Lecture 1: Axiomsof QM + Bell Inequalities

0.1 Young’s double-slit experiment

Is light transmitted by particles or waves? The basic dilamere (which dates as far back as Newton) is to
reconcile the evidence that light is transmitted by pagticcalled photons), with experiments demonstrating
the wave nature of light. To be concrete, let us recall Yosirdguble-slit experiment from high school
physics, which was used to demonstrate the wave naturehdf Tidne apparatus consists of a source of light,
an intermediate screen with two very thin identical slitsgl @ viewing screen (see picture on next page).
If only one slit is open then intensity of light on the viewisgreen is maximum on the straight line path
and falls off in either direction. However, if both slits aspen, then the intensity oscillates according to the
familiar interference pattern predicted by wave theorye§ehfacts can be qualitatively and quantitatively
explained by positing that light travels in waves (as youiditdigh school physics).

Right slit open

Young's ExpChith

Left slit open

Both slits open

Pattern observed on screen

Let us now introduce the particle nature of light into thipesiment. To do so, we turn down the intensity
of the light source, until a photodetector clicks only ociasally to record the emission of a photon. As we
turn down the intensity of the source, the magnitude of edick cemains constant, but the time between
successive clicks increases. This is consistent with bigiig emitted as discrete particles (photons) — the
intensity of light is proportional to the rate at which phosaare emitted by the source. So now with the light
source emitting a single photon every so often, we can askenthis single emitted photon hits the viewing
screen. The answer is no longer deterministic, but proistibil We can only speak about the probability
that a photodetector placed at pointetects the photon. If only a single slit is open, then pigttihis
probability of detection as a function afgives the same curve as the intensity as a functior iafthe
classical Young experiment. What happens when both sktepen? Our intuition would strongly suggest
that the probability we detect the photonxathould simply be the sum of the probability of detecting it at
x if only slit 1 were open and the probability if only slit 2 weopen. In other words the outcome should
no longer be consistent with the interference pattern. ératttual experiment, the probability of detection
does still follow the interference pattern. Reconciling thutcome with the particle nature of light appears
impossible, and that is the dilemna we face.

Let us spell out in more detail why this contradicts our ititui: for the photon to be detected»ateither
it went through slit 1 and ended up»abr it went through slit 2 and ended up»atNow the probability of
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seeing the photon atshould be the sum of the probabilities in the two cases. Toentlad contradiction
seem even more stark, notice that there are painisere the detection probability is zero (or small) if both
slits are open, even though it is non-zero (large) if eittieissopen. How can the existence of more ways
for an event to happen actually decrease its probability?

Let us now turn to quantum mechanics to see how it explaisstiietnomenon.

Quantum mechanics introduces the notion of the complexiamdply; (x) € € with which the photon goes
through slit 1 and hits point on the viewing screen. The probability that the photon isia@tt detected
at x is the square of the magnitude of this complex numiRe(x) = |1 (x)[2. Similarly, let g»(x) be the
amplitude if only slit 2 is openP,(x) = |r(X)[2.

Now when both slits are open, the amplitude with which thei@hdits pointx on the screen is just the sum
of the amplitudes over the two ways of getting thegas(x) = W1 (x) + @o(x). As before the probability
that the photon is detected»ats the squared magnitude of this amplitudes(x) = |1 (X) + Yp(X)|?. The
two complex numberg); (X) and ¢)(X) can cancel each other out to produce destructive inteerenr
reinforce each other to produce constructive interferem@nything in between.

Some of you might find this "explanation” quite dissatisfyinYou might say it is not an explanation at
all. Well, if you wish to understand how Nature behaves youeha reconcile yourselves to this type of
explanation — this wierd way of thinking has been succesgfdescribing (and understanding) a vast range
of physical phenomena. But you might persist and (quiteareasly) ask “but how does a particle that went
through the first slit know that the other slit is open”? In gien mechanics, this question is not well-posed.
Particles do not have trajectories, but rather take allgsithultaneously (in superposition). As we shall see,
this is one of the key features of quantum mechanics thasgige to its paradoxical properties as well as
provides the basis for the power of quantum computation.ubtejFeynman, 1985, "The more you see how
strangely Nature behaves, the harder it is to make a modettipéains how even the simplest phenomena
actually work. So theoretical physics has given up on that.”

0.2 Basic Quantum Mechanics

The basic formalism of quantum mechanics is very simpleughounderstanding and interpreting (and
accepting) the results is much more challenging. Therenaee tbasic principles, enshrined in the four basic
postulates of quantum mechanics:

» The superpostion principle: this axiom tells us what ae @alowable (possible) states of a given
guantum system.

» The measurement principle: this axiom governs how mudrinétion about the state we can access.

 Unitary evolution: this axoim governs how the state of thamfum system evolves in time.

0.3 The superposition princip]e

Consider a system witk distinguishable (classical) states. For example, thearelein a hydrogen atom is
only allowed to be in one of a discrete set of energy levedstiag with the ground state, the first excited
state, the second excited state, and so on. If we assumehblsuipper bound on the total energy, then the
electron is restricted to being in one lotlifferent energy levels — the ground state or on& of1 excited
states. As a classical system, we might use the state ofyiiisrs to store a number between 0 &nd1.
The superposition principle says that if a quantum systembeain one of two states then it can also be
placed in a linear superposition of these states with coxyaefficients.
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Let us introduce some notation. We denote the ground staiarajubit by|0>, and the succesive excited
states bjl} e \k— 1> . These are thk possible classical states of the electron. The superpogitinci-
ple tells us that, in general, the (quantum) state of thetreleds ap|0) + a1|1) +---+ ax_1|k— 1), where
ap,ds,..., 01 are complex numbers normalized so tﬁgtaj ]2 =1. aj is called theamplitude of the state
[3)-

For instance, ik = 3, the state of the electron could be

1/v/2]0) +1/2|1) +1/22) or

1/ﬁ|0> —1/2|1> +i/2\2> or

(1+ i)/3\0> —(1- i)/3|1> +(1+ 2i)/3|2> , Wherei = /—1.

The superposition principle is one of the most mysterioyeets about quantum physics — it flies in the
face of our intuitions about the physical world. One way tmkhabout a superposition is that the electron
does not make up its mind about whether it is in the groun@ staéach of th&— 1 excited states, and the
amplitudeqg is a measure of its inclination towards the ground state. ddfse we cannot think afg as
the probability that an electron is in the ground state — maiver thatag can be negative or imaginary. The
measurement priniciple, which we will see shortly, will neakis interpretation ofig more precise.

0.4 The Ceometry of Hilbert Space

We saw above that the quantum state ofkistate system is described by a sequendecsimplex numbers
o, ..., 0k-1 € ¢, normalized so thay laj ]2 =1. So it is natural to write the state of the system &s a
dimensional vector:

Qo

ax

k-1
The normalization on the complex amplitudes means that tdte sf the system is a unit vector inka
dimensional complex vector space — called a Hilbert space.

But hold on! Earlier we wrote the quantum state in a very défie (and simpler) way asry|0) + a1 (1) +
et ak_l\k— 1> . Actually this notation, called Dirac’s ket notation, isjuanother way of writing a vector.

1 0

0 0
Thus\0> =1. and|k—l> =

0 1

So we have an underlying geometry to the possible statesudratigm system: thiedistinguishable (classi-
cal) states§0>,..., k— 1> are represented by mutually orthogonal unit vectorskrdanensional complex
vector space. i.e. they form an orthonormal basis for thateicalled the standard basis). Moreover, given
any two statesqo|0) + a1 |1) +---+ ay_1|k—1), andB|0) +B|1) +---+ Bk— 1|k— 1), we can compute
the inner product of these two vectors, Whichzi$;(1, ajB;j. The absolute value of the inner product is the
cosine of the angle between these two vectors. You shouify ¥ieat the inner product of any two vectors
in the standard basis is 0, showing that they are orthogonal.

The advantage of the ket notation is that the it labels theshastors explicitly. This is very convenient
because the notation expresses both that the state of theuquaystem is a vector, while at the same time
explicitly writing out the physical quantity of interestnergy level, position, spin, polarization, etc).
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0.5 Measurement Principle

This linear superpositioﬁup} = z‘j(;é a,-\j} is part of the private world of the electron. Access to the
information describing this state is severely limited — articular, we cannot actually measure the complex
amplitudesa;. This is not just a practical limitation; it is enshrined ietmeasurement postulate of quantum
physics.

A measurement on thisstate system yields one of at mégpossible outcomes: i.e. an integer between 0O
andk — 1. Measuring{w> in the standard basis yielgswith probability |aj| 2,

One important aspect of the measurement process is thtri #he state of the quantum system: the effect
of the measurement is that the new state is exactly the ogadrine measurement. l.e., if the outcome of
the measurement js then following the measurement, the qubit is in stzjtj)e This implies that you cannot
collect any additional information about the amplitudgsby repeating the measurement.

Intuitively, a measurement provides the only way of reaghirio the Hilbert space to probe the quantum
state vector. In general this is done by selecting an orttabbasis|ep) ,...,|&-1). The outcome of
the measurement ilsaj> with probability equal to the square of the length of the @ctipn of the state
vectory on \ej>. A consequence of performing the measurement is that thestatey vector i$ej>. Thus
measurement may be regarded as a probabilistic rule foeqiiog the state vector onto one of the vectors
of the orthonormal measurement basis.

Some of you might be puzzled about how a measurement is @a@uiephysically? We will get to that soon
when we give more explicit examples of quantum systems.

0.6 Qubits

Qubits (pronounced “cue-bit”) or quantum bits are basidding blocks that encompass all fundamental
guantum phenomena. They provide a mathematically simpladwork in which to introduce the basic
concepts of quantum physics. Qubits are 2-state quantutensgs For example, if we s&t= 2, the
electron in the Hydrogen atom can be in the ground state diirdieexcited state, or any superposition of
the two. We shall see more examples of qubits soon.

The state of a qubit can be written as a unit (column) ve(cgc)re %. In Dirac notation, this may be written
as:

@) =al0) +B|1) a,fe? and |afP+|BfP=1

This linear superpositiofyy) = a|0) + B|1) is part of the private world of the electron. For us to know
the electron’s state, we must make a measurement. Makingaaurenent gives us a single classical bit
of information — 0 or 1. The simplest measurement is in thaddad basis, and measuriﬂujy} in this
{|0).|1) } basis yields 0 with probabilitya| %, and 1 with probability 3| .

One important aspect of the measurement process is thaterns déhe state of the qubit: the effect of the
measurement is that the new state is exactly the outcomeeah#fasurement. l.e., if the outcome of the
measurement ¢f/) = a|0) +B|1) yields O, then following the measurement, the qubit is ies@) . This
implies that you cannot collect any additional informatatvouta, 8 by repeating the measurement.

More generally, we may choose any orthogonal békis, |w) } and measure the qubit in that basis. To do
this, we rewrite our state in that basigy) = a’|v) + ’|w). The outcome is with probability |o’| 2 and

|w) with probability |B’|. If the outcome of the measurement ap) yields |v), then as before, the the
qubit is then in statév) .
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0.7 Examples of Qubits

Photon Polarization:

A photon can be described as a traveling electromagnetie wdnere the electric field oscillates along
an axis that is oriented perpendicular to the photon’s forwaotion. The orientation of this axis is the
"polarization” of the photon. So, for a given direction ofqthn motion, the photon’s polarization axis
might lie anywhere in a 2-d plane perpendicular to that nmotiti is thus natural to pick an orthonormal
2-d basis (such aéandy, or "vertical” and "horizontal”) to describe the polarizat state (i.e. polarization
direction) of a photon. In a quantum mechanical descriptibis 2-d nature of the photon polarization is
represented by a qubit, where the amplitude of the overddirization state in each basis vector is just the
projection of the polarization in that direction.

The polarization of a photon can be measured by using a pdlara calcite crystal. A suitably oriented
polaroid sheet transmits x-polarized photons and absofiislarized photons. Thus a photon that is in a
superpositiod(p> = a|x> +[3|y> is transmitted with probabilitya |2. If the photon now encounters another
polariod sheet with the same orientation, then it is trattechiwith probability 1. On the other hand, if the
second polaroid sheet has its axes crossed at right anglles fost one, then if the photon is transmitted
by the first polaroid, then it is definitely absorbed by theoskcsheet. This pair of polarized sheets at right
angles thus blocks all the light. An somewhat counter-iivigliresult is now obtained by interposing a third
polariod sheet at a 45 degree angle between the first two. Nmwtan that is transmitted by the first sheet
makes it through the next two with probability 4.

To see this first observe that any photon transmitted thraughirst filter is|0> . The probability this photon

is transmitted through the second filter i&1since it is exactly the probability that a qubit in the stmp
ends up in the state+ ) when measured in thet ), | — ) basis. We can repeat this reasoning for the third
filter, except now we have a qubit in steﬁt$> being measured in th{@} , |1> -basis — the chance that the
outcome ig0) is once again A2.

Spins.

Like photon polarization, the spin of a (spin-1/2) partidea two-state system, and can be described by
a qubit. Very roughly speaking, the spin is a quantum desoripf the magnetic moment of an electron

which behaves like a spinning charge. We will say much moocaithe spin of an elementary particle later
in the course.

0.7.1 Measurement example |: phase estimation

Consider the quantum staftgy) = i2|0> + %m ). If we were to measure this qubit in the standard basis,

the outcome would be 0 with probability/2 and 1 with probability 12. Is there any measurement that
yields information about the pha&®

Let us consider a measurement in a different basis{[the) , | — ) }-basis. Heré +) = =5(|0) +[1)), and
|-)= %(|O> —|1)). What doeg @) look like in this new basis? This can be expressed by firstgit

10) = 5(|+) +|=)) and|1) = ([ +) =[=))-
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Now,
W) = Hl0)+ 5%l
= ) +=N+Z(+) 1))
= )52

Writing € = cos6 +isind, we see that the probability of measuripg ) is 7((1+ cos8)? +sin?6). This

can be further simplified tc%(1+cose) = coszg. A similar calculation reveals that the probability of
measuring — ) issin?§. Measuring in the[| + ), | — ) }-basis therefore reveals some information about the
phasef.

In we shall show how to analyze the measurement of a uaigeneral basis.
0.8 Bra-ket notation.

The notation(v| (pronounced “bra v”) denotes the row vecte}', the conjugate-transpose . For
example (0] = (10) and(1| = (0 1). More generally, iffy) = a|0) + B|1), then

W= (%) =(a5) =a(o+p . (1)
Thus, for instance, ify) = i/v/2|0) + (1+1)/2|1), then(y| = —i/v/2(0] + (1—i)/2(1].
Let

V) =a0|0) +a1|1), |w) =Do|0) +by|1) . ()

Then(v|w) (shorthand forv| |w)) is the inner product betweem) and|w). Itis a matrix product of the
1x 2 matrix(v| and the 2< 1 matrix |w):

(v]w) = (2 &) (£ ) = dobo+auby - @3)
In the next lecture, we will introduce tensor product spaedeere the advantages of this notation increase.

09 Measurement example II

What is the result of measuring a general qubit stgte = a|0) + B|1), in a general orthonormal basis
[v),|vt), where|v) = a|0) + b|1) and|v*) = bj0) — &]1). (check thatlv) and |v*) are orthogonal by
computing(v|v-)0).

To answer this question, let us make use of our recently ssdjbira-ket notation. Let us start by rewriting
|g) inthe|v),|v')-basis.

W) = 1[w) =
(W + VA1) (al0) +Bl))
= a(V)(vI0) +[v*) (v[0) + BV (VL) + V1) (v]1))
= (@O} +BVIL)IY) +(a(v*[0) + BvH{1) V)

= (aa+ Bb)|v)+ (ab+ Ba)vt) .
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The probability of measuringy) in a measurement in thev* basis is therefore

[(vI@)|> = |aa+ Bbf* .
0.10 Unitary Operators

The third postulate of quantum physics states that the g8eolof a quantum system is necessarily unitary.
Intuitively, a unitary transformation is a rigid body rdtat (or reflection) of the Hilbert space, thus resulting
in a transformation of the state vector that doesn’t chatsgemgth.

Let us consider what this means for the evolution of a qubitinary transformation on the Hilbert space
%2 is specified by mapping the basis sta}e$ and |1) to orthonormal state$s) = a|0) +b|1) and
|v1) =c|0) +d|1). Itis specified by the linear transformation @i%:

U=(24d)
If we denote byJ T the conjugate transpose of this matrix:
t_(ac
U'=(5d) -
then it is easily verified thatUT =UTU = I. Indeed, we can turn this around and say that a linear transfo

mationU is unitary iff it satisfies this condition, thatUT=UTU =1.

Let us now consider some examples of unitary transformationsingle qubits or equivalently single qubit
quantum gates:

Hadamard Gate. Can be viewed as a reflection arey®d or a rotation aroundt/4 followed by a
reflection.

=i 5

The Hadamard Gate is one of the most important gates. NoteHthe- H — sinceH is real and
symmetric —andi? = 1.

Rotation Gate. This rotates the planety

U— cos6 —sinf

~ \ sin@ cosB
NOT Gate. This flips a bit from 0 to 1 and vice versa.
0 1

NOT = (1 0)

Phase Flip.
1 0
2~(0 %)

The phase flip is a NOT gate acting in the ) = %(\O> +|1)),
Z|+)=]|-)andz|-) =|+).

—) = 7(|0) —|1)) basis. Indeed,

How do we physically effect such a (unitary) transformationa quantum system? To explain this we must
first introduce the notion of the Hamiltonian acting on a egst you will have to wait for three to four
lectures before we get to those concepts.
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1 Two qu]aits:

Now let us examine a system of two qubits. Consider the twotrles in two hydrogen atoms, each
regarded as a 2-state quantum system:

Since each electron can be in either of the ground or excited, classically the two electrons are in one of
four states — 00, 01, 10, or 11 — and represent 2 bits of cissiormation. By the superposition principle,
the quantum state of the two electrons can be any linear eatibin of these four classical states:

|¢) = a00|00) + ap1|01) + ar10|10) + a112|11)

whereq;; €%, 5 |aij|? = 1. Again, this is just Dirac notation for the unit vector4f:

Qoo
Qo1
aio
a1

M easurement:

Measuring|w> now reveals two bits of information. The probability that thutcome of the measurement
is the two bit stringk € {0,1}2 is |ax|2. Moreover, following the measurement the state of the twhitgus

|x>. i.e. if the first bit ofx is j and the second bk, then following the measurement, the state of the first
qubit is|j) and the state of the secondis .

An interesting question comes up here: what if we measutetjadirst qubit? What is the probability that
the outcome is 0? This is simple. It is exactly the same as itldvbave been if we had measured both
qubits: P 1st bit = 0} = Pr{00} + Pr{01} = |ago|®+ |ao1] >. Ok, but how does this partial measurement
disturb the state of the system?

The answer is obtained by an elegant generalization of awiqars rule for obtaining the new state after a
measurement. The new superposition is obtained by crossingll those terms o(ft,u> that are inconstent
with the outcome of the measurement (i.e. those whose firgs &). Of course, the sum of the squared
amplitudes is no longer 1, so we must renormalize to obtaimitavector:

_ CYQ()‘OO> —1—0{01‘01>

|®) new = :
\/ |00l + |0

Entanglement

Suppose the first qubit is in the stat¢50) +4/5|1) and the second qubit is in the statgv2|0) —
1/v/2|1), then the joint state of the two qubits(i/5|0) +4/5|1) )(1/v/2|0) —1/v/2|1)) = 3/5v/2|00) —
3/5v/2|01) +4/5v/2|10) —4/5V/2|11)

But there are states such @) = — (|00) +[11)) which cannot be decomposed in this way as a state
of the first qubit and that of the second qubit. Can you see vuch a state is called an entangled state.

If the first (resp. second) qubit qﬂb+> is measured then the outcome is 0 with probabilif2 and 1
with probability 1/2. However if the outcome is O, then a measurement of the degohit results in 0
with certainty. Furthermore this is true even if both quiaits measured in a rotated balsis, |v*), where
|v) =al0) +B|1) and|vt) = —B|0) +al1).
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Claim: [®") = = (|00) +|11))
= L (W) + ).

Proof: Then%(\w> + [vhvh))

%(a?|00) +ap|01) +aB[10) +B?[11)) + 5(B%|00) — aB|01) — aB|10) +a?[11))
(a4 B?)(]00) +|11))

(|00) +[11))

1.1 Two (Qulﬁt Gates

Let us now consider how a system of two qubits evolves in tiRecall that the third axiom of quantum
physics states that the evolution of a quantum system isseadly unitary. Intuitively, a unitary transfor-
mation is a rigid body rotation (or reflection) of the Hilbsgace, thus resulting in a transformation of the
state vector that doesn’t change its length.

[
Nigoas

Let us consider what this means for the evolution of a two tgsystem. A unitary transformation on the
Hilbert spaces™ is specified by a ¥ matrix U that satisfies the conditiodUT =U'U = 1. The four
columns ofU specify the four orthonormal vectofego) , |Vo1), [vio) and|vi1) that the basis statg80),
|01), |10) and|11) are mapped to by.

A very basic two qubit gate is the controlled-not gate or tihNOT:

» Controlled Not (CNQOT).

1 000
0100
CNOT= 000 1
0010

The first bit of a CNOT gate is the “control bit;” the secondhs t'target bit.” The control bit never
changes, while the target bit flips if and only if the contritli® 1.

The CNOT gate is usually drawn as follows, with the contrdldn top and the target bit on the
bottom:

Though the CNOT gate looks very simple, any unitary tramsfdion on two qubits can be closely ap-
proximated by a sequence of CNOT gates and single qubit.gdteis brings us to an important point.
What happens to the quantum state of two qubits when we apginghe qubit gate to one of them,
say the first? Let's do an example. Suppose we apply a Hadagazdedto the superposition|:t,u> =
1/2|00) —i/v/2|01) +1/4/2|11). Then this maps the first qubit as follow€) — 1/1/2|0) +1/v/2|1),
and

|1) —1/v2|0) —1/v2|1).

So\m} — 1/2@\00} +1/2\ﬁ|01> — i/2|00> +i/2|01> +1/2\10> - 1/2\11>

= (1/2v2—i/2)|00) + (1/2v2+i/2)|01) +1/2|10) —1/2|11).

Bell states:
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We can generate the Bell sta@s™) = — (|00) +[11) ) with the following simple gauntum circuit con-
sisting of a Hadamard and CNOT gate:

[H] T

The first qubit is passed through a Hadamard gate and therghbtts are entangled by a CNOT gate.
If the input to the system i€) ® |0), then the Hadamard gate changes the state to

2(10)+ 1)) ©[0) = 25100 + |10} .

and after the CNOT gate the state beconjgéow +1]11)), the Bell statg®d™).
The statg®*) = = (|00) +[11)) is one of four Bell basis states:

[©%) = 75(/00) +[11))
W5 = S (on +10)) -

These are maximally entangled states on two qubits. Showtbayenerate all these states by a simple
quantum circuit, and verify that the four Bell states formoathonormal basis.

12 EPR Paradox:

Everyone has heard Einstein’s famous quote “God does nptipta”. Itis lifted from Einstein’s 1926 letter

to Max Born where he expressed his dissatisfaction with fyuramphysics by writing: "Quantum mechanics
is certainly imposing. But an inner voice tells me that it & pet the real thing. The theory says a lot, but
does not really bring us any closer to the secret of the Old Qre¢ any rate, am convinced that He does
not throw dice.” Even to the end of his life he held on to thewibat quantum physics is just an incomplete
theory and that some day we would learn a more complete aistbstdry theory that describes nature. For
example, consider coin-flipping. We can model coin-flippagga random process giving heads 50% of the
time, and tails 50% of the time. This model is perfectly petide, but incomplete. If we knew the initial
conditions of the coin with perfect accuracy (position, nemtum), then we could solve Newton’s equations
to determine the eventual outcome of the coin flip with catai

Einstein sharpened this line of reasoning in a paper he wyithePodolsky and Rosen in 1935, where they
introduced the famous Bell states. Recall that for Bell@b%t(\OO} +]11) ), when you measure first qubit,
the second qubit is determined. However, if two qubits ar@feart, then the second qubit must have had
a determined state in some time interval before measureriect the speed of light is finite. Moreover
this holds in any basis. This appears analogous to the cppirftj example. EPR therefore suggested that
there is a more complete theory where “God does not throw’dibtil his death in 1955, Einstein tried to
formulate a more complete "local hidden variable theondttivould describe the predictions of quantum
mechanics, but without resorting to probabilistic outcemgut in 1964, almost three decades after the EPR
paper, John Bell showed that properties of Bell (EPR) stat® not merely fodder for a philosophical
discussion, but had verifiable consequences: local hiddaahtes are not the answer.
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How does one rule out every possible hidden variable thebigre’s how: we will consider an extravagant
framework within which every possible hidden variable ttyeoAnd then we will show that there is a
particular qguantum mechanical experiment using Bell sfatéhose results cannot be duplicated by any
theory in this framework. The framework is this: when thelB#te is created, the two particles each make
up a (infinitely long!) list of all possible experiments thaey might be subjected to, and decide how they
will behave under each such experiment. When the two pesteparate and can no longer communicate,
they consult their respective lists to coordinate theironst

2 Bell’s Thought Experiment

Bell considered the following experiment: the two particie a Bell pair move in opposite directions to two
distant apparatus. A decision about which of two experisiento be performed at each apparatus is made
randomly at the last moment, so that speed of light condidesarule out information about the choice at
one apparatus being transmitted to the other. How corrklza the outcomes on the two experiments be?
It can be shown that any theory in the classical hidden vierithmework above gives a correlation of at
most Q75 whereas the quantum experiments described below givegaton of about B. Therefore the
predictions of quantum mechanics are not consistent withaal hidden variable theory. We now describe
the experiment in more detalil.

The two experimenters A and B (for Alice and Bob) each recaivendom bit, andrg respectively. Each
also receives one half of a Bell state, and makes a suitabtsumement described below based on the
received random bit. Call the outcomes of the measureneeatsd b respectively. We are interested in
the achievable correlation between the two quantities rg anda+ b(mod2). We will show that for the
particular quantum measurements described b&8pwx rg = a+ b(mod2)] ~ .8.

What would a classical hidden variable theory predict fgg setting? Now, when the Bell state was created,
the two particles could share an arbitrary amount of infdiroma But by the time the random bitg and

rg are generated, the two particles are too far apart to exeharfigrmation. Thus in any experiment,
the outcome can only be a function of the previously sharéatnmation and one of the random bits. It
can be shown that in this setting the best correlation isexeldi by always letting the outcomes of the
two experiments ba = 0 andb = 0 (see homework exercise). This giveBa x rg = a+ b(mod2)] <

.75. This experiment therefore distinguishes between thdigtions of quantum physics and those of any
arbitrary local hidden variable theory. It has now beengrentd in several different ways, and the results
are consistent with quantum physics and inconsistent vatckassical hidden variable theory.

Here is the protocol:

if Xa =0, then Alice measures in thert/16 basis.

if Xa =1, then Alice measures in thetgl6 basis.

if Xg =0, then Bob measures in thg'16 basis.

if Xg = 1, then Bob measures in the371/16 basis.

Now an easy calculation shows that in each of the four cXgses Xg = 0, etc, the success probability is

coszn/8. This is because in the three cases whgreg = 0, Alice and Bob measure in bases that differ by
/pi/8. In the last case they measure in bases that differrh83but in this case they must output different
bits.
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We still have to prove that Bell statg;(|00) +[11)) = 5 (|Vava) +[VaVa)) Let [va) = a|0) +B[1)

and|vx) = —B[0) +al|1). Then 5 (|vava) +|Vava)) = 75(a?|00) +aB|01) +aB[10) + B?11)) +

V2
75(B?|00) —aB|01) —aB[10) +a?|11)) = —5(a®+ B?)(|00) +|11)) = 5(|00) +[11))
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