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1 Introduction 

Formalizing the process of natural induction and justi- 
fying its predictive value is not only basic to the phi- 
losophy of science, but is also an essential ingredient 
of any formal theory of learning. A formulation of the 
process of induction which is intuitively compelling and 
reasonable from a computational point of view is ar- 
rived a t  by equating the process of induction with Oc- 
cam Algorithms (see [BEHV):  let us suppose the phe- 
nomenon being observed (the concept being learnt) is 
boolean; i.e. each observed example is either a positive 
or a negative example of the phenomenon. An Occam 
Algorithm chooses from among the list of admissible 
hypotheses (also called the concept class) the shortest 
hypothesis consistent with all the examples observed 
so far (in general an Occam Algorithm looks for a rel- 
atively short hypothesis consistent with the data. This 
is formalized in [BEHW]). 

It is not too hard to see that the predictive value of 
Occam Algorithms must, in general, rest crucially upon 
probabilistic assumptions about how the examples are 
generated. Valiant’s PAC learning model [Val gives a 
natural and general such set of assumptions: namely 
that the examples are chosen independently according 
to a fixed, but arbitrary, probability distribution. Un- 
der Valiant’s conditions, it has been established by [Pi] 
and [BEHW] that a concept class is learnable if and 
only if it is learnable by an Occam Algorithm, thus 
establishing the predictive value of Occam Algorithms 
under this probabilistic model of the learner’s environ- 
ment. 

that expands on the Valiant model. Our basic point 
of departure from the Valiant model is that we place 
the learner in a Markovian environment. In our model, 
the environment of the learner is a (exponentially large) 
graph. The examples reside on the vertices of the graph 
- one example on each vertex (Valiant’s model is the 
case where the graph is complete). The learner obtains 
the examples while performing a random walk on the 
graph. At each step, the learning algorithm guesses the 
classification of the example on the current vertex us- 
ing its current hypothesis. If its guess is incorrect, the 
learning algorithm updates its current working hypoth- 
esis. The performance of the learning algorithm in a 
given environment is judged by the expected number 
of mistakes made as a function of the number of steps 
in the random walk. The performance of the learn- 
ing algorithm is then its worst-case performance over 
all graphs of a given size and distribution of examples 
over the vertices. Our measure of performance is in the 
spirit of mistake bounds studied by Littlestone [Li]. 

We study the predictive value of Occam Algorithms un- 
der this weaker probabilistic model (and more realistic 
model since, for example, it expresses spatial correla- 
tions between observed examples) of the learner’s en- 
vironment. We reformulate this question as a question 
about random walks on graphs. We are able to answer 
affirmatively an interesting case of this question. The 
theorem that we prove is interesting in itself as a fact 
about random walks on graphs - it states that if the 
vertices of an n vertex graph are labeled with integers, 
then the expected length of the first increasing subse- 
quence in a random walk of length t on this graph is 
O(&logn). For the special case when the label of a 
vertex is its distance from the start vertex, our result 
is comparable to a result that can be deduced from a 

In this paper, we introduce a new model of learning 
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result of Carne [Ca] which gives a universal “large de- 
viation” bound for the probability that a random walk 
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starting at vertex i ends up at  vertex v at time t. We 
conjecture that the answer to  the general case is also af- 
firmative and that all Occam Algorithms are good pre- 
dictors in the Markovian model. Combining this with 
the results of [Pi] would have the consequence that any 
concept class that is learnable in Valiant’s model is also 
learnable in the more general Markovian model. 

2 Problem Statement 

In our Markovian model of the learner’s environment, 
the environment is described by a Markov chain on a 
finite state space [NI with transition matrix P = (pij). 

is learnable on a graph? Each concept in the ordering 
correctly classifies the examples sitting on some subset 
of the state space [N]. This yields a sequence of subsets 
of [NI: A1,A2, ..., AL., .... Assume that k is the index of 
the target concept, so that Ak = [NI. Now the index of 
the working hypothesis of the strictly Occam learning 
algorithm is defined by Zt below: 

Define a sequence of random variables ( Z t ) ,  where Zt = 
min{v : X,, X I ,  ..., X t  E A,,}. 

If Zt > Zt-l ,  we say that Zt = v is a record value, 
Xt = j is a record place, t is a record time. 

We are interested in the expected number of records in 
t steps of the Markov chain. 

Let the sequence of random variables ( X t )  be the 
Markov chain in question. Let 77i denote the station- Examples: It is instructive to consider a few exam- 

ples. First, consider a line graph - where each vertex ary probability of state i. We require that the Markov except the two extreme ones have exactly two neigh- chain be reversible, i.e. ripjj = ~jpj i .  Alternately, the bors, one to the left and one to the right. Assume that environment may be described as a graph on vertex set 
The learner chooses we start a t  some vertex i in the middle, and that the set 

Then every time the walk encounters a previously un- 
seen vertex, a record is created. This is not bad because 

and with weights on the 
each edge incident to its current vertex with probability A,  the vertices at distance at most from i’ 

proportional to its weight. 

- 
choose a “good” hypothesis about the target concept, 
based upon examples (together with their classification) . 
observed during a run of the chain of some duration. 
There is a difficulty in evaluating the performance of 
the learning algorithm. In general, the distribution 
from which a future example will be picked depends 
strongly on the current vertex - therefore the stationary 
distribution does not provide a good basis for judging 
the hypothesis. Instead, we regard learning as a never- 
ending process: the learning algorithm is tested at  each 
step in its walk by having to classify the example at  the 
current vertex. If it fails the test, it updates its working 
hypothesis. The performance of the learning algorithm 
is measured by the number of mistakes as a function of 
time. 

We shall assume some system of representation for the 
concepts in the selected concept class. This induces a 
total ordering on the concepts (say, using the usual lex- 
icographic ordering). Say that a learning algorithm is a 
strict Occam algorithm if it always selects as its work- 
ing hypothesis the first concept in this ordering that 
is consistent with the observed data. Let us formulate 
the question: does the existence of an efficient strict Oc- 
cam algorithm for a concept class imply that the class 

Another interesting example is the complete binary 
tree. This time if the set A, is the set of all vertices 
within distance m of the root, the random walk start- 
ing at  the root is expected to rush towards the leaves 
a t  a constant rate. Thus in this initial phase, a record 
is expected every couple of steps. However, the height 
of the tree is only log N, and so this is an upper bound 
on the number of records. 

Finally, in the case of the complete graph, the number 
of records can be shown to be O(1og k x log N) (see 
section 4). By judiciously combining these graphs, all 
three effects can be realized simultaneously. 

To summarize, these examples show that there are three 
different kinds of phenomena that can occur: in the 
complete graph, if a sequence of vertices is encountered, 
it is equally likely to be encountered in every other per- 
mutation. This gives a log k functional dependence for 
the number of records. The line graph provides a way 
of ensuring that the order in which new vertices are 
encountered is fixed in advance. Now, however, due 
to reversibility, the walk tends to encounter only 4 
new vertices in time t. Finally, both a preset order and 
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rapid spreading can be achieved using fanout - as in a 
complete binary tree. However, the number of levels of 
fanout is bounded by the log of the size of the graph. 

Notation: Denote by Ei[Q] the expected value of Q 
in a random walk starting in state i, and by Pj[Q] the 
probability that Q occurs in a random walk starting in 
state i. 

Conjecture: &[Number of records in t steps] = 
O(Jtl0g k log 5). 
In terms of the learning problem, k is a measure of the 
complexity of the concept being learned, so a depen- 
dence of the number of mistakes on log k is inevitable; 
similarly, $ is a measure of the size of the graph in the 
uniform case, and a dependence on its log is inevitable. 
In the next section, we shall prove that in the case when 
the Ais are increasing (i.e. A1 c A2 C ... C A L ) ,  the 
conjecture is true. 

Random walks on graphs find applications in many ar- 
eas. See [All for a recent survey. 

3 Main Theorem 

Lemma 2: ~ ? r i r ( i )  5 a-3 

Proof of Lemma 1: Fix p > 0 and let 
B = {i : r ( i )  > p}. 

Clearly r( i )  5 p+ number of records in B. 

Now, watching the Markov chain only on the set B gives 
another Markov chain (yt). Every record in B in the X- 
chain a t  time t corresponds to  a record in the Y-chain a t  
some time 5 t. Denoting by i(i) the expected number 
of records before r ,  stating in state i in the Y-chain, we 
have: 

r ( i )  5 ?(i) + p. 

Moreover (yi) is a reversible Markov chain, with s t a  
tionary probability iri = Applying Lemma 2 to 
the Y-chain yields: 

irii(i) 5 a-+. 

Thus it{i : i ( i )  > e a - + }  < e-' .  

Thus ir{i : r ( i )  > e a - ;  + p}  < e-'. 

Thus ?r{i : r ( i )  > e a - +  + p }  < e- 'a(B).  

Thus ?r{i : r ( i )  > e a - +  + p }  < e-'?r{i : r ( i )  > p}. 

By induction on q it follows that 

?r{i : r ( i )  > q e a - 3 )  < e-q.  

Choosing q to be 1 + log $, we see that r ( i )  5 qea-3 .  

To prove Lemma 2, we first need to introduce some 

Theorem: &[Number of records in t steps] 5 
e2&(1 + log $), if the AAs are increasing. 

To avoid boundary effects, we first modify the p r o b  
lem as follows: instead of running the Markov chain 
for t steps, we shall run the chain for r steps, where 
7 is a random variable with Err] = t .  We do this notation, and prove a path-reversal le"a: _ _  
by killing the chain after each step with probability a. 
Then P[r  > n] = ( 1  - a)" and E[r] = i. Definitions: Let = min{t : X t  e Au}. 

Let p i ( j , v )  = Pi[. is a record value and j the corre- 
sponding record place a t  some time before r] Let r(i) = Ei[Number of records before r]. 

We shall prove: 

Lemma 1: r(i) 5 e a - + ( 1  +log +). 
Let f i i( j , v )  = Ei[number of visits to j before 
before r]  

and 

Lemma 3 (Path-Reversal Lemma): Ei[number of 
visits to k before T] = Cu,u) pi(j, v ) m ( j ,  v ) $  

The theorem follows from Lemma 1 by setting Q = 3 ,  
since 

Proof: Let Ro, R', ..., R", ... be the record times Ei[Number of records before t] 5 
5 e2&(l + log +;I. 

Then Ei[number of visits to k before r] 

- Cu=Otooo Number of visits to k in [R", R"+'] 

To prove Lemma 1, we first prove a bound on the ex- 
petted value of r(i) when the state i is picked at  random 
from the state space: 

- 
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We use the definition of r here. Comment: The only use of the condition that Ais 
are increasing was made in restricting the summation 
above to allowable ( j ,  v ) .  In the general case, we lose 
control here; it is worth mentioning that in the case 
where the Ais are only approximately increasing, and 
there is a suitable bound on the number of allowable 
(j, v )  pairs that each state j may participate in, we get 

= pi(j, .)Ej [number of visits to k before T,' 
and before r]. 

But Ej [number of visits to k before r and before TI .- I - 

a bound which is larger by a factor of the square root 
of the multiplicity than a-3. = E,, Pj [X ,  = k and Xo, X I ,  ..., X,, E A, and n < T] 

By path reversal, this is equal to: 

= E,, Pl:[X,, = j and XO, XI, ..., X,, E A,, 4 The Complete Graph Case 
and n < 4% 
= &[number of visits to j before 

= h ( j ,  v)?. 

and r]$ Theorem: For the complete graph on vertex set [NI, 
Ei[ number of records in time t] = O(1og N x log k) 
where k is the index such that Al: = [NI. 

Proof of Lemma 2: Let f(j,v) = C ~ i p i ( j , v )  

i.e. f(j,v) is the probability that j is a record place and v 
the corresponding record value at  some time < r ,  when 
the Markov chain is started in a random state at t = 0. 

By the Path-Reversal Lemma, this is equal to: 
= ci 7ri Cl: &[number of visits to k before T] 

= xi ~i E[T] 

= 0-1. 

Proof Sketch: Let Rj = number of records from the 
time that all sets A, of size less than N( l  - &) are 
eliminated from contention to the time when all sets of 
size less than N(l - A) are eliminated. 

Now, we claim that E[Rj] is bounded by logk for each 
j. Roughly, this is because it takes 2jlogk steps to 
eliminate all sets of size up to N( l  - h). On the 
other hand only 1 in every 2J of these steps is expected 
to create a record, since the current set Az, is of size 
at  least ~ ( 1 -  &). 

Now the theorem follows since the expected number of 
records is the summation of the expected values of the 
Rjs, and we need only consider j's less than log N .  

5 Discussion 

Now, 

By Cauchy-Schwartz this is less than or equal to: 

J c ( j , u )  C(j,u) rj 

Summing only over the allowable ( j ,  v ) ,  we need con- 
sider only one value of v for each j in the case where 
the A,s are increasing. 

rir(i) = xu,,,) f(j, .) Littlestone and Warmuth [LW] introduce a learning al- 
gorithm which is not an Occam Algorithm, but takes 
the majority prediction among all consistent hypothe- 
ses. This algorithm is guaranteed to make polynomially 
many mistakes even for a worst-case draw of examples. 
The drawback is that taking a majority vote is as hard 
as approximate counting which is usually computation- 
ally intractible even when minimization (which is re- 
quired to run an Occam Algorithm) is computationally 
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feasible. 

Besides giving a more accurate model of the world, the 
graph model makes it possible to focus on finer ques- 
tions about learnability: it is possible to model the s p a  
tial locality of the data by insisting that the graph sat- 
isfy some degree constraints or topological properties. 
It is worth investigating whether these added conditions 
explain the observed discrepancy between sample size 
bound predictions using Valiant’s model versus empiri- 
cal learning algorithms. Another interesting issue that 
can be expressed in our model is that of learning a l p  
rithms with limited memory. How should Occam Alge 
rithms be modified when there is not enough memory 
to store all the examples encountered in the past? 

6 Acknowledgements 

We wish to thank Avrim Blum and Merrick Furst for 
several stimulating discussions. 

7 References 

[All D. Aldous, “Applications of Random Walks on Fi- 
nite Graphs,” to appear. 

[BEHW] A. Blummer, A. Ehrenfeucht, D. Haussler, 
M. Warmuth, “Occam’s Razor” Information Process- 
ing Letters, 24, 1987, pp. 377-380. 

[Ca] T. K. Carne, “A transmutation formula for Markov 
chains,” Bull. Sci. Math. (2), 109:399-405, 1985. 

[Li] N. Littlestone, “Learning quickly when irrelevent 
attributes abound: a new linear-threshold algorithm”, 
Machine learning, 2(4), pp. 285-318, 1987. 

[LW] N. Littlestone, M. Warmuth, “The Weighted M a  
jority Algorithm”, FOCS ’89. 

[Pi] L. Pitt, “On the necessity of Occam Algorithms”, 
STOC ’90. 

[Ri] J. Rissanen, “Stochastic Complexity and Model- 
ing”, The annals of Statistics, 14(3):1080-1100, 1986. 

[Val L. Valiant “A Theory of the Learnable” Commu- 
nications of the ACM, Nov 1984, vol 27, No. 11. 

3% 


