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Abstract

Strong Nash equilibria and Pareto-optimal Nash equilibreunatural and important strengthenings of the
Nash equilibrium concept. We study these stronger notidregjoilibrium in congestion games, focusing
on the relationships between the price of anarchy for thgadileria and that for standard Nash equilibria
(which is well understood). Fa@ymmetriaccongestion games with polynomial or exponential latenaycfu
tions, we show that the price of anarchy for strong and Pamptional equilibria is much smaller than the
standard price of anarchy. On the other hand, for asymmangestion games with polynomial latencies
the strong and Pareto prices of anarchy are essentiallyges #& the standard price of anarchy; while for
asymmetric games with exponential latencies the Paretstandard prices of anarchy are the same but the
strong price of anarchy is substantially smaller. Finaliythe special case of linear latencies, we show that
in asymmetric games the strong and Pareto prices of anaaihgide exactly with the known valué for
standard Nash, but are strictly smaller for symmetric games
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1 Introduction

1.1 Background

In algorithmic game theory, therice of anarchy[14] is defined as the ratio of the social cost of a worst
Nash equilibrium to that of a social optimum (i.e., an assignt of strategies to players achieving optimal
social cost). This highly successful and influential conégfrequently thought of as the standard measure
of the potential efficiency loss due to individual selfistsashen players are concerned only with their own
utility and not with the overall social welfare. Howeverchese a Nash equilibrium guarantees only that
no single player (as opposed to no coalition) can improveutilisy by moving to a new strategy, the price
of anarchy arguably conflates the effects of selfishnessamkdof coordination. Indeed, for several natural
classes of games, the worst-case price of anarchy is ach&ve Nash equilibrium in which group of
selfish players can all improve their individual utilitieg imoving simultaneously to new strategies; in some
cases, the worst Nash equilibrium may not everfPgeto-optimal—i.e., it may be possible that a group of
players can move to new strategies so thadryplayer is better off (or no worse off) than before.

In this context, two stronger equilibrium concepts perhbeter isolate the efficiency loss due only
to selfishness. Atrong Nash equilibriuni5] is defined as a state in which no subset of the players may
simultaneously change their strategies so as to improw# #ikeir costs. Thetrong price of anarchysee,
e.g., [3]) is the ratio between the cost of the worst strongilégium and the optimum cost. A weaker
concept that is very widely studied in the economics litm@f(see, e.g., [15]) is that ofRareto-optimal
Nash equilibriumy which is defined as a Nash equilibrium for which there is Hwepttate in which every
player is better off. (Equivalently, one may think of a Pareptimal equilibrium as being stable under
moves by single players or the coalition of all players, kattmecessarily under arbitrary coalitions.) One
can argue that Pareto-optimality should be a minimum reguént for any equilibrium concept intended to
capture the notion of selfishness, in that it should not besémyeplayer’s self-interest to move to another
state. ThePareto price of anarchys then defined in the obvious way.

A natural question to ask is whether the strong and/or Par&tes of anarchy are significantly less than
the standard price of anarchy. In other words, does the nemgeit that the equilibrium be stable against
coalitions lead to greater efficiency? We note that this tjpreas been addressed recently for several
specific families of games in the case of the strong (thoudhPaceto) price of anarchy [2, 3, 10]; see the
related work section below. In this paper, we investigatedhestion for the large and well-studied class of
congestion gamesith linear, polynomial or exponential latency functions.

A congestion gam& ann-player game in which each player’s strategy consists ot afsesources,
and the cost of the strategy depends only on the number oéiglaysing each resource, i.e., the cost takes
the form )" _¢,.(f(r)), where f(r) is the number of players using resounceand ¢, is a non-negative
increasing function. A standard example inetwork congestion ganan a directed graph, in which each
player selects a path from some source to some destinatidreach edge has an associated cost function,
or “latency”, /, that increases with the number of players using it. (Throughwe shall use the term
“latency” even though we will always be discussing genemnah¢network) congestion games.) Frequently
the latencies are assumed to have a simple form, such as lim&momial, or exponential.

Congestion games were introduced in Economics by Rosdibjakind further studied in an influential
paper by Monderer and Shapley [16]. They have since feator@ahinently in algorithmic game theory,
partly because they capture a large class of routing andires@llocation scenarios, and partly because
they are known to possegaire Nash equilibria [19]. The price of anarchy for congestiommga is by
now quite well understood, starting with Koutsoupias angd@#mitriou [14] who considered a (weighted)
congestion game on a set of parallel edges. The seminal id&tkughgarden and Tardos [21] established
the valueg as the price of anarchy of network congestion games witlatitetencies in th@onatomicor

fNote that throughout we are assuming that cost (or utilgy)dn-transferablei.e., players in a coalition cannot share their
costs with each other. If costs can be shared, the situatioery different; see [12] for a discussion of this altenetcenario.



Wardrop case [7] (where there are infinitely many playershed whom controls an infinitesimal amount
of traffic); this was extended to polynomial latencies in][2Bhe more delicate:-player case was solved
independently by Awerbuch, Azar and Epstein [6] and by Gbdisulou and Koutsoupias [8], who obtained
the tight value2 for the price of anarchy in the linear case, and the asynuatibtitight valuek*(—() for
the case of polynomial latencies. Subsequently Aland ¢t Jaflave an exact value for the polynomial case.
Much less is known about strong or Pareto-optimal Nash ibguailin congestion games. Note that
such equilibria need not exist. Holzman and Law-Yone [18k@ sufficient condition for the existence
of a strong equilibrium based on the absence of a certaiotstal feature in the game, and also discuss
the uniqueness and Pareto-optimality of Nash equilibridenthe same condition. For the strong or Pareto
price of anarchy, however, there appear to be no resultssitergl congestion games.

1.2 Results

We investigate the strong and Pareto price of anarchy fogestion games with linear, polynomial and
exponential latencies. Roughly speaking, we find that inreginc’ games the resulting price of anarchy
can be much less than the standard (Nash) price of anarchig, iwhsymmetric games the behavior is more
complicated: for linear and polynomial latencies all thpeiees of anarchy are essentially the same, but for
exponential latencies the standard and Pareto prices oftgnare equal, while the strong price of anarchy
is substantially smaller. (We note that this gap betweennsgtric and asymmetric games does not appear
for standard Nash equilibria. Understanding the reasothisrdifference may be a topic worthy of further
study.)

More specifically, we show that the strong and Pareto pri€asarchy for symmetric congestion games
with polynomial latencies of degréeare at mosR**! (and that this is tight up to a constant factor); this
is in sharp contrast to the Nash price of anarchy:'8t —°(1)) obtained in [1, 6, 8]. In the special case of
linear latency, we show that the strong and Pareto pricesanfchy are strictly less than the exact vagje
for standard Nash obtained in [6, 8]. For symmetric gameb ®wiponential latency!, we show that the
strong and Pareto prices of anarchy are at most{«, n}, while the standard Nash price of anarchy is at
leasts™, wheres > 1 is a constant that depends an

On the other hand, fasymmetriggames with polynomial latency of degréewe show that the strong
(and therefore also the Pareto) price of anarchi*i$—°(1)) matching the asymptotic value for standard
Nash derived in [6, 8]. Moreover, in the linear case all thpeiees of anarchy coincide exactly. For ex-
ponential latencies, we show that the Pareto price of agascthe same as for standard Nash (which is
exponentially large), and also that the strong price of @mais much smaller; thus we exhibit a separation
between strong and Pareto prices of anarchy for a natuisd ofegames.

Since strong and Pareto-optimal equilibria do not alwaystewe should clarify the meaning of the
above statements. An upper bound on the strong (respgttRaaieto) price of anarchy for a certain class of
games bounds the price of anaraliienever a strong (respectively, Pareto-optimal) equiiiin exists A
lower bound means that there is a specific game in the clashdha strong (respectively, Pareto-optimal)
equilibrium achieving the stated price of anarchy.

We now briefly highlight a few of our proof techniques. To abtapper bounds on the Pareto (and
hence also strong) price of anarchy in symmetric games, o\ $iat this price of anarchy can always be
bounded above by the maximum ratio of the costs of indiviglle@yers at equilibrium and the same ratio at
the social optimum. This allows us to study the equilibriumd ¢ghe optimum separately, greatly simplifying
the analysis. We note that this fact holds for arbitrary sytrim games, not only congestion games, and
thus may be of wider interest. Our upper bound on the Par@te pf anarchy for linear latencies requires
a much more intricate analysis, and makes use of a méfrix (m;;), wherem,; is the relative increase in
playeri’s cost at optimum when a new player moves to playgstrategy. This turns out to be a stochastic
matrix with several useful properties. Finally, our loweund arguments are based on constructions used

A game issymmetridf all players have the same sets of allowable strategies.



in [1, 6, 8], suitably modified so as to handle the strongeuireqnents of strong and Pareto equilibria.
(These constructions typically have the property that thwas optimum is a strong Nash equilibrium, so
they are not immediately applicable in our setting.)

1.3 Related work

We briefly mention here some other related results not déstliabove. A fair amount is known about the
standard price of anarchy for variations of congestion gandne previously mentioned [6] and [1] both
extend their results to congestion games with weightedepsaywhile [8] handles the case where social
cost is defined as thmaximum rather than total player cost. This latter case is alsoemd@d by the
papers [9, 20] for the Wardrop model.

For the strong equilibrium concept, several authors havesidered the strong price of anarchy and
the existence of strong Nash equilibria in various speclisses of games, often deriving significant gaps
between the strong and standard price of anarchy. For egamptelman et al. [3] study job scheduling and
network creation games, Epstein et al. [10] cost-sharimmection games, and Albers [2] network design
games.

Other measures stronger than the standard Nash price ahgriaave also been studied recently. An-
shelevich et al. [4] consider tharice of stability or the ratio of the cost of BestNash equilibrium to the
social optimum, for network design games. And Hayrepeyaal. ¢12] define and study the “price of col-
lusion” in analogous fashion to the strong price of anarelith the crucial difference that coalitions aim to
minimize not the cost of each of their members but the contbawst of all members.

On the issue of existence of strong Nash equilibria in caigegames, Rozenfeld and Tennenholtz [18]
follow on from the above-mentioned [13] and consider theeocabkere the “latencies” are monotonically
decreasing.

2 Preliminaries

2.1 Equilibrium concepts and congestion games

A gameconsists of a finite set of playef3 = {1,...,n}, each of which is assigned a finite sestfategies

S; and a cost function; : S; x - --x S, — Nthat he wishes to minimize. A game is calegnmetridf all of
the S; are identical. Astates = (s1,...,s,) € S1 x---x .S, is any combination of strategies for the players.
A states is apure Nash equilibriunif for all playersi, ¢;(s1,...,8i,...,sn) < ¢i(s1,...,8},...,sy,) for

all s, € S;; thus at a Nash equilibrium, no player can improve his cosirblaterally changing his strategy.
It is well known that while every (finite) game hasrixedNash equilibriurfi, not every game has a pure
Nash equilibrium. A states = (si,...,s,) is a Pareto-optimal Nash equilibriunif it is a pure Nash
equilibrium and there is no other state in whieveryplayer has lowe¥ cost than at; in other words, for
all s’ = (s},...,s),) € S1 x--- xSy, there exists some playgre P such thatc;(s’) > ¢;(s). A state

s = (s1,...,8,) is astrong Nash equilibriunif there does not exist armgoalition of players that can move
in such a way thaevery member of the coalitigmays lower cost than at equilibrium; i.e. for any other state
s’ # s, there exists a playersuch thats; # s;- andc;(s") > ¢;(s). Finally, for any given state, we define
thesocial costc(s) to be the sum of the players’ costsdni.e.,c(s) = Y .. p ci(s). A state minimizing the
social cost in a game is calledsacial optimum

§In a mixed Nash equilbrium, a player's strategy is any prdlgigistribution over available strategies, and no plagan
improve his expected cost by choosing another distribution

YSome definitions of Pareto-optimality require there to bether state in which no player has higher cost thanaatd at least
one player has lower cost. Itis easy to check that our resaity over to this alternative definition with minor modifiicens to the
proofs.



We will focus on the class of games knownamgestion gamesvhich are known to always possess
a pure Nash equilibrium [19]. In a congestion game, playeosts are based on the shared usage of a
common set ofesourcesk = {r1,...,m,}. A player's strategy ses; C 2% is a collection of subsets
of R; his strategys; € S; will thus be a subset o2. Each resource € R has an associated non-
decreasing cost or “latency” functigh : {1,...,n} — N; if ¢ players are using resoureethey each incur
a cost of/,.(t). Thus in a state = (s1,...,sy), the cost of playei is ¢;(s) = >, o, £:(fs(r)), where
fs(r) =1|{j : r € s;}| is the number of players usingunders.

Of particular interest are congestion games where thedgtemctions are linear/((t) = «,t + £,),
polynomial ¢,.(t) is a degreé: polynomial int with non-negative coefficients), or exponentigl(¢) = o'
for 1 < a, < «.) For simplicity of notation, we shall assume tiatt) = ¢ for all » in the linear case,
¢.(t) = t* for all r in the polynomial case, ang(t) = o for all r in the exponential case. This will not
affect our lower bounds, which are based on explicit cowsitras of this restricted form, and it is not hard
to check that the upper bounds go through as well; for exanitpgestraightforward to incorporate general
non-negative coefficients by replicating resources. We tmaidetails, which are technical but standard.

Note that in our congestion games, Pareto-optimal andgteguilibria may not exist, and games may
have the first without the second, as we now show.

Proposition 2.1 There exist asymmetric congestion games with linear, potyal, and exponential laten-
cies with integer base (i.€/,(t) = ! for some positive integer) that have Pareto-optimal Nash equilibria
but no strong Nash equilibria.

Proof: Consider am-player congestion game with latency functidifs) which has a Nash equilibrium
but no strong Nash equilibrium; for example, it is easy tostarct a Prisoner’s Dilemma-style game with
this property.

From this starting point, we construct a modified game thatehRareto-optimal Nash equilibrium but
still no strong Nash equilibrium. We first replace each resein the original game with a setof resources
in the modified game for a constamt > ¢(2); thusm is larger thar2, 2* and«? for linear, polynomial, and
exponential latencies respectively. Strategies in theifieddyame correspond to those in the original game,
except that the former include all copies of the resources of the latter. This has the effectudfiplying
player costs by a factor ofi, but does not change the set of Nash and Pareto-optimal Madtbga.

We then add one more playet,+ 1, to the modified game; this player has a single strategy
consisting of new resources’; : « = 1,...,n}. Also, for playersl,...,n, we append resourcg to
every strategy of player except for the equilibrium strategy. Note that this makes the modified game
asymmetric even if the original one is not. There is an obwidijection between states of the original game
and those of the modified game, and we shall abuse notatictebyifying them. We writer;(s) andd;(s)
for the cost to playef of states in the original game and in the modified game respectively.

Now it is easy to see that the original Nash equilibrienfiogether with strategy,, 1 for playern+1) is
a Pareto-optimal equilibrium for the modified game: plaiblgmains a Nash equilibrium, and any coalition
move results in a cost increase for playet 1.

It remains to show that the modified game does not have anggstiash equilibria. We do this by
showing that if a state is a strong Nash equilibrium in the modified game, it mustespond to a strong
Nash equilibrium in the original game. Consider an arbjtremalition of players in state in the original
game, and an arbitrary group move to some other strategisslting in a new state’; we aim to show
that one of the coalition members has cost/ithat is at least his cost in We do this by examining the
corresponding move in the modified game. Sinc®a strong Nash equilibrium there, we must have at least
one player, say player for whomc,(s’) > c.(s). Sincec,(s’) < me;(s") + £(2), andd,(s) > me;(s), we
obtainme;(s') + £(2) > me;(s), implying thate; (') + 42 > ¢;(s).

Since all player costs must be integral with the latency tions we consider, an&i—) < 1, it must be
thatc;(s") > ¢;(s), which is what we needed. O

We note that we will use a very similar construction laterhia proof of Theorem 4.2.
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2.2 Efficiency of equilibria

As is standard, we measure the relative efficiency loss faeaifc type of equilibrium for a given family
of gamegj as the maximum possible ratio, over all games in the familth@ social cost of an equilibrium
statee in that game to the cost of a social optimurof the same game, or

c(e)

G <o)
This measure is known as tpece of anarchy(or coordination ratig in the case of Nash equilibria, and the
strong price of anarchyvhen discussing strong Nash equilibria. In addition to ¢hege will also consider
the case of Pareto-optimal Nash equilibria, in which caseallehe above ratio thBareto price of anarchy
Clearly the strong price of anarchy is no larger than thetBamece of anarchy, which in turn is no larger
than the standard (Nash) price of anarchy.

3 Symmetric games

In this section we prove upper bounds on the strong and Paret of anarchy for symmetric congestion
games with polynomial and exponential latency functiong.shall see that these are much smaller than the
known values for the standard Nash price of anarchy. Thusyiomrmetric games increased coordination,
when possible, leads to greater efficiency.

3.1 The basic framework

The main vehicle for these proofs is a simple framework tlatva us to bound the price of anarchy in
terms of the maximum ratio of the player costs at equilibrianal the maximum ratio of the player costs
at a social optimum. This is the content of the following ttegn, which we note applies tl symmetric
games, not only congestion games.

Theorem 3.1 Given a particular symmetric game withplayers, let the state be a Pareto-optimal Nash
equilibrium ands be any other state. Let. be defined amax; ; c;(e)/c;j(e) over all playersi, j, andp, be
similarly defined asnax; j ¢;(s)/c;(s). Then

c(e)

o(s) = max {pe; pst-

Proof: By symmetry, we can assume without loss of generality thatpllayers are ordered by cost in
both e and s: that is,ci(e) < -+ < ¢p(e) andey(s) < -+ < ¢,(s). Thuse,(e)/ci(e) = pe, and
cn(s)/c1(s) = ps. We start frome, and consider the hypothetical move in which every playaoves from
e; to his corresponding strategy in s. Sincee is Pareto-optimal, there must exist some plajyér whom
¢j(s) = cjle).

We now upper bound the social cost of equilibriur(s) = > . ¢;(e), and lower bound the social cost

c(s) = >, ci(s) of states. Consider first the:;(e) values. We have;(e) < --- < ¢je) < --- <
cn(e) = peci(e). The sum)_, ¢;(e) is therefore maximized wheey(e) = ca2(e) = --- = ¢;j(e) and
cir1(e) = -+ = peci(e), giving an upper bound ofcj(e) + (n — j)pecj(e). Similarly, for thec;(s)
values, we have;(s) < --- < ¢j(s) < -+ < pscp(s). The sum)_, ¢;(s) is minimized where; (s) =
-~ =cj-1(8) = ¢j(s)/ps andcj(s) = --- = c,(s), and is therefore at Iea&% +(n—7+1)ci(s).
Recalling that;(s) > ¢;j(e) and combining the two bounds, we obtain

2. ¢cile) jei(s) + (n — 7)pec;(s) J+(n—j)pe

S T-0606) <1 — (1)
>ici(s) J S+ (n—j 4 1)¢(s) JP—S—F(n—j—i—l)
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Differentiating with respect tg, we find that this expression is maximizedjat 1 or j = n. In the former

. . (n—1)pe - .
case the quotient is at moﬁ’T < pe, While in the latter case it is at mom < ps. 0

Thus, for a family of symmetric games, if we can fipd and p, such thatc;(e)/c;(e) < p. for all
Pareto-optimal equilibria, andc;(0)/c;(0) < p, for all social optimav, we can bound the Pareto (and hence

the strong) price of anarchy hyiax{p., p,}. We now proceed to do this for polynomial and exponential
symmetric congestion games.

3.2 Polynomial latencies

For the case of polynomial latencies, where each resauhas latency functior, (t) = t*, we show the
following:

Theorem 3.2 For symmetric congestion games with polynomial latencfedegreek;, the Pareto price of
anarchy (and hence also the strong price of anarchy) is att r2os'.

Remarks: (i) Note that the Pareto price of anarchy is much smaller thakribe/n value oft*(1—°(1) for

the standard Nash price of anarchy [6, 8,(i]. It is not hard to verify that the upper bound in Theorem 3.2
is tight up to a constant factor. To see this, consider a geplaymmetric game with, = 2* resources
{r1,...,mn}, and the following four strategies{ry, 2}, {r1,rs, 5}, {re,r4,76}, @and{rs,r4,...,rm}.
The social optimum occurs when the two players chdesers, 5} and{ry, r4, ¢}, for a total cost of 6. On
the other hand, the state in which the players chdesers} and{rs,r4,...,r,} is a strong equilibrium,

and its cost isn. The price of anarchy is thu§ = %

Proof of Theorem 3.2: Following the framework of Theorem 3.1, it suffices to deningper bounds on the
ratios of player costs both at equilibrium and at a sociahaogin. This we do in the following two claims.

Claim 3.3 In the situation of Theorem 3.2, we havex; jc p <\ < 2F.

cjle) =

Proof: Consider any two playersand; at an equilibriume, and the hypothetical move in which playier
switches from his current strategyto j's strategye;, resulting in the new stai€.
We now bound;(¢’) in terms ofc;(e). Note that

@)= for) = D (fer)+ 1)+ Y felr)F <D (felr)+ DE.

ree; TE@]‘\@Z‘ reejne; ree;

(This captures the intuition that in switching ¢, player: pays at most what playgrwould pay if there
were one more player using each resource.) From this, dvislthat

Yorce)felr) + 17 (fe(r)+1DF _
Doree, fe(r)F = O < 2",

Sincee is a Nash equilibrium, we must havge) < ¢;(€'), and thus:; (e) < 2¥¢;(e). m

<

Claim 3.4 In the situation of Theorem 3.2, we havex; jcp ggg < 2kl

J
Proof: As in the proof of Claim 3.3, consider any two playeémnd; at a social optimune. Assume that
¢i(0) > ¢j(o0) as the claim is immediately true otherwise. Again, considermove in which moves from
his current strategy; to ;s strategyo;, resulting in the new state.



Sinceo is a social optimum, the social cost@fmust be at least that of i.e.,, ¢;(0') — >, c;(0) > 0.
Using the fact tha} ", ¢;(s) = 3, fs(r)¥*+1! for any states, we have

0 < Zfo’(r)k+l_2fo(r)k+l
= Z fo’(r)k—i_l_ Z fo(r)k—i_l

r€o;do; T€0;D0;
= Z ((fo(r) + 1)k+1 - fo(r)k-H) - Z (fo(r)k-H - (fo(r) - 1)k+1)>
r€0;j\0; r€0;\0;

where the second line follows singg (r) = f,(r) for r € o; @ o;.
Now observe that;(0) = 3=,c,, fo(r)* = X, om0, fo(r)" + 2 co,00, fo(r)*, and add this to both
sides of the above to get

o) < 30 ((folr) + D = ) £ Y o)

€0 \0; r€0;MNo;
_ Z (fO(T)k+1 o (fo(r) o 1)k+1 o fo(r)k)-
r€0;\o;
It is not hard to verify that the last summation here is alwags-negative.
Sincec;(0) = 3o 0; fo1)* + X 010, fo(r)*, we have

CZ‘(O) < ET’EO]‘\OZ'((fO(T) + l)k—’_l - fO(T)IH_l) + ZTEOiﬂoj fO(T)k

j (o) ~ Zreoj\oi fo(r)k + Zreoinoj fo(r)k
o Zreopa (o) + DM — fo(r)*h)
= ZTEOj\Oi folr)k
(fo(r) 4 1)k+1 _ fo(T)k-H
= Tg;?iioi fo(r)k '

where the second line follows because the ratio of the firssin the numerator and denominator is greater
than 1. This last quantity can be seen to be at 2bst, proving the claim. O

Finally, combining Claims 3.3 and 3.4 with Theorem 3.1 costgd the proof of Theorem 3.2. O

3.3 Exponential latencies

For the case of exponential latencies, where each resoascé@tency functiort,.(t) = of, we show the
following upper bound on the Pareto and strong prices ofciyar

Theorem 3.5 For symmetric congestion games witlplayers and exponential latencies, the Pareto price
of anarchy (and hence also the strong price of anarchy) is@gtmax{c, n}.

To prove Theorem 3.5, we again rely on the framework of Thad3el and establish the following two
claims, which bound the ratios of player costs at equiliriand at social optimum.

Claim 3.6 In the situation of Theorem 3.5, we havex; jcp % <a.

Proof: Consider an equilibrium stateand a move by player from his current strategy; to player;’s
strategye;, resulting in the new stat€. Clearly for each resourcec e;, playeri pays at most a factor of
a more thanj pays ate. Hencec;(¢') < ac;(e). Sincee is a Nash equilibrium, we must havge) < ¢;(¢’)
and the claim follows. O



ci(o

Claim 3.7 In the situation of Theorem 3.5, we havex; jep - o) = a(n+1).

=

Proof: This proof follows along the same lines as that of Claim 3.dn€ider a social optimum, and the
move in which player moves fromo; to player;’s strategyo;. Sinceo is a social optimum, this cannot
decrease the overall social cost. Hence

S fu(r)ale Zfo ofo(r)
= Y et = ST fr)ak)

0

IN

r€o0;do; re€o;dbo;
- Z ((fo(r) + 1)O‘f0(T)+1 - fo(r)afO(T)) - Z (fo(r)af()(r) - (fo(r) - 1)O‘f0(T)_1)'
reoj\o; r€o0;\o;

WIiting ¢i(0) = 32, o0, @) + 32, c0,m0, @77 and adding this to both sides, we obtain

cifo) < D ((folr) + D)l OF — fo(r)ale®) 3 7 alold)

T€0j\0; r€oiNo;

= ST (fulr) = 1)) — o)),

r€o0;\o;

and again we can see that the last summation is always nativeg
Combining this with the fact that; (o) = 3=, \,, @/ + 3, /"), we get

Ci(o) < Zreoj\oi((fo( ) ™ 1)af0 fo( )afo ) + ZTGOlﬂOJ Oéf"(r)
Cj(o) N zoj'\oz afo(r) z iNo; afo(r)
oo (Folr) + 1)o@ — f,(r)afe®)
- Zoj\Oi afO(T)
< (fo(r) + 1)04.

Sincef,(r) < n, this completes the proof of the claim. ©

A direct application of Theorem 3.1 to the results of theseént$ gives an overall bound ef(n + 1),
which we now improve tanax{a,n}. We first follow the proof of Theorem 3.1 through inequality),(
where one can see that the ratio on the right-hand side ismiwed when the player whose cost increases
is either playen or playern. In the former case, the resulting ratio is at mastwhich is« for exponential
latencies. In the latter case, the resulting ratio becopé—-, or % for exponential latencies.
This is clearly at most. O

In contrast to the above upper bound, we now show that theatdrmash price of anarchy in exponen-
tial congestion games is much larger—indeed, exponemtial i

Proposition 3.8 For symmetricn-player congestion games with exponential latenciésthe (standard

. . a/2—1
Nash) price of anarchy is at Ieasg)a( =l
Proof: Our construction is based on that of Christodoulou and Kaugis [8] for the case of linear laten-
cies. Our game contains groups of resources, amd= mt players. The players are divided evenly into
equivalence classes, labeled . .., m}, with ¢ players per class. Each of thegroups of resources consists
of (') resources, each labeled with a differéntuple of equivalence classes. The available strategies fo
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all players are to take either (1) all resources in a singbeigiof resources, or (2) for anyin {1,...,m},
all resources that are labeled with

Given the value ofy, we choosen andk such thatm < 1 + (% — 1)o; for example, we can choose
k = 5 andm = o — 1 for integera > 4. It can be verified that, with these settings, the state ircveach
player takes all resources labeled with his equivalencesatamber is a Nash equilibrium, while the state
in which each player takes the group of resources corresp®rid his equivalence class (i.e., a player in
classi takes all resources in grotupis a social optimum. A straightforward calculation theowh that the

ratio of a player's Nash cost to his cost at social optimuri&*—1), which |S(%)a( «—1 )" for the above
values oft andm. O

For completeness, we show that this same price of anarclsgdndard Nash is upper boundedddy.

Proposition 3.9 For asymmetric (and hence also symmetric) congestion gantle®xponential latencies,
the (standard Nash) price of anarchy is at mast

Proof (sketch): As in the proofs of related results in [6, 8, 1], in a game witehcy functiond(t), we
can prove an upper bound on the price of anarchy by finding, > 0 such that the inequality/(z + 1) <
crzl(z) + coyl(y) holds for all0 < = < n,1 < y < n; this implies a price of anarchy of at moﬁz’c—l.
When/(t) = o, this clearly holds withe; = 0 andcy = % < o™ O

Remark: With some extra work, the bound in Proposition 3.9 can be avel toO(a!~a)"),

4 Asymmetric games

In this section we extend the investigation of the previcetion to asymmetric games, and find that the
situation is quite different. First we will see that, for aayetric congestion games with polynomial laten-
cies, the strong (and therefore also the Pareto) price atlhpnds essentially the same as the standard Nash
price of anarchy. We will then go on to consider exponenticies, where we find that the Pareto price
of anarchy is the same as standard Nash, but the strong paceichy is significantly smaller.

We begin by considering polynomial latencies.

Theorem 4.1 For asymmetric congestion games with polynomial latentigghe strong price of anarchy
is at least| @ |*, where®,, is the positive solution ofr + 1)* = 2#+1.

Remark: &, is a generalization of the golden ratio (which is jdsi); its value is@(l + o(1)). Hence

the lower bound of Theorem 4.1 is of the foiehi! —°(1) which is asymptotically the same value for the
Nash price of anarchy obtained in [6, 8], and very close tetteet value obtained by Aland et al. [1].

Proof: Our lower bound construction is based on that of Aland eeatended so as to handle the stricter
requirement of a strong equilibrium. Consider an (asymicjegame withn players ¢ assumed sufficiently
large). Each playef has exactly two possible strategies,ando;. There aren + m resources labeled
{r1,...,™+m}, Wherem is a constant to be chosen later. For each playstrategyo; consists of the
single resource;. (We shall modify this slightly for some of the players shojtStrategye; consists of the
resourcegr;y1,...,7i+m}- (Thus for most players; consists of exactlyn resources.)

We claim that the state = (e, ..., e,) is a strong Nash equilibrium. To see this, note that undée
cost for playeri is ¢;(e) = Z§1ﬁ1 min{j — 1, m}*. If now playeri moves to his alternative strategy, re-
sulting in a new state(®), his cost becomes (e()) = min{i, m+ 1}*. To show that is a Nash equilibrium,
we need to show that (e) > ¢ (e) for all i.

Now note that, for all players > m + 1, we havec; () — ¢;(e) = (m + 1)F — m**1. Thus if we
choosem = |®}] to be the smallest integer such tifat + 1)* > m**1, we ensure that;(e)) > ¢ (e)



for all i > m + 1. To obtain the same condition for players< ¢ < m, we append to the strategy the
minimum numbe; of additional resources (unique ipso thatc;(e(”) = i* 4 a; > ¢;(e). (Note that all
thea; are less tham**1.) This ensures thatis a Nash equilibrium.

To see that it is a strong equilibrium, consider a move by hitrary coalition of players to their alterna-
tive strategie®;. We claim that the lowest numbered player in the coalitioesdoot see an improvement in
cost. This follows because the resourgewhich i occupies undew;, is still occupied by the same players
as undeke, so by the Nash propertys cost does not decrease.

Thus the strong price of anarchy is bounded below?@. But c(e) > (n — m)m*, andc(o) <

mmF*t + (n —m). Thus
c(e) (n —m)m*

c(o) = mFt24n—m

— |®]F asn — .

This completes the proof. O

We now turn to exponential latencies. Our next result shdasthe Pareto price of anarchy is equal to
the standard Nash price of anarchy (which we showed to benexpial inn in Proposition 3.8).

Theorem 4.2 For asymmetric congestion games with exponential latsndigthe Pareto price of anarchy
is bounded below by, and hence is equal to, the standard Nashaf anarchy.

Proof: Consider any:-player congestion game with exponential latenciésLet statec be a Nash equi-
librium for this game. Using a construction similar to thatHroposition 2.1, we create a modified game in
which the Pareto price of anarchy is onlyla— O(1))-factor smaller than the Nash price of anarchy of the
original game.

As before, we first replace each resource in the original gaitiea set ofn resources in the modified
game; strategies in the modified game correspond to thodeeiriginal game, except that the former
include alln copies of the resources of the latter. Once again, this plieli player costs by a factor of
but does not change the set of Nash and Pareto-optimal Nagtb&a.

We then add one more playet, + 1, to the modified game; this player has a single strategy
consisting of new resourceg; : i = 1,...,n}. Also, for playersl,...,n, we append resourcg to
every strategy of player except for the equilibrium strategy. Note that this makes the modified game
asymmetric even if the original one is not. There is the saateral bijection between states of the original
game and those of the modified game, and once again we abasemdly identifying them. Also, we shall
write ¢(s) andd(s) for the social costs of statein the original game and in the modified game respectively.

Now it is easy to see that the original Nash equilibrienftogether with strategy,, .1 for playern+1) is
a Pareto-optimal equilibrium for the modified game: plaiblgmains a Nash equilibrium, and any coalition
move results in a cost increase for player 1. Moreover, we have'(e) = nc(e) +n > nc(e), and for any
states, ¢/(s) < nc(s) + 2na?, since the occupancy of each new resource is at most two. TieuBareto

price of anarchy for the modified game is at leastx, 58 > C(Oi(%, whereo is a social optimum of

the original game. But clearly(o) > na, so the Pareto price of anarchy is at | aS (ﬁZQ_a) = 1+1Q %

Thus the Pareto price of anarchy grows arbitrarily closéhoNash price of anarchy asincreases. This
completes the proof. O

Finally, we exhibit a separation between the Pareto andgipace of anarchy by showing that the latter
(while still exponential) is significantly smaller than thelue we obtained for the standard Nash price of an-
archy in Proposition 3.8. We make the reasonable assumibinhe number of resources is polynomially
bounded in the number of players, as is the case in our lowerdoonstruction in Proposition 3.8.

Theorem 4.3 For asymmetric congestion games witplayers and exponential latencia$, in which every

strategy contains at mogtn) resources for some fixed polynomjglthe strong price of anarchy is at most
(L 4o(1))n

a3 .

10



Proof: Lete be a strong equilibrium state amdbe a social optimum state. As before, we will consider
moves in which subsets of players move from their equililorgtrategieg; to their strategies at optimumn;.
Let ¢, (o) denote the maximum cost of any player in state

We will make use of the following technical lemma:

Lemma 4.4 Let S be a subset of players each of whose strategiescantains at least one resource that is
shared by at least. players ate (i.e., for alli € S, 3Ir € ¢; such thatf.(r) > u.). Then at least one of the
following must be true: (1y“e < c.(0); or (2) there exist at least, = u. —log,, p(n) —log,, c.(0) players
outside ofS, each of whose strategies @atontains a resource that is shared by at leasplayers not inS.

Proof: Consider the move frormain which the playerg € S each adopt their strategiesin o, resulting in
a new states in which their new costs arg(s). For alli € S, we will denote by, (s) the cost to player at
states due only to the players ifi; formally, &;(s) = 3=, ., af*("), wheref,(r) = |{j € S : 7 € s5,}|.

Sincee is a strong equilibrium, there must be some player S for whome;(s) > ¢;(e). This might
happen if¢;(s) > ¢;(e), in which case since;(o) > ¢(s) ande;(e) > a*c, condition (1) of the lemma
holds. Otherwise, we must havgs) < ¢;(e) < ¢;(s). Sincec;(e) > o<, there must be some resource
r € o; for which ofs(") > % or equivalently, for whichf,(r) > log, c;(e) — log, p(n). However,

note that becausé (s) < c;(o) < ci(o), we havef,(r) < log, ¢.(0). Hence in states there must be
fs(r) — f(r) > log,ci(e) — log, p(n) — log, c.(0) players not inS that also use resource Since
¢i(e) > ate, condition (2) of the lemma holds. O

Suppose now that there exists a strong equilibrium a game fitting the description of the theorem

such that%(eo) > " for a social optimun. Then there must exist a playgfor whome;(e) > %c*(o).
Thuse; must contain a resoureefor which f,.(e) > log,, (%c*(o)> = dn + log, ci(0) —log, (np(n)).

Let S; denote the players holding this resource. Consider the imowéich we try to move all players
in S to their strategies at. Applying Lemma 4.4 to these players, we find that either(l) < np(n), in
which case the theorem is proven; or (2) there exist- log,, (np®(n)) additional players, each of whose
equilibrium strategies contains a resource shared by sittleat many players not ifi;. Let these additional
players form the sef». Since the game hasplayers, this implies that

n > |81 U S| > 20n + log, ¢.(0) — log, (n’p(n)?). ©)

We can then apply Lemma 4.4 againdpu S5, which again yields two possible outcomes. In case (1),
we have that™ < ¢, (o)np(n)?, or én < log, c.(0) + log,, (np(n)?). Combining this with inequality (2)
gives3én < n+log, (n®p(n)®), ord < %Jro(l), as claimed. In case (2), we are guaranteed the existence of
on — log, c«(0) — log, (np(n)?) players not inS; U Sz. Combining this with the lower bound d§; U S|
from (2), we must have at lea86n — log, (n>p(n)%) players. Since this cannot exceedwe find that
§ < %+ 0(1), again as claimed. O

5 Linear latencies

This section presents more detailed results for the speasd of linear latencies.

5.1 Exact price of anarchy for asymmetric games

We first show that the strong (and thus also the Pareto) pfie@archy for asymmetric congestion games
with linear latencies coincides exactly with the standasgiNprice of anarchy, which is known to %6, 8].

To do this, it is sufficient to exhibit a lower bound éfon the strong price of anarchy. This is the content of
the following theorem.

Theorem 5.1 For asymmetric linear congestion games, the strong pricnafchy is at Ieasg
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Proof: We construct a family of.-player games with latencies (¢) = t for all » whose strong price
of anarchy approacha% asn — oo. Our construction will be a refined version of that in the ffrob
Theorem 4.1. For simplicity, assumeés even. There will bex + 3 resourceqry,...,r,+3}. Each playei
has two possible strategies, ando;. Strategyo; consists of the single resoureg except that we add
resources,, o andr, 3 to player 1's strategy,. The strategies; are defined as follows:

0 — {riq1,rig2} if iis odd,
o {riad if ¢ is even.

We claim that the state = (e;) forms a strong Nash equilibrium. To see it is a Nash equiliorisuppose
playeri switches frome; to o;. If i > 1 is odd then his strategy switches frofmn;;1,r;+2}, at a cost of
1+2=3,to{r;} atacost of 3. (This calculation follows from the fact tha flayers occupying;, ;1
andr; o undere are respectivelyi — 2,7 — 1}, {i} and{i+ 1,7+ 2}.) Hence there is no cost improvement.
Similarly, if i is even then his strategy switches frgm}, at a cost of 2, tdr;}, at a cost of 2, again
giving no improvement. Finally, if = 1 then his strategy switches frofm; 1,712}, atacostofl +2 = 3,
to {r;, rni2, 13}, atacostofl + 1+ 1 = 3, again giving no improvement. Heneés a Nash equilibrium.
To see that it is a strong equilibrium, suppose that an argitsubset of the players switch from their
strategies; to 0;. Then the lowest-numbered playiein the subset experiences no cost improvement. This
follows as in the proof of Theorem 4.1 because the resourbeshwoccupies undes; are still occupied by
the same players as underso by the Nash propertys cost does not decrease.
The price of anarchy of this game is therefore at Iéc%t But in o each player occupies one resource

alone (except for player 1, who occupies three resources)o$ = n + 2. And in e each odd-numbered
player occupies one resource alone and one resource shighexhather player, while each even-numbered
player occupies one resource shared with another playersdte) = 3 if i is odd, and:;(e) = 2 if i is

even, saz(e) = 2. Hence the price of anarchy is at Ier%%g — 2 asn — oo. O

5.2 Upper bound for symmetric games

We now show that, fosymmetriclinear congestion games, the Pareto (and hence also stpoicg) of
anarchy is less than the known valge‘or standard Nash equilibria in both symmetric and asymimetr
games. For linear latencies, the framework of Theorem 3lyt gimes an upper bound of, so we must
resort to a more involved analysis. We prove the followirtggssing that our goal is not to find the best
possible upper bound, but to show that the upper bound dlgtiess than%.

Theorem 5.2 For symmetric congestion games with linear latencies, Hret® price of anarchy (and hence
also the strong price of anarchy) is strictly less th%n

As the proof of this theorem is quite involved, we first giveiatuitive outline of the main ideas. We
begin as in the proof of Theorem 3.1 by sorting the strategfiegjuilibriume and optimunmv by cost. A key
ingredient in the earlier proof is the hypothetical movenrirein which every player moves from his current
strategye; to his strategy; ato, and the realization that at least one player must pay higbsrato than at
e. Here we extend that idea to a more complicated sequencay#minoves, and again use the fact that at
least one player must pay higher cost at the end of this sequban he did at equilibrium.

One of the key concepts in this proof is the mathik = (m;;), wherem,; is the relative increase in
playeri's cost at optimum when a new player moves to playerstrategyo,. Using properties ofi/, we

are able to identify three disjoint subsets of playerdi’, andR satisfying: < j < kforalli € L,j € H'
andk € R in such a way that, for all playeise H’, the ratiog; dof 58 > g while for playersi € L U R,
¢; < 2. Thus to bound the Pareto price of anarchy, we must upperdotiiennumber of high-ratio players

|H'| relative to the number of low-ratio playeB| + | R|.
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The moves frone we consider consist of two steps: first, each playgoes from his original strategy
e; to his strategy at social optimum; then, we try to take each of the playersfin(which necessarily
includes all players for whom; (o) > ¢;(e)—these players are “unhappy” after the first step) and rgassi
them one-to-one to the strategies of playergiin giving a new state’. It is possible to prove that, under
this scheme, all players iR and H’ are better off at’ than ato. Therefore, since is Pareto-optimal, either
this cannot be done (becaud® > |H’|), or some player irl. ends up with higher cost than before.

We then split the proof into two cases. In the first case, piiyreH’ can have ratiog; > 7 for some
thresholdr. Here we can use the properties of the madiixo show that every player ih will have lower
cost ato’ than ate, and thus it must be thék| > |H'|, which gives us an overall price of anarchy belgw
In the second case, all playersiff have ratios of at most. Here, in the most involved part of the analysis,
we use the probabilistic method to lower boydt] in terms of|L|, |H'| andr, which we again show gives
us a price of anarchy below.

We now present the detailed proof.

Proof of Theorem 5.2: From this point on, as in the proof of Theorem 3.1, we will ddasan equilibrium
statee and a social optimum state both of which have the players sorted in increasing ordeosf; that
is,c1(e) < -+ <ecple)andei(o) < --- < ep(0).
We now describe a number of preliminary concepts and claiaswill set up the proof of the theorem.
Zeeoirmj((fo(r)+1)_fo(7“))
Y reo; Jo(r)

It is easy to see that,;; = 'OC?OO)J‘ where|o; N o;| is the number of resources used in bethand o, .
Intuitively, m;; is the relative increase in playés costc;(o) when a new player moves to strategy.

Further, we will denote by; the ratio 28 and letg.x andgmin be the maximum and minimum such
values ofg;. Note thatg,,i, < 1 sincee is Pareto-optimal, and we can assume that, > g — ¢ for some
smalle > 0 or else the theorem is trivially true; léf.x andi;, refer to a player that has ratig,., and a
player that has ratig,,;,,, respectively. As a matter of notation, for an integend a set of integerS, we
will say that: < S (ori > S) if i is smaller (or larger) than every element&f Similarly we will write
S1 < Sy if every element of5; is less than every element 6%.

We begin with the following lemma, which spells out some keyperties of this setup.

First, for the state, we will define an associated matriX = (m;;), wherem,; =

Lemma 5.3 Consider an equilibrium state and a social optimum statein the setting described above.
Then the following properties hold.

(@) Foralli,j, 2c;i(e) > cj(e).

(b) Forall 7, Zj m;; = 1, and for alli, j, m; > my;.
(c) Foralli,j, (2+m4)ci(o) > cj(o).

(d) tmax < Imin, @nd henceyax < 3.

(e) There exists > 0 such that, if players, j with ¢ < j have ratiosg;, g; > % — ¢, then for all players
kwithi < k < j, qr > 2.

Proof:

(a) Inthe equilibrium state, consider the move in which playg¢moves to playef’s strategy. The new
cost for playerj will be at mosty . (fe(r) +1) < 23 .. fe(r) < 2ci(e). Sincee is a Nash
equilibrium, this must be at leasj(e).

(b) Since)_; [o; Noj| = 3 ,c,. fo(r) = ci(0), we have) ; m;; = 1. Itis also evident thalo; N o] is
maximized whery = i, and hencen;; > m,; for all j.
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(c) Starting from the social optimum stateconsider the move in which playgmoves fromo; to o;;
the total social cost cannot decrease as a result. We thittisomove as occurring in two phases:
when playerj moves away from strategy;, the total social cost decreases by at least); when he
moves to strategy;, the social cost increases BY,.., ((fo(r) + 1)* = fo(r)?) = 3., (2fo(r) +
1) = 2¢i(0) + |oi|, where|o;| is the number of resources i. Using the fact from (b) above that
loi| = m4ici(0), we put this together to find that(o) < (2 + mj;)c;i(o).

(d) Note that for any playej with j < iy, We have thale;(e) = 2¢;¢j(0) > GmaxCina, (0) DY (@)
above. Thug; > qmaxM > qﬂ% > 1. Sinceqmin < 1, imin Must be larger that, .

cj(o) = -

TO see that]max S 3; Observe that:imax (e) S Cimin(e) S Cimin (0) S (2 + mimaximax)cimax (O) Thus
Cimax(€) < 3 agm,, < 1 for all i by (b).

Cimax (0)

>
(3 - )er(e) > (3 - c)er(e) > (3 e)er(o]. By (@), we have that,.. (o) < 3

ar > 3(3 — £)? > 2 for sufficiently smalle > 0.

(3

Jer(0) =

—¢&)c
¢i(o) and thus

O

These results allow us to define the séts= {i < imax : ¢ < 2}, R = {i > imax : ¢ < 2},
H={i:q>2},andH' = {i € H: L <i < R}, thusH' is the subset o satisfyingL. < H' < R.
Note that the only players not ih U H' U R are players ind \ H’; further, by part (e) above, all of these
playersi must satisfyy; < % —€

The idea behind the above definitions is the following. Wd stért by considering moves fromin
which all playersi move frome; to their corresponding strategies at social optimymAt least one player
(necessarily inR) will pay a higher cost ab than ate. We try to rectify this by reassigning the playersfin
to new strategies, namely some of thefor playersh € H'. As we will see now, this results in a statein
which all players inH and all players who have been reassigned are better off than a

Lemma 5.4 Consider the two-step sequence of moves in which (1) eagkrptaoves frone; to o;, and
(2) a subset of player®’ C R = {i1,...,i} are reassigned to strategies held by (distinct) players
{h1,...,he} C H'; call the resulting state’. Then for all players in R' U H, ¢;(0') < ¢;(e).

Proof: By the definition of the matrix\/ and Lemma 5.3 (b), we have that, for any playee;(o') <
(1+ Zhj min;)ci(0) < 2¢i(0). Butif i € H thenc;(e) > 2¢;(0) > ¢;(0'), as needed.

For the case of € R’, we need only observe thataf player: is playing the same strategy as a player
in H', and thaic;(e) > ¢y (e) for all h € H’, and apply the above reasoning. ©

Generally, we will be considering moves in which we try tossgn all of the players i® (i.e., R = R
in the above Lemma). If we are successful in doing so, theresiis Pareto-optimal, there must be a player
i € L who was not reassigned who must now be paying at least as muth®ate. This happens if the
strategies inH’ occupied by the reassigned pIayers have combingdvalues of at leasy; — 1. Thus, for
any playeri, we define itscapacity~; to be E . Fori ¢ H, this is at Ieasthl;1 The following

heH
claim will prove useful later.

Claim 5.5 Foranyi € L andh € H', v; > g

2qh

Proof: As just stated;; > 1— We first lower bound the numerator by observing #hat 4. For the
denominator, note that,, > h. Thus(2 + my;)ci(o) > ¢, (0) > ¢, () > cp(e) = thh( ) and so

2+ my > th?()O) > qpandl —mg; <3 _Qh

Combining these bounds yields > 2—, as needed. D
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At this point it is convenient to split the proof of Theoren2 $nto two cases: one for whep,.x > g
and the other for wheg,,., < % We handle the former case first.

Proof of Theorem 5.2 whengmax > %: First, we claim that for alf € L, v; > 1 by applying Claim 5.5
With g5, = gmax- But~y; > 1 immediately implies that; (0’) < c.(0).

Now, starting frome, suppose that we first move all players from their equililoristrategies to their
social optimum strategies, and then try to reassign allgskajn R to the strategies of distinct players in
the setH’. If we can do this, then by Lemma 5.4 and the above factdf{at) < c.(o) for all players
1 € L we will have achieved a situation in which all players arddyedff than ine, thus contradicting the
Pareto-optimality ok. But the only way this reassignment can fail i§ff’| < |R|, so that there are not
enough slots to which to assign playersinThus we may assumél’| < |R|.

We now compute the price of anarchy for just the playersin H’, or % Noting that
i€ RUH' Ci\0

. ) max .. . By gzi / Ci(e) IHI‘ XQmax'HR| dmax 5 2 [
foralli € R, ci(0) > %2=¢;, .. (o), it can be verified thuziigj; o) < \H’|+q‘“%\R2l . This is
maximized whenH’| = |R| and¢max = 3, giving us a ratio of%. (We have used the fact that,., < 3

from Lemma 5.3 (d).)
We complete the proof by observing that all of the playerst in H' U R haveg; strictly less tharg —¢,
and hence including them cannot increase the Pareto premeanthy tog—’. O

We now continue with the proof for the case whghn,, < g For this we require a technical lemma.

Lemma 5.6 Leti be a specific player ir.. Suppose we “mark” each player ifl’ independently with
probability p. Let X be the minimum number of players we must unmark so that tloé ehaining marked
playersH" satisfies) -, . ;» min < ¢; — 1. ThenE[X] < % + p2i_ where; = exp(—8yi(7i — p)). In

1-8;7
particular, if p < & thenE[X] < ,Y—f”

Proof: We recast the setting as follows: Fpre {1,...,|H’|} defined; = % whereh; is the jth
iy

largest value ofn;;, among allh € H'. Thus thed; are sorted in decreasing order. For egclet X, be

a random variable that i&; with probability p, and0 otherwise, thusE[Zj X;] = p. Our goal is then to
bound the expected minimum numberf which we have to discard (i.e., change the valué)teo that
Zj X; < ;. Note that we may assumeg < 1 since otherwise triviallyX" = 0.

The number of suctX; is determined by the following greedy procedure. OnceXheare fixed, we
go through those that were selected (i.e., for which= §;) in increasing order of; (descending values
of j), keeping a running sum. Once this sum overfloysve must discard the current select&g and all
remaining selected’;. Therefore,

E[X] = ) Pr[X; causes overfloyl + p(j — 1))
i=1
= Prloverflow occurs at dlH- p Z Pr[X; causes overfloj;j — 1)
i>2

= Proverflow occurs at gl p Y ~ Prloverflow occurs for somg! > j]

i>2
= Prloverflow occurs atglk-p Y " Pr[> " X > 7]
P22 k>j

where in the third line we have used the fact that for posititeger-valued random variables E[Z] =
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>, Pr[Z > i]. Continuing,

Py Xp 2yl = Prly Xi—pT; > 7 — pTj], whereT; = 37, 6
k>j k2j

2(v; — pT})?
S exp _(’77})6;) s
Zkzj k

using a Chernoff-Hoeffding bound. Sinde decreases withj, we have thad, - ; 62 < Tj6;, and that

§; < 1] le Thus we gePr[}", . ; X > 7] < exp ( %’;ﬁ;‘”) This yields

T2 (7 —
E[X] < Pr[overflow occurs at aﬂIH-pZexp (—2(% pL)"0 1)> .
£ L -1;)

The first term is bounded b§£ using Markov’s inequality. The second term can be boundéddllasvs:

pZeXp< ?fj:ﬁ])_ 1)> < pY lexp(=8%(v —p)Y

7>2 7>1

<
1 - ﬁz
where in the first line we used the fact that the quotifx-ffzf(\}%g2 is maximized at = 51
the general case of the lemma.
To see the special casejif< 2 then; < exp(—47?), andlf—iﬁ, < Wi for ; € [1/4,1]. But we
know thaty; lies in this range, since; < 1 by our observation at the beginning of the proof, and- i by
Claim 5.5 Witth = @max —E&. O

, wheres; = exp(—8v;(v; — p)),

>3
We are now ready to prove Theorem 5.2 for the casg.@f < %

Proof of Theorem 5.2 wheng,., < %: As in the proof for the previous case, it suffices to bound the

Pareto price of anarchy for the playersiiny R U H' since the remaining players cannnot cause the value
to reachb/2. Accordingly, we begin with the following:

Claim 5.7 The Pareto price of anarchy over only the playerdiiny R U H' satisfies

2
> ieLurun Ci(€) <m |L| = + |H'|qn, + |R|qn
> ierurunr ¢i(0) T L%+ |H'|+|RIZ "~

where the maximum is also taken over all players H'.

Proof: Note that there must exist somes H’ for which &ieLurun’ €€ - Ziepurci(©FH lenle) ppara.

ZZELURUH’ ci(o) = ZieLURCi(0)+|H/|Ch(O)
fore, we have

2 iervrum €i(€) _ Zierur Cile) + |H'|qnen (o) < 2ieLur26i(0) + |H'|qnen (o)
Zz’eLuRuH' ci(o) — ZiELUR ci(o) + |H'[ep(0) — ZiELUR ci(o) + |H'[cp(0)

using the fact thag; < 2 fori € LU R. If the left-hand side is at least 2, then we can maximizedbistient
by keepingc; (o) as small as possible fore L U R. Fori € R, we must have;(e) = g;ci(0) > cp(e) =
qnen (o), and thus; (o) > %’L(O) Fori € L, we must havec;(o) > ¢ .. > qncn(0), S0ci(o) > %’L(O)
Substituting these lower bounds (o) into the quotient, and dividing through lay (o), we get the bound
in the claim. O
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We will consider moves that begin with each player movingrfias equilibrium strategy; to his social
optimum strategy;, followed by an attempt to reassign the playerito the strategies of distinct players
in the setl’ to reach a new stai€. Because of the Pareto-optimality fit is impossible to do this in such
away thate; (o) < ¢;(e) for all players in the game.

The specific moves we consider will take advantage of Lem@aSippose we mark each playerAi
independently with probability. We will choosep = oy wherey = Gqu_qi, which from Claim 5.5 is a
lower bound on the capacity of any playie L, and < a < #. The expected number of players marked
is thenp|H'|, and by Lemma 5.6, for eache L, the expected number of marked players that need to be
unmarked sotha} ", . m;, <¢; —1,isat most%” = 2a. Thus, the expected number of marked players
that need to be unmarked so that this is true for all playerd. is at mos«|L|. The probabilistic method
then implies there exists some set of playerddihof cardinality p| H'| — 2a|L| satisfying this property.
From this we can conclude thg®| > p|H'| — 2a|L|, or elsee is not Pareto-optimal.

We now have two final cases, according to the sigp|&f'| — 2«|L|.

If p|H'| — 2|L| > 0, we can bound the Pareto price of anarchy frbm R U H' by

|L|2: + |H' g, + (p|H'| — 20| L)y,
|L|% + |H'| + (p|H'| — 20| L]) %

ZieLURUH’ ci(e)
EieLURUH’ ci(0)

<

Setting this to be less thagwis equivalent to

o 2qn|L| + 3pgn|H'| — 12q,|H'| +30[H'| _ 1 n |H'| pqp, — 4qp, + 10
6qn|L| 3 |L] 2qp, '

®3)

The last quotient in inequality (3) can be seen to be nonthegso long asy > % andgy, < gmax < § SO
the inequality is certainly satisfied férg a < % Thus fora in this range we get a Pareto price of anarchy
less tharg.

2qp, ’
; - / : |kl 5+ H lan .
Finally, if p|H'| — 2a|L| < 0, then we can bound the price of anarchy \3:1;—?+|H’\ . This is less

than% when% > 6 — 2, Using the fact that = v = -2 e can verify that this is indeed the case

an 6—2qp’
whenevep|H'| — 2«a|L| < 0. m

6 Open problems

We have left open a number of questions, including the fatigw

1. What is the exact strong (and Pareto) price of anarchyyimmsetric congestion games with linear
latencies? From Theorem 5.2 we know that this is less thauaioe 3 of the standard Nash price of
anarchy for these games. It is not too hard to obtain a Iowandbco)f% on this quantity, but we do
not see how to obtain its exact value using the machinery ci@e5.

2. What is the computational complexity of deciding whethetongestion game possesses a strong
or Pareto-optimal equilibrium, and if so of finding one? Famslard Nash equilibria, the decision
problem is trivial but finding an equilibrium is known to be hfor symmetric network congestion
games and PLS-complete for general symmetric congestioegfl1].
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