
Chapter 0

Prologue

Look around you. Computers and networks are everywhere, enabling an intricate web of com-
plex human activities: education, commerce, entertainment, research, manufacturing, health
management, human communication, even war. Of the two main technological underpinnings
of this amazing proliferation, one is obvious: the breathtaking pace with which advances in
microelectronics and chip design have been bringing us faster and faster hardware.

This book tells the story of the other intellectual enterprise that is crucially fueling the
computer revolution: efficient algorithms. It is a fascinating story.

Gather ’round and listen close.

0.1 Books and algorithms
Two ideas changed the world. In 1448 in the German city of Mainz a goldsmith named Jo-
hann Gutenberg discovered a way to print books by putting together movable metallic pieces.
Literacy spread, the Dark Ages ended, the human intellect was liberated, science and tech-
nology triumphed, the Industrial Revolution happened. Many historians say we owe all this
to typography. Imagine a world in which only an elite could read these lines! But others insist
that the key development was not typography, but algorithms.

Today we are so used to writing numbers in decimal, that it is easy to forget that Guten-
berg would write the number 1448 as MCDXLVIII. How do you add two Roman numerals?
What is MCDXLVIII + DCCCXII? (And just try to think about multiplying them.) Even a
clever man like Gutenberg probably only knew how to add and subtract small numbers using
his fingers; for anything more complicated he had to consult an abacus specialist.

The decimal system, invented in India around AD 600, was a revolution in quantitative
reasoning: using only 10 symbols, even very large numbers could be written down compactly,
and arithmetic could be done efficiently on them by following elementary steps. Nonetheless
these ideas took a long time to spread, hindered by traditional barriers of language, distance,
and ignorance. The most influential medium of transmission turned out to be a textbook,
written in Arabic in the ninth century by a man who lived in Baghdad. Al Khwarizmi laid
out the basic methods for adding, multiplying, and dividing numbers—even extracting square
roots and calculating digits of π. These procedures were precise, unambiguous, mechanical,

11



12 Algorithms

efficient, correct—in short, they were algorithms, a term coined to honor the wise man after
the decimal system was finally adopted in Europe, many centuries later.

Since then, this decimal positional system and its numerical algorithms have played an
enormous role in Western civilization. They enabled science and technology; they acceler-
ated industry and commerce. And when, much later, the computer was finally designed, it
explicitly embodied the positional system in its bits and words and arithmetic unit. Scien-
tists everywhere then got busy developing more and more complex algorithms for all kinds of
problems and inventing novel applications—ultimately changing the world.

0.2 Enter Fibonacci
Al Khwarizmi’s work could not have gained a foothold in the West were it not for the efforts of
one man: the 15th century Italian mathematician Leonardo Fibonacci, who saw the potential
of the positional system and worked hard to develop it further and propagandize it.

But today Fibonacci is most widely known for his famous sequence of numbers

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, . . . ,

each the sum of its two immediate predecessors. More formally, the Fibonacci numbers Fn are
generated by the simple rule

Fn =





Fn−1 + Fn−2 if n > 1
1 if n = 1
0 if n = 0 .

No other sequence of numbers has been studied as extensively, or applied to more fields:
biology, demography, art, architecture, music, to name just a few. And, together with the
powers of 2, it is computer science’s favorite sequence.

In fact, the Fibonacci numbers grow almost as fast as the powers of 2: for example, F30 is
over a million, and F100 is already 21 digits long! In general, Fn ≈ 20.694n (see Exercise 0.3).

But what is the precise value of F100, or of F200? Fibonacci himself would surely have
wanted to know such things. To answer, we need an algorithm for computing the nth Fibonacci
number.

An exponential algorithm
One idea is to slavishly implement the recursive definition of Fn. Here is the resulting algo-
rithm, in the “pseudocode” notation used throughout this book:

function fib1(n)
if n = 0: return 0
if n = 1: return 1
return fib1(n− 1) + fib1(n− 2)

Whenever we have an algorithm, there are three questions we always ask about it:



S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani 13

1. Is it correct?

2. How much time does it take, as a function of n?

3. And can we do better?

The first question is moot here, as this algorithm is precisely Fibonacci’s definition of Fn.
But the second demands an answer. Let T (n) be the number of computer steps needed to
compute fib1(n); what can we say about this function? For starters, if n is less than 2, the
procedure halts almost immediately, after just a couple of steps. Therefore,

T (n) ≤ 2 for n ≤ 1.

For larger values of n, there are two recursive invocations of fib1, taking time T (n− 1) and
T (n−2), respectively, plus three computer steps (checks on the value of n and a final addition).
Therefore,

T (n) = T (n− 1) + T (n− 2) + 3 for n > 1.

Compare this to the recurrence relation for Fn: we immediately see that T (n) ≥ Fn.
This is very bad news: the running time of the algorithm grows as fast as the Fibonacci

numbers! T (n) is exponential in n, which implies that the algorithm is impractically slow
except for very small values of n.

Let’s be a little more concrete about just how bad exponential time is. To compute F200,
the fib1 algorithm executes T (200) ≥ F200 ≥ 2138 elementary computer steps. How long this
actually takes depends, of course, on the computer used. At this time, the fastest computer
in the world is the NEC Earth Simulator, which clocks 40 trillion steps per second. Even on
this machine, fib1(200) would take at least 292 seconds. This means that, if we start the
computation today, it would still be going long after the sun turns into a red giant star.

But technology is rapidly improving—computer speeds have been doubling roughly every
18 months, a phenomenon sometimes called Moore’s law. With this extraordinary growth,
perhaps fib1 will run a lot faster on next year’s machines. Let’s see—the running time of
fib1(n) is proportional to 20.694n ≈ (1.6)n, so it takes 1.6 times longer to compute Fn+1 than
Fn. And under Moore’s law, computers get roughly 1.6 times faster each year. So if we can
reasonably compute F100 with this year’s technology, then next year we will manage F101. And
the year after, F102. And so on: just one more Fibonacci number every year! Such is the curse
of exponential time.

In short, our naive recursive algorithm is correct but hopelessly inefficient. Can we do
better?

A polynomial algorithm

Let’s try to understand why fib1 is so slow. Figure 0.1 shows the cascade of recursive invo-
cations triggered by a single call to fib1(n). Notice that many computations are repeated!

A more sensible scheme would store the intermediate results—the values F0, F1, . . . , Fn−1—
as soon as they become known.



14 Algorithms

Figure 0.1 The proliferation of recursive calls in fib1.

����
��

��

Fn−3

Fn−1

Fn−4

Fn−2

Fn−4

Fn−6Fn−5Fn−4

Fn−2 Fn−3

Fn−3 Fn−4 Fn−5Fn−5

Fn

function fib2(n)
if n = 0 return 0
create an array f[0 . . . n]
f[0] = 0, f[1] = 1
for i = 2 . . . n:

f[i] = f[i− 1] + f[i− 2]
return f[n]

As with fib1, the correctness of this algorithm is self-evident because it directly uses the
definition of Fn. How long does it take? The inner loop consists of a single computer step and
is executed n− 1 times. Therefore the number of computer steps used by fib2 is linear in n.
From exponential we are down to polynomial, a huge breakthrough in running time. It is now
perfectly reasonable to compute F200 or even F200,000.1

As we will see repeatedly throughout this book, the right algorithm makes all the differ-
ence.

More careful analysis
In our discussion so far, we have been counting the number of basic computer steps executed
by each algorithm and thinking of these basic steps as taking a constant amount of time.
This is a very useful simplification. After all, a processor’s instruction set has a variety of
basic primitives—branching, storing to memory, comparing numbers, simple arithmetic, and

1To better appreciate the importance of this dichotomy between exponential and polynomial algorithms, the
reader may want to peek ahead to the story of Sissa and Moore, in Chapter 8.



S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani 15

so on—and rather than distinguishing between these elementary operations, it is far more
convenient to lump them together into one category.

But looking back at our treatment of Fibonacci algorithms, we have been too liberal with
what we consider a basic step. It is reasonable to treat addition as a single computer step if
small numbers are being added, 32-bit numbers say. But the nth Fibonacci number is about
0.694n bits long, and this can far exceed 32 as n grows. Arithmetic operations on arbitrarily
large numbers cannot possibly be performed in a single, constant-time step. We need to audit
our earlier running time estimates and make them more honest.

We will see in Chapter 1 that the addition of two n-bit numbers takes time roughly propor-
tional to n; this is not too hard to understand if you think back to the grade-school procedure
for addition, which works on one digit at a time. Thus fib1, which performs about Fn ad-
ditions, actually uses a number of basic steps roughly proportional to nFn. Likewise, the
number of steps taken by fib2 is proportional to n2, still polynomial in n and therefore ex-
ponentially superior to fib1. This correction to the running time analysis does not diminish
our breakthrough.

But can we do even better than fib2? Indeed we can: see Exercise 0.4.

0.3 Big-O notation
We’ve just seen how sloppiness in the analysis of running times can lead to an unacceptable
level of inaccuracy in the result. But the opposite danger is also present: it is possible to be
too precise. An insightful analysis is based on the right simplifications.

Expressing running time in terms of basic computer steps is already a simplification. After
all, the time taken by one such step depends crucially on the particular processor and even on
details such as caching strategy (as a result of which the running time can differ subtly from
one execution to the next). Accounting for these architecture-specific minutiae is a nightmar-
ishly complex task and yields a result that does not generalize from one computer to the next.
It therefore makes more sense to seek an uncluttered, machine-independent characterization
of an algorithm’s efficiency. To this end, we will always express running time by counting the
number of basic computer steps, as a function of the size of the input.

And this simplification leads to another. Instead of reporting that an algorithm takes, say,
5n3 +4n+3 steps on an input of size n, it is much simpler to leave out lower-order terms such
as 4n and 3 (which become insignificant as n grows), and even the detail of the coefficient 5
in the leading term (computers will be five times faster in a few years anyway), and just say
that the algorithm takes time O(n3) (pronounced “big oh of n3”).

It is time to define this notation precisely. In what follows, think of f(n) and g(n) as the
running times of two algorithms on inputs of size n.

Let f(n) and g(n) be functions from positive integers to positive reals. We say
f = O(g) (which means that “f grows no faster than g”) if there is a constant c > 0
such that f(n) ≤ c · g(n).

Saying f = O(g) is a very loose analog of “f ≤ g.” It differs from the usual notion of ≤
because of the constant c, so that for instance 10n = O(n). This constant also allows us to



16 Algorithms

Figure 0.2 Which running time is better?

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

n

2n+20 

n2 

disregard what happens for small values of n. For example, suppose we are choosing between
two algorithms for a particular computational task. One takes f1(n) = n2 steps, while the
other takes f2(n) = 2n + 20 steps (Figure 0.2). Which is better? Well, this depends on the
value of n. For n ≤ 5, f1 is smaller; thereafter, f2 is the clear winner. In this case, f2 scales
much better as n grows, and therefore it is superior.

This superiority is captured by the big-O notation: f2 = O(f1), because
f2(n)

f1(n)
=

2n+ 20

n2
≤ 22

for all n; on the other hand, f1 6= O(f2), since the ratio f1(n)/f2(n) = n2/(2n + 20) can get
arbitrarily large, and so no constant c will make the definition work.

Now another algorithm comes along, one that uses f3(n) = n + 1 steps. Is this better
than f2? Certainly, but only by a constant factor. The discrepancy between f2 and f3 is tiny
compared to the huge gap between f1 and f2. In order to stay focused on the big picture, we
treat functions as equivalent if they differ only by multiplicative constants.

Returning to the definition of big-O, we see that f2 = O(f3):
f2(n)

f3(n)
=

2n+ 20

n+ 1
≤ 20,

and of course f3 = O(f2), this time with c = 1.

Just as O(·) is an analog of ≤, we can also define analogs of ≥ and = as follows:

f = Ω(g) means g = O(f)

f = Θ(g) means f = O(g) and f = Ω(g).



S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani 17

In the preceding example, f2 = Θ(f3) and f1 = Ω(f3).

Big-O notation lets us focus on the big picture. When faced with a complicated function
like 3n2 + 4n + 5, we just replace it with O(f(n)), where f(n) is as simple as possible. In this
particular example we’d use O(n2), because the quadratic portion of the sum dominates the
rest. Here are some commonsense rules that help simplify functions by omitting dominated
terms:

1. Multiplicative constants can be omitted: 14n2 becomes n2.

2. na dominates nb if a > b: for instance, n2 dominates n.

3. Any exponential dominates any polynomial: 3n dominates n5 (it even dominates 2n).

4. Likewise, any polynomial dominates any logarithm: n dominates (log n)3. This also
means, for example, that n2 dominates n log n.

Don’t misunderstand this cavalier attitude toward constants. Programmers and algorithm
developers are very interested in constants and would gladly stay up nights in order to make
an algorithm run faster by a factor of 2. But understanding algorithms at the level of this
book would be impossible without the simplicity afforded by big-O notation.



18 Algorithms

Exercises
0.1. In each of the following situations, indicate whether f = O(g), or f = Ω(g), or both (in which case

f = Θ(g)).
f(n) g(n)

(a) n− 100 n− 200
(b) n1/2 n2/3

(c) 100n+ logn n+ (log n)2

(d) n logn 10n log 10n
(e) log 2n log 3n
(f) 10 logn log(n2)

(g) n1.01 n log2 n
(h) n2/ logn n(logn)2

(i) n0.1 (log n)10

(j) (logn)log n n/ logn
(k) √

n (log n)3

(l) n1/2 5log
2

n

(m) n2n 3n

(n) 2n 2n+1

(o) n! 2n

(p) (logn)log n 2(log
2

n)2

(q)
∑n

i=1 i
k nk+1

0.2. Show that, if c is a positive real number, then g(n) = 1 + c+ c2 + · · ·+ cn is:

(a) Θ(1) if c < 1.
(b) Θ(n) if c = 1.
(c) Θ(cn) if c > 1.

The moral: in big-Θ terms, the sum of a geometric series is simply the first term if the series is
strictly decreasing, the last term if the series is strictly increasing, or the number of terms if the
series is unchanging.

0.3. The Fibonacci numbers F0, F1, F2, . . . , are defined by the rule

F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2.

In this problem we will confirm that this sequence grows exponentially fast and obtain some
bounds on its growth.

(a) Use induction to prove that Fn ≥ 20.5n for n ≥ 6.
(b) Find a constant c < 1 such that Fn ≤ 2cn for all n ≥ 0. Show that your answer is correct.
(c) What is the largest c you can find for which Fn = Ω(2cn)?

0.4. Is there a faster way to compute the nth Fibonacci number than by fib2 (page 13)? One idea
involves matrices.
We start by writing the equations F1 = F1 and F2 = F0 + F1 in matrix notation:

(
F1

F2

)
=

(
0 1
1 1

)
·
(
F0

F1

)
.



S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani 19

Similarly, (
F2

F3

)
=

(
0 1
1 1

)
·
(
F1

F2

)
=

(
0 1
1 1

)2

·
(
F0

F1

)

and in general (
Fn

Fn+1

)
=

(
0 1
1 1

)n

·
(
F0

F1

)
.

So, in order to compute Fn, it suffices to raise this 2× 2 matrix, call it X , to the nth power.

(a) Show that two 2× 2 matrices can be multiplied using 4 additions and 8 multiplications.

But how many matrix multiplications does it take to compute Xn?

(b) Show that O(log n) matrix multiplications suffice for computing Xn. (Hint: Think about
computing X8.)

Thus the number of arithmetic operations needed by our matrix-based algorithm, call it fib3, is
just O(log n), as compared to O(n) for fib2. Have we broken another exponential barrier?
The catch is that our new algorithm involves multiplication, not just addition; and multiplica-
tions of large numbers are slower than additions. We have already seen that, when the complex-
ity of arithmetic operations is taken into account, the running time of fib2 becomes O(n2).

(c) Show that all intermediate results of fib3 are O(n) bits long.
(d) Let M(n) be the running time of an algorithm for multiplying n-bit numbers, and assume

that M(n) = O(n2) (the school method for multiplication, recalled in Chapter 1, achieves
this). Prove that the running time of fib3 is O(M(n) log n).

(e) Can you prove that the running time of fib3 is O(M(n))? (Hint: The lengths of the num-
bers being multiplied get doubled with every squaring.)

In conclusion, whether fib3 is faster than fib2 depends on whether we can multiply n-bit
integers faster than O(n2). Do you think this is possible? (The answer is in Chapter 2.)
Finally, there is a formula for the Fibonacci numbers:

Fn =
1√
5

(
1 +
√

5

2

)n

− 1√
5

(
1−
√

5

2

)n

.

So, it would appear that we only need to raise a couple of numbers to the nth power in order to
compute Fn. The problem is that these numbers are irrational, and computing them to sufficient
accuracy is nontrivial. In fact, our matrix method fib3 can be seen as a roundabout way of
raising these irrational numbers to the nth power. If you know your linear algebra, you should
see why. (Hint: What are the eigenvalues of the matrix X?)


