortion �. As has been recog-

nized in the work of Bartal and others [1, 5, 6], random tree

embeddings have many additional applications to online and

approximation algorithms that are not enjoyed by arbitrary

`

1

embeddings.

For general metrics the question of embeddability

into `

1

is essentially resolved: Bourgain [9] showed that

any n-point metric can be embedded into `

1

with O(logn)

distortion, and a matching lower bound was established for

the shortest-path metrics of unit-weighted expander graphs

in [22]. For embeddings into random trees, a construction

of Bartal [6] yields a distortion of O(log n log logn) for an

arbitrary n-point metric.

However, tight bounds are still not known for many im-

portant classes of graphs, including planar graphs and graphs

with bounded treewidth; many such restricted classes are

conjectured to be embeddable with constant distortion. In-

deed, the general question of how the topology of a graph

affects its embeddability into `

1

, and into random trees, is

one of the most important open issues in the area of met-

ric embeddings. (See, e.g., the tutorial by Indyk in the

last FOCS [19].) In addition to its inherent mathematical in-

terest, this question impacts the design of approximation al-

gorithms for many problems on restricted families of graphs

and networks.

Some limited but interesting progress has been made on

embedding restricted metrics into `

1

. Recently, Rao [27]

showed that the shortest-path metric of any graph that

excludes a K

r;r

is embeddable into `

1

with distortion

O(r

3

p

logn). This beats the 
(log n) lower bound for gen-

eral graphs for any constant r, and also givesO(

p

logn) dis-

tortion embeddings for the classes of planar and bounded-

treewidth graphs. However, Rao’s approach (of first embed-

ding these graphs into `

2

and then using isometric embed-

dings of `
2

into `

1

) was shown to be tight in [24], where a

lower bound of 
(
p

logn) distortion was shown for embed-

ding even treewidth-2 (and hence also planar) graphs into `
2

.

Approaching the question from the other direction, a

celebrated theorem of Okamura and Seymour [26] implies

that any outerplanar metric can be embedded isometrically

into `
1

.2 However, it has been shown that outerplanar graphs

are essentially the only graphs (with the exception of K
4

)

that are isometrically embeddable into `

1

[25]. More re-

cently, Gupta et al. [17] showed a constant distortion em-

bedding into `
1

for treewidth-2 graphs (which are essentially

series-parallel graphs, and hence also planar). This was the

first natural class of graphs shown to be embeddable with

2Their result deals more generally with the cut/flow ratio in planar

networks where all terminals lie on a single face; this and other results where

restrictions are placed on both the flow network and the demand structure

can be found in surveys by Frank [14] and Schrijver [29].

constant distortion strictly larger than 1. (For example, the

graph K

2;3

has treewidth 2 but is not isometrically embed-

dable; see [12, Example 6.3.2] for a simple proof of this

fact.)

Some, but not all of the above results carry over to

the more restrictive setting of embedding into random trees.

In [17] it is shown how to embed outerplanar graphs into

random trees with small constant distortion (note that the

isometric embedding of Okamura and Seymour is not a tree

embedding); on the other hand, in the same paper it is shown

that even series-parallel graphs incur a distortion 
(logn)

for tree embeddings. Despite this limitation, it is worth

pointing out that the random tree embeddings of outerplanar

graphs played a key role in the development of constant

distortion `

1

embeddings of series-parallel graphs in [17]:

the trick was to combine the special structure of the tree

embeddings with judicious use of random cuts.

1.2 Results In this paper, we extend the above line of

research to a much wider class of planar graphs, namely

k-outerplanar graphs for arbitary constant k. Informally,

a planar graph is k-outerplanar if it has an embedding

with disjoint cycles properly nested at most k deep. A

formal definition is given in Section 2, while Figure 4.2

shows a simple example; a canonical example of a k-

outerplanar family is the sequence of k � n rectangular

grids. k-outerplanar graphs play a central role in polynomial

time approximation schemes for many NP-hard optimization

problems on general planar graphs (see, e.g., [4]). Our main

result is the following:

THEOREM 1.1. Any shortest-path metric of a k-outerplanar

graph can be embedded into a probability distribution over

trees, and hence into `

1

, with O(


k

) distortion for some

absolute constant 
. Moreover, such an embedding can be

found in randomized polynomial time.

Thus, not only do such graphs embed well into `

1

,

but they even embed well into dominating trees. This is

in contrast to the lower bound of 
(log n) for treewidth-2

graphs [17].

Our result immediately implies a constant maxflow-

mincut ratio for arbitrary multicommodity flow problems on

k-outerplanar graphs. This is the first progress in this di-

rection in the two decades since the Okamura-Seymour re-

sult [26], which proves a ratio of 1 for 1-outerplanar graphs.

Additionally, because our `
1

-embeddings are in fact random

tree embeddings, we also obtain as an immediate byproduct

improved approximation ratios for a number of algorithms

for problems on k-outerplanar graphs, including the buy-at-

bulk problem [3] and the group Steiner problem [15]. For

any fixed k, the improvement in each case is by a 
(logn)

factor; we defer the details to the full version of the paper.



We should also note that our result is the first demonstra-

tion of constant distortion `
1

embeddings for a natural family

of graphs with arbitrarily large (but bounded) treewidth3. In-

deed, k-outerplanar graphs are a natural parameterized fam-

ily of planar graphs having bounded treewidth. (Note that al-

though all treewidth-2 graphs are planar, treewidth-3 graphs

include non-planar examples such as K
3;3

.)

Finally, recall that constant distortion random tree em-

beddings of 1-outerplanar graphs were a key ingredient in

the construction of good `

1

embeddings of series-parallel

graphs in [17]. We are therefore optimistic that, with the

addition of suitably chosen cuts, our new tree embeddings of

k-outerplanar graphs may become a building block for con-

stant distortion `

1

embeddings of wider classes of graphs,

such as bounded treewidth graphs or planar graphs.

1.3 Techniques We start with the approach of trying to

extend the random tree embeddings of outerplanar graphs

[17] to 2-outerplanar graphs. We do not know a way to solve

this problem directly. The first main idea in the paper is to

identify a subclass of 2-outerplanar graphs that are easier to

embed, namely Halin graphs. Informally, a “Halin graph”

is obtained by embedding a tree in the plane and attaching

a cycle around the leaves. (The formal definition can be

found in Section 2). Halin graphs are useful for the following

reason. Given a 2-outerplanar graph, we can use the random

embedding of [17] to embed the inner outerplanar graphs

obtained by removing the outer face(s) into a random tree

(in fact a forest). If we now add the outer face to this random

tree we get a graph which is (very similar to) a Halin graph.

Hence, if we can embed Halin graphs we can embed 2-

outerplanar graphs. We are then able to extend this approach

to embed any k-outerplanar graph by peeling off the outer

layer and recursively embedding the inner layers.

The second main idea is a technique for embedding

Halin graphs. We note that even this deceptively simple

subclass of 2-outerplanar graphs had so far resisted attempts

at constant distortion embeddings. This is derived by a

subtle modification of the algorithm of Gupta [16] which

showed how to remove Steiner vertices4 from a tree metric

with only a constant factor distortion in distances between

the remaining vertices. Though seemingly unrelated to our

problem (since we have no Steiner vertices), this algorithm

can nonetheless be applied (with suitable modifications) to

the tree in the Halin graph, with the effect of reducing the

Halin graph to an outerplanar graph on its leaves. This we

can once again embed into random trees using [17].

3The maximum treewidth among k-outerplanar graphs is �(k).
4Given an induced metric defined on a subset of vertices of a graph, we

call the vertices not belonging to this subset the Steiner vertices. Although

we are interested only in the metric space induced on the non-Steiner

vertices, the Steiner vertices might be necessary in order to define the

distances between the non-Steiner vertices.

The rest of the paper is organized as follows. We first

fix notation and give essential definitions in Section 2. In

Section 3 we show how to embed Halin graphs into random

trees with constant distortion. This is extended to obtain

constant distortion embeddings for all k-outerplanar graphs

in Section 4. In the interests of clarity of exposition, we make

no attempt to optimize the constants that arise in the various

steps of our procedure.

2 Notation and Preliminaries

Metrics: For general background on finite metrics and

embeddings, see the book of Deza and Laurent [12]. Given

two metric spaces, (V; �) and (W;�), and a map f : V !

W , define the following quantities.

kfk = max

x;y2V

�(f(x); f(y))

�(x; y)

kf

�1

k = max

x;y2V

�(x; y)

�(f(x); f(y))

We say that f has contraction kf�1

k, expansion kfk and

distortion D(f) = kfk � kf

�1

k. The distortion between

� and � is at most r if there exists f : V ! W with

D(f) � r. We often consider two metrics � and � over

the same vertex set V ; in such cases, we assume that f is

the identity map. Metric � is said to dominate � if for all

x; y 2 V , �(x; y) � �(x; y).

Let G = (V;E) be an undirected graph. A metric (V; �)

is supported on (or generated by) G if it is the shortest-path

metric of G w.r.t. some nonnegative weighting of the edges

E. Given a graph G with edge weights w(�), d
G

denotes

the shortest path metric of G, and we assume that the edge

weights satisfy w(e) = d

G

(x; y) for e = fx; yg 2 E unless

otherwise stated.

For S � V , the cut metric Æ
S

(x; y) is defined to be 1 if

jS \ fx; ygj = 1, and 0 otherwise. It is known that a metric

is embeddable into `

1

iff it can be written as a non-negative

linear combination of cut metrics [12].

A metric d

G

supported on a graph G is �-

probabilistically approximated by a distributionD over trees

if (1) each tree T in the distribution D has V (G) � V (T );

(2) for all x; y 2 V (G) and T in the distribution, d
T

dom-

inates d
G

, i.e., d
G

(x; y) � d

T

(x; y); and (3) for all x; y 2

V (G), the expected distance E

D

[d

T

(x; y)℄ � � � d

G

(x; y).

We shall also refer to this as an embedding of G with dis-

tortion � into random trees. (The fact that the distortion is

only in expectation will often not be mentioned.) It is known

that general graphs can be embedded into random trees with

distortion O(log n log logn) [20, 1, 5, 6, 10, 11].

Graph-Theoretic Terms: Most graph-theory concepts

which we use, such as treewidth, minors, and planarity, are

covered in standard text-books (see, e.g., [13, 33]).



An embedding of a graph G is outerplanar (or 1-

outerplanar) if it is planar, and all vertices lie on the un-

bounded face. An embedding of a graph G is k-outerplanar

if it is planar, and deleting all the vertices on the unbounded

face leaves a (k�1)-outerplanar embedding of the remaining

graph. A graph is k-outerplanar if it has a k-outerplanar em-

bedding. It is known that a k-outerplanar graph has treewidth

� 3k�1 [8, 28]; other properties of these graphs and related

concepts can be found in [4, 8]. Given a planar graph, a k-

outerplanar embedding for which k is minimal can be found

in polynomial time [7].

A Halin graph [18] is obtained by taking a planar

embedding of a tree T = (V;E) and attaching a cycle

C = (U;E




) around the leaves of the tree (in order). L

denotes the set of leaves of T , and hence V \ U = L. (Note

that there may be vertices on the cycle that are not leaves of

T .) A Halin graphG = (V [U;E℄E




) is 2-outerplanar and

has treewidth 3. Many algorithmic problems can be solved

efficiently on these graphs (see, e.g., [32] and the references

therein).

3 Embedding a Halin Graph

Given a Halin graph, we will embed it into random trees

thus: we first take the tree T = (V;E) from the Halin

graph and process it to give a random dominating tree T (1),

which approximates distances in T to within a constant (in

expectation). Furthermore, T (1) has a specific structure: it

consists of a tree T

00

= (L;E

00

) on just the leaves L of

the original tree T , and the rest of the vertices in V n L are

attached to vertices in T

00. Also, the tree T 00 is a minor of

T , and so attaching the cycle C back to the vertices in T

00

gives us an outerplanar graph. This outerplanar graph is then

embedded into a random tree using known techniques [17] to

give the following theorem, which is the main result of this

section:

THEOREM 3.1. Any metric generated by a Halin graph can

be embedded into a distribution over dominating trees with

constant distortion.

3.1 Processing the tree Let us assume that the tree T has

a root vertex r 2 (V n L), which imposes an ancestor-

descendant relation between the vertices in V . Each vertex v

naturally defines a tree T (v), namely the subtree induced by

the vertices that are descendents of v. For a vertex v, let l(v)

be the leaf in T (v) closest to v, and h(v) be the distance of v

from l(v) in T . Note that these functions are fixed given the

input tree T . The processing algorithm works in two parts.

� The first step of the algorithm, given in Section 3.1.1,

returns a tree T

(1=2). This tree consists of a tree T

0

defined on the vertices of L and some extra (or Steiner)

vertices, and the vertices of V n L hang off the vertices

of T 0 in the form of (possibly several) subtrees. This is

done incurring a constant expected distortion.

� Note that the previous step was almost what we wanted

— we just have to get rid of the Steiner vertices.

The second part, given in Section 3.1.2, eliminates the

Steiner vertices of T 0 by contracting some of its edges,

thus converting T (1=2) into T (1). This process is shown

to incur a further distortion of a constant factor.

3.1.1 Processing I: Getting the tree T

(1=2) In this sec-

tion, we will show how to convert the tree T into the tree

T

(1=2) while incurring only a constant distortion. The al-

gorithm Process-Tree to perform this processing cuts off a

subtree ^

T

0

of T which contains the root but not the leaves,

recursively acts on the subtrees thus created, makes a new

root vertex and adds edges from it to the roots of each of the

processed subtrees, and finally hangs ^

T

0

off this new root.

(See Figure 3.1.)

Before we make Process-Tree concrete, we define the

auxiliary procedure Cut-Midway which cuts a random set of

edges to separate the root r from all the leaves of T . It returns

a special tree ^

T

0

containing the root r of T and none of its

leaves, and a set of subtrees T
i

(for 1 � i � t), each rooted

at some vertex r

i

. We say that an edge e is at a distance d

from a vertex r if e is in the cut defined by the set of vertices

whose distance from r is at most d.

Algorithm Cut-Midway(T )

while there is a path from r to a leaf in T

let d distance to closest leaf

let S(d) set of leaves at distance 2 [d; 2d) from r in T

let T (d) be the union of paths from r to vertices in S(d)

choose D 2
R

[d=2; 3d=4) uniformly

E(d) edges in T (d) at distance D from r

delete edges in E(d) from T

end while
^

T

0

 component of T containing root r but no leaves of T

T

1

; T

2

; : : : ; T

t

 other components of T

let d
i

 value of d when edge connecting r to T
i

was cut.

return (

^

T

0

; hT

1

; d

1

i; hT

2

; d

2

i; : : : ; hT

t

; d

t

i).

Now we can formally state Process-Tree:

Algorithm Process-Tree (T )

apply Cut-Midway(T ) to get

(

^

T

0

; hT

1

; d

1

i; hT

2

; d

2

i; : : : ; hT

t

; d

t

i)

let r0 be a new vertex, called the “Steiner twin” of r

attach r0 to r with edge of length d
0

= h(r)

for 1 � i � t // We don’t have to work on ^

T

0

if T
i

is just a single vertex x (hence x 2 L) then

T

(1=2)

i

 T

i

else

T

(1=2)

i

 Process-Tree (T
i

)

let r0
i

be root of T
(1=2)

i



// r0
i

is the Steiner twin of r
i

, the root of T
i

add edge (r0; r0
i

) with length 3d

i

end for

return tree T (1=2) with r0 as its root

Recall that we had mentioned that T (1=2) would have a

portion called T

0; this is formed by the new edges added

between r

0 and r

0

i

(for 1 � i � t) during the various

recursive calls to Process-Tree. (Note that this does not

include the edges added between r

0 and r, i.e., between the

original roots and their Steiner twins.) Hence T

0 includes

all the leaves of T , plus all the Steiner twins created. For

an example, see Figure 3.1, where Cut-Midway performed

three cuts, and Process-Tree resulted in the tree on the right.

The solid edges belong to T , the dashed ones to T

0, and the

edge (r; r0) is shown as a faint line.

Let us call an edge a candidate to be cut at some step

if it has a non-zero probability of being cut at that step. We

can now show the following bound on the expected distortion

incurred by the above procedure:

THEOREM 3.2. The (expected) distortion introduced by

procedure Process-Tree is at most 25.

Proof. Before we prove this, let us give a high-level sketch.

It can be verified to see that distances are never contracted

by Process-Tree, and hence it suffices to bound the expected

expansion. We show this via two lemmas: firstly, Lemma 3.1

shows that an edge is a candidate to be cut on at most two

(consecutive) occasions. Lemma 3.2 then shows that when

an edge is a candidate to be cut, it suffers only a constant

expected expansion. Combining these two results then gives

us the result.

LEMMA 3.1. No edge is a candidate for cutting more than

twice during the entire run of the algorithm Process-Tree.

Proof. Let e = (u; v) be an edge, where u is the ancestor of

v. Consider the first instant when an edge e is a candidate

to be cut in a call to Cut-Midway. Let r be the root at

this point, and d

� be the value of the parameter d in the

while loop of this call to Cut-Midway. In this call of

Cut-Midway, it is clear that e cannot be considered again.

Indeed, after the cut, e will not lie on any path from r to

a leaf. A fact that will be useful later is that the portion

of e that lies in the distance interval [d�=2; 3d�=4) from r

is (min(d

T

(r; v); 3d

�

=4) � max(d

T

(r; u); d

�

=2)), and that

value multiplied by 4=d

� is the probability that e is cut at

this time.

The edge e will never be considered again if the cut fell

“below” v, or if it passed through e, so let us assume that the

cut was above u and e lies in one of the trees T
i

with root

r

i

. Clearly, it lies in some path from r

i

to a leaf, and hence

it will be part of the tree T (d��) at some point in the call to

Cut-Midway from r

i

.

We claim that the cut made at this point will lie below u;

i.e., d��=2 � d

T

(r

i

; u). Indeed, such a cut made from r

i

at

a distance at least d��=2 � h(r

i

)=2 from it, where h(r
i

) �

d

�

� d

T

(r; r

i

). Hence taking distances from r, this cut is at

distance at least d
T

(r; r

i

) + h(r

i

)=2 �

1

2

(d

T

(r; r

i

) + d

�

) �

3d

�

=4. But this distance is greater than d

T

(r; u), and hence

u always lies above this next cut. Thus, when this next cut

is made, either e will be deleted (if v fell below this cut), or

the cut will fall below v and the edge e will never again be a

candidate to be cut, proving the lemma.

Before we end, let us note that the portion of e that

lies in distance interval [d

��

=2; 3d

��

=4) is disjoint from

the portion considered earlier, and has a length of at most

max(d

T

(r; v) � 3d

�

=4; 0). As before, multiplying this by

4=d

�� gives the probability that e is cut if it is considered a

second time. 2

Let `
e

denote the length of edge e in G.

LEMMA 3.2. If an edge e = (u; v) is cut by Cut-Midway

with parameter d
i

, the expected distance between u and v in

T

(1=2) is at most 6d
i

� `

e

.

Proof. Consider an edge e = (u; v) of length `

e

which

is cut in some iteration of Cut-Midway, and let d
i

be the

value of the parameter d at this point. Consider the distance

d

T

1=2

(u; v) between u and v in the resulting tree T (1=2).

The vertex u will be in ^

T

0

and the vertex v is the root

of T

i

for some i and hence will be in T

(1=2)

i

when T

i

,

rooted at r
i

= v, is processed. From the description of

Process-Tree we see that d
T

(1=2)

(u; v) = d

T

(1=2)

(u; r

i

) can

be expressed as d
T

(u; r) + d

T

(1=2)

(r; r

0

) + d

T

(1=2)

(r

0

; r

0

i

) +

d

T

(1=2)

(r

0

i

; r

i

). From our construction, d
T

(1=2)

(r; r

0

) = h(r)

and d

T

(1=2)

(r

0

; r

0

i

) = 3d

i

and d

T

(1=2)

(r

0

i

; r

i

) = h(r

i

). We

observe that h(r) � d

i

for all i, and that h(r
i

) � 2d

i

�

d

T

(r; r

i

). The latter is true because for e to be cut, r
i

is on

the path from r to a leaf in T of length at most 2d
i

. Putting

these observations together we obtain that

d

T

(1=2)

(u; r

i

) = d

T

(u; r) + d

T

(1=2)

(r; r

0

) + d

T

(1=2)

(r

0

; r

0

i

)

+ d

T

(1=2)

(r

0

i

; r

i

)

� d

T

(u; r) + h(r) + 3d

i

+ (2d

i

� d

T

(r; r

i

))

� d

T

(u; r) + d

i

+ 3d

i

+ (2d

i

� d

T

(r; r

i

))

� d

T

(u; r) � d

T

(r; r

i

) + 6d

i

= 6d

i

� `

e

:

2

Now we complete the proof of Theorem 3.2: by

Lemma 3.1, the edge e = (u; v) is cut at most twice. The

first time it is considered, it is cut with probability p

1

=

(min(d

T

(r; v); 3d

�

=4)�max(d

T

(r; u); d

�

=2))� 4=d

�, and

the expected length is at most 6d� � `

e

. The second time
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Figure 3.1: One call of the procedure Process-Tree.

the chance is p
2

= (max(d

T

(r; v) � 3d

�

=4; 0)) � 4=d

��,

and the expected length is 6d�� � `

e

. Finally, with probabil-

ity (1� p

1

� p

2

), the length remains `
e

. Thus the expected

distance between u and v is at most

6d

�

p

1

+ 6d

��

p

2

+ (1� 2p

1

� 2p

2

)l

e

� 6(d

�

p

1

+ d

��

p

2

) + l

e

� 24 [min(d

T

(r; v); 3d

�

=4)�max(d

T

(r; u); d

�

=2)

+ max(d

T

(r; v)� 3d

�

=4; 0)℄ + l

e

� 24 l

e

+ l

e

� 25 l

e

;

which implies an expected distortion of at most 25, and

proves the theorem. 2

We close this subsection with a further observation

about the tree T’ constructed by the procedure Process-Tree.

CLAIM 1. The tree T

0 constructed as above is a minor of

the tree T .

Proof. In each call to Process-Tree, we progressively con-

struct T 0 by removing the tree T
0

and replacing it with a star

connecting r0 to the various r
i

(for 1 � i � t). But this star

could equivalently be obtained by contracting all but the leaf

edges of the tree T
0

. (Of course, we are placing new lengths

on these edges, but this does not affect the structure.) 2

This claim also shows that the tree T

0 with the cycle

around its leaves is still a Halin graph, since Halin graphs

are closed under taking minors.

3.1.2 Processing II: Removing the Steiner vertices In

this section, we remove the Steiner vertices in the tree T

0

that were created during runs of Process-Tree, giving us a

tree T 00. (Since T (1=2) consists of T 0 with several subtrees

attached to it via cut-edges, attaching those subtrees to T

00

will give us a new tree T (1).) The argument in this section

is similar in spirit to that in [16]. The Steiner twin vertices

from T

(1=2) are removed in the same order in which they

were created. Consider r0, the root of T 0; it was created as

the Steiner twin of vertex r 2 T . We now identify all vertices

on the path between r

0 and l(r) with l(r). This process is

performed on each of the Steiner twin vertices in turn (in

order of their creation), causing each of them to be identified

with some vertex in L � C. Call the resulting tree T

(1).

This has the vertex set V , since we removed all the Steiner

vertices we created in the previous section. The following

lemma proves the main result of this section:

LEMMA 3.3. This edge-contraction procedure ensures that

the distance between each pair of vertices of V in T (1) is no

shorter than its distance in T .

Proof. To show that there is no contraction, it suffices to

check that no edge in T

(1) is shorter than the distance

between its endpoints in T . There are just three kinds of

edges remaining in T (1): those which belong to the trees ^

T

0

in the various invocations of Process-Tree, those between

some r and l(r),5 and those between l(r) and l(r

i

). Note

that the edges of this last type are the only edges that exist

between l(r
a

) and l(r
b

), since such edges (w.l.o.g.) must be

caused by r

a

being the root at some invocation of Process-

Tree and r
b

being one of the r
i

’s created at this step, and r
a

later being identified with l(r
a

).

Clearly, the edges in the trees ^

T

0

are not changed at

all. Now consider an edge between a vertex l(r) and r.

5These edges were added between r and r

0, and the latter has been

identified with l(r).



Figure 4.2: A 3-outerplanar graph from [4]. The layers are

A-G, a-g, and 1-8.

(This edge is created since r0 was identified with l(r).) The

length of this edge in T

00 is just h(r), which is also the

distance between l(r) and r in T . Finally, for an edge e

between l(r) and l(r

i

) in T

(1), the length is just 6d
T

(r; r

i

).

However, the distance between these points in T is at most

d

T

(r; l(r))+ d

T

(r; l

T

i

(r

i

)) which we upper bound next. Let

d

� be the value of d when r

i

was separated from r in the

procedure Cut-Midway. Then it follows that d
T

(r; l(r)) =

h(r) � d

� and d
T

(r; l

T

i

(r

i

)) = d

T

(r; r

i

) + h

T

i

(r

i

) � 2d

�.

Hence the distance between l(r) and l(r

i

) in T is at most

3d

�, however d
T

(r; r

i

) � d

�

=2, therefore the distance is at

most 6d
T

(r; r

i

). 2

3.2 Wrapping it all up Since the distances in T

(1) are at

least those in T , and at most 25 times those in T , this gives us

a total (expected) distortion of 25. Furthermore, we can now

add back the cycle C on the vertices of L, giving the graph

G

(1). This consists of an outerplanar graph on L, along

with vertices of T � L in the form of subtrees attached to

vertices of L. To see that T 00[C forms an outerplanar graph,

note from Claim 1 that T 0 was a minor of T , and hence T 00

obtained by contracting some edges in T 0 still leaves us with

a minor of T , so the planar embedding of T [ C induces a

planar embedding of T 00 [ C. Furthermore, T 00 is defined

on the vertices of L � U , so all the vertices lie on the outer

face.

But now we can invoke the procedure of [17, Theo-

rem 5.2] to get a random subtree ofG(1) which approximates

distances (in expectation) in G(1) to within a factor of 8, and

hence those in G to within a factor of 8 � 25 = 200. This

completes the proof of Theorem 3.1.

4 On to k-outerplanar graphs

In this section, we extend the construction of the previous

section to k-outerplanar graphs. Recall that these are graphs

embeddable in the plane such that removing the vertices

on the outermost face k times deletes the graph. Before

we begin, let us state two simple lemmas (whose proofs

we omit) that allow us to replace a subgraph by its tree

embedding, and to give embeddings of graphs in terms of

their blocks.

PROPOSITION 1. Let H = (V

H

; E

H

) be a subgraph of

G = (V;E). Let H 0

= (V

H

; E

H

0

) be a graph on V

H

such that d
H

(u; v) � d

H

0

(u; v) � � � d

H

(u; v) for all

u; v 2 V

H

. Then in the graph G

0

= (V;E � E

H

+ E

H

0

),

d

G

(u; v) � d

G

0

(u; v) � � � d

G

(u; v) for all u; v 2 V .

PROPOSITION 2. Let the graph G have a cut-edge whose

removal results in a tree T and a graphH . IfH can be prob-

abilistically approximated by tree metrics with distortion �,

then so can G.

The main result of this section, and of the paper is the

following:

THEOREM 4.1. There is a universal constant 
 such that

any metric generated by a k-outerplanar graph can be

embedded into random trees with distortion at most 
k.

Proof. The proof is by induction on k; however, the induc-

tion hypothesis required is stronger than the statement of the

theorem. We will assume that G = (V;E) is given along

with its k-outerplanar embedding, and F

0

(G) is the set of

vertices on the outer face of G. (In the sequel, we will often

abuse notation and blur the distinction between a face and

the vertices that lie on it.)

Induction Hypothesis: Let G = (V;E) be a connected k-

outerplanar graph with F

0

(G) as the outer face in some k-

outerplanar embedding of G. Then, the shortest-path metric

of G can be probabilistically approximated by a collection

of trees on V with expected distortion at most 
k such that

each tree T
i

= (V;E

i

) in the distribution has the following

properties:

(i) the subgraph of T
i

induced by F

0

(G) is a minor of G;

and

(ii) the subgraph of T
i

induced by V (G)�F

0

(G) is a forest,

and each tree in the forest is connected to F

0

(G) by a

single edge.

Informally, we will require that the random tree for G

be embeddable in the plane even when the vertices on the

outer face of G are “pinned down” to the plane. Clearly, if

the trees T
i

are subgraphs of G, then this is trivially satisfied.

The reader can verify that the Halin graph embedding of Sec-

tion 3 produces graphs which, though they are not subgraphs,

nevertheless satisfy the above property.

The base case for the induction is k = 1 when G is an

outerplanar graph. For outerplanar graphs [17, Theorem 5.2]



shows an embedding of G into trees that are subgraphs of G

with constant distortion. Hence the auxiliary conditions are

trivially satisfied.
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Figure 4.3: Partitioning of a k-outerplanar graph G into

(k � 1)-outerplanar graphs G

1

; : : : ; G

5

. The bold lines

indicate G
F

, the graph induced by the outer face.

For the induction step, let us assume that G is two

vertex connected, else we can work with the blocks of G

independently. Let G
F

be the subgraph of G induced by

F

0

(G), the vertices on its outer face; clearly G

F

is an

outerplanar graph. (See Figure 4.3.) Let F
1

; F

2

; : : : ; F

`

be the internal faces of G
F

, V
i

the subset of V � F

0

(G)

lying inside the face F

i

, and G

i

the induced graph on V

i

.

We assume without loss of generality that G
i

is connected

for otherwise we can work with its connected components

separately. We make the following assumption for technical

reasons: for any vertex v 2 F

i

there is at most one vertex

u 2 V

i

such that (u; v) 2 E(G). This is without loss of

generality, since if this does not hold for a vertex v 2 F

i

,

we can split v into a path of vertices (with the edges between

them of length 0) and connect each one to a unique vertex

of V
i

without violating planarity. Note the following fact,

which allows us to use the induction hypothesis:

FACT 4.1. For 1 � i � `,G
i

is a (k�1)-outerplanar graph.

Now applying the induction hypothesis, each G

i

can

be 


k�1-probabilistically approximated by trees satisfying

conditions (i) and (ii). We now give a procedure to extend

the embeddings of the variousG
i

to an embedding of G. For

1 � i � `, we pick a tree T
i

from the distribution over tree

metrics for G
i

. Let G0 be the graph obtained by adding the

vertices of F
0

(G) and the edges incident to them (in G) to

the trees T
1

; : : : ; T

`

. Proposition 1 implies that the metric

induced by G

0 is within an expected 


k�1 distortion of d
G

,

and hence approximatingG0 by tree metrics with an expected

distortion of 
 will prove the induction hypothesis for G.

Let T 0
i

be the subtree of T
i

induced by F

0

(G

i

). The

fact that it is a subtree is guaranteed by condition (i) of

the hypothesis; in fact T 0
i

is a minor of G
i

. Furthermore,

V

i

� F

0

(G

i

), i.e., vertices of G
i

not in T

0

i

, induces a forest

in T

i

that is connected via cut-edges to T

0

i

. Also note that

there are no edges between F
0

(G) and V
i

�F

0

(G

i

), since the

graph is planar, and the layer F
0

(G

i

) separates these two sets

of vertices. Using Proposition 2, we can eliminate vertices

in V

i

� F

0

(G

i

) (for 1 � i � `) from G

0. It now suffices

to embed the resulting graph, which we call core(G0), into

trees with expected distortion at most 
.

The key claim that essentially reduces this problem to

the embeddings of Halin graphs given in the previous section

is the following:

CLAIM 2. Let G0
i

be obtained by taking the tree T

0

i

, and

adding the vertices F
i

and all the edges incident on F

i

in

G[V

i

[ F

i

℄. Then G0
i

is a Halin graph.

Proof. By the induction hypothesis, the tree T

0

i

is a minor

of G
i

, and hence the planar embedding of G
i

induces a

natural planar embedding of T

0

i

. Furthermore, from our

earlier assumption, each vertex of F
i

has at most one edge

to T

0

i

; let E
i

be the set of these edges. It follows that T 0
i

along with these edges E
i

still forms a tree. Finally, the

edges along the face F

i

form a cycle around this tree, and

hence G0
i

is a Halin graph as claimed. 2

Note that our current graph core(G0) is simply
S

i

G

0

i

.

Since each T

0

i

is a minor of G
i

, we obtain the following

result.

PROPOSITION 3. The graph core(G0) is a minor of G.

Now since each G0
i

is a Halin graph (with F
i

as its outer

face), we can apply the procedure of Section 3 to it. The

resulting graph, which we call G00
i

, will be an outerplanar

graph on F

i

, with the vertices of G0
i

� F

i

inducing a forest,

the trees of which are connected to vertices of F
i

via cut-

edges. Using Proposition 2 again, we can remove these

hanging trees to obtain the graph core(G00
i

).

Note that the procedure in Section 3 guarantees that

core(G00
i

) is a minor of G0
i

. Furthermore, each core(G00
i

)

is an outerplanar graph on the face F

i

of the outerplanar

graph G

F

. These two facts together imply that H =

S

i

core(G00
i

) is also an outerplanar graph. We can embed

H into subtrees of H with constant expected distortion

following [17, Theorem 5.2]. (We assume that the distortion

is at most 
 by choosing 
 sufficiently large.) This establishes

that G can be embedded with expected distortion at most 
k.

It just remains to show that the conditions (i) and (ii) are

met for the trees produced by this procedure. The final step

is an embedding of H whose vertex set is F
0

(G). It can be

seen thatH is a minor of G; indeed, Proposition 3 shows that

core(G0) =

S

i

G

0

i

is a minor of G, and as observed above,

eachG00
i

is a minor ofG0
i

. Finally, using the procedure in [17]

to embed H gives subtrees of H which are clearly minors of
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Figure 4.4: Returning from the induction: the bold lines denote G
F

.

H , and thus of G. Hence our procedure guarantees that each

random tree, when restricted to the vertices of F
0

(G), is a

minor of G, thus establishing condition (i). Finally, note that

the procedure removes vertices only when Proposition 2 is

applied, i.e., if the vertices induce a tree connected via a cut-

edge to the rest of the graph. This implies condition (ii) of

the induction hypothesis, thus completing the proof. 2
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