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1 Fourier Transform over Finite Abelian Croups

Given a finite abelian grouf with n elements, we want to study the Fourier transform over it. dllguwe are
interested in the following two cases: (&)= Z, :={0,1,...,n— 1}, the group of integers modufounder addition;
and (2)G = Z3' with m= log, n, the group ofn-bit strings under bitwise addition modulo two.

To define the Fourier transform, we consider the characte@ oA map xj: G — ¢ is a character if it is a group
homomorphism, i.ex;(99') = x;(9)x;(¢’) for anyg,g’ € G. There are exactljG| characters, and they form a group
under pointwise multiplication. This group is called theatigroup ofG, and is denoted &S. The Fourier transform

mapslg) 103 .6 =X 9)] )

For example, whef® = Z,,, andx;(1) = w!, then we have(J( k) = wlk, wherew = €?™/" is then-th primitive root of

unity. When written as a vectoly;) = (1,w!,w?,...,w™ YT, and the matrix of Fourier transfor# is defined
asgij = ﬁw” (wherei andj runs from zero to — 1).

In general, whers = Zy, x Zn, x --- x Zy,, with its elements identified &$1,092,...,9¢) (9 € Zn;), G's characters
have the formi, k,, .k, (91,92, --,0¢) = w,‘f,llglw,‘f,zzgz w,'i,igf, wherewy, = €1/N is theN;-th primitive root of unity.
In this case, the Founer transform mdg@ 02, .,gg> to ﬁ Y KK, ke Xk Ko,k (01,92, - .- ,gz)‘k]_, ko, .. .,k€>.

If we identify then distinguishable state§), 1),
express any stalep) as a superpositiofigeg ag|9) .

— > in a quantum system with the group elements, we can

Fix anyg € G, and consider the action of multiplication oy It mapsy 4 ag\g> 0 Ygea ag]g/g>. If we express
this linear transformation as a matay, mapping| qo> to Ay \ qo> , thenAy is a permutation matrix (a zero-one matrix
having exactly one 1 on each row and each column) in the ba8isldowever, if we express the multiplication in the
Fourier basis, we should get a diagonal matrix.

Claim For anyg’ € G, the multiplication byg' is diagonal in the Fourier basis.
Proof Let Ay be the multiplication by, and|x;) = (L, w!,&?, ..., V)T =3 ¢ xj(g)|g) be a vector repre-

senting a character (up to a normalizing facto & ).

Aglxi) = %x; 9)lg) = %xj(gﬂgg %X; 9)|g) = xj( ’1§x1 9)|9) = Xxi(@ Hxi),
ge

SO eacij> in G is an eigenvector oAy with an eigenvalue of; (g, ), i.e. Ay diagonalizes in the basis o

2 Subgroups and Cosets

Every subgrou;b-l of G corresponds to a subgrot- of G, given byH" = {ke G| xx(h) =1 Vhe H}. If we define
H) = W Sher |0) to be the uniform superposition of states-nits Fourier transform igH-) = \/%2‘(6,# k),
which is the uniform superposition of statesHrt (note thafH*| = ‘E\)
Moreover, ifHg is a coset ofH, the uniform superposition of its stat¢Blg> = ﬁzhemﬂh) is mapped to

% Y keHL Xk(g)]k) under Fourier transform.

Claim Fourier transform takeH ) to [H*) and|Hg) to %Zkew Xk(9)]K).

Proof For the first case, considkre H+, its amplitude= ¥ ,cn
andh € H).

ﬁf}% = % (becausek(h) = 1 whenk € H+

1 _— 1 x(h) _
Ve = hen e -
X&(h) S hen \/\W \/\E 1M(h’)ﬁk, so we gel(1— xk(h'g)fg= 0 and deduce thiiggsd). This completes the first case.

Fork¢ H, thereis &' € H such thayy(h') # 1. LetB :=the amplitude ok = S ey

For the second case, we observe that the amplitudéme g) is xk(g) multiplied by its amplitude ifH ). Indeed,
its amplitude inHg) = Shepg —= 2 = 5, —£ Xdh9) multiplied by its am-

1oxdh)
\/\W \/\E \/\W \/\E Xk(g) ZhGH \/W \/@ Xk(g)
plitude in|H). From this, we deduce that, fare H-, its amplitude isxk(g)\/@; and fork ¢ H+, its amplitude is




for some random cosetd’, after ignoring (or, equivalently by the safe storage gples measuring) the second
component.

Step 2 Fourier sampling for arandom element in H-:
By using the fact that all cosets bf map to the same vectét (up to varying phases but same amplitude),

Fourier transform Fourier transform
) [H*) )

H Hg X(g)-[HHA,
a measurement on the Fourier transforrr1|H>g> gives a random element -, Each element il enforces
a constraint that (elements dfl) has to satisfy, and we can then recokiewith high probability given enough

random samples df .

4 Factoring

To factorize an integed, we find the order of a random element by solving a hidden sagproblem.

First, we need some definitions. L&f := {0 < a < N |gcda,N) = 1} denotes the set of integers co-prime to
N, which forms a group under multiplication modulb Let ¢(N) := |Z{| be the Eulerp function. Recall that if

N = pfp% - pi¥, then we knowp(N) = (pr— 1)pg (p2— 1)pF -+ (p— Dpp
We want to pick a random elemextmodN and compute its order given by qrtk) := min,~ox" =1 modN. In fact,

the order of an elementis defined (or finite) iff gcx, N) = 1. However, if gcdx, N) # 1, we already get a non-trivial
factor ofN. Let's assume that g¢& N) = 1, and letr := ordy(x). Clearlyr divides@(N) (by the Lagrange thearem).

Let M = ¢(N) (or a multiple of@(N)). We consider the functiofi: Zyy — Zy given by f(a) = x* modN. If we
denote(r) := the subgroup generated byn Zy (using the fact that divides@(N)), thenf is constant on cosets and
is distinct on different cosets ¢f). Indeed,f(a) = f(a) iff X2 = x& modN iff x¢& =1 modN iff a=a’ modr.

The quantum algorithm gives us the valuerads a non-trivial factor ofp(N) (with high probability), which can be
used to factoriz&l. More precisely, the Fourier sampling step gives us a ranelement of(r)* =~ (¥>, i.e. we get

an eIemen@ forarandonse {0,1,...,r — 1}. With enough samples of the forﬁ%ﬂ (for differents), we know their

ged= M.

The above works iM is a multiple of (N). But the value ofgp(N) is not known (or we could have factorizéd
directly with it). Therefore, we run the algorithm with ad@enougiM > N instead, which works because the error

between the Fourier transform ov&y and that oveZa large multiple ofp(N) is small.

5 Discrete Logarithm

In this section, we consider another hardness assumptixh inscryptography (e.g. Diffie-Helman cryptosystem),
namely the problem of discrete logarithm.

Let p be a prime, theiZ , forms a group under addition modufp Its non-zero element;, forms a group under

multiplication modulop, which in fact is cyclic, i.e. there is an elemegthat generateg , = {g%,d%,...,gP?}. The
question of discrete logarithm is, givenp andg, to compute an exponensuch thag’ mod p = x.

LetG:=Zp 1 x Zp_1, and we defind (a,b) := g3 ° mod p. Note thatf (a,b) = 1 iff a—br = 0 modp— 1. Hence,

if we let H := the subgroup generated kiy1), thenf is constant on cosets and distinct on different cosets$.dBy
the quantum algorithm, we get a random sanfplel) € H+, satisfyingcr +d = 0 modp — 1. With non-negligible
probability, such a random sample satisfies an additiotetioa that gcdc, p— 1) = 1, which allows us to compute
r =dc1 mod p— 1. We can amplify the success probability by repeating thelevhlgorithm, and checking for those
r satisfyingg" = x mod p.

IHere, we use the notatign(g) - \HL> to mean the pointwise multiplication of the two vectors. flisafor k € G, its amplitude inx(g) - \HL>

is xk(9) % if ke H+, and is 0 otherwise.

cs 294, Spring 20009, 2



0 Quantum Error Correction

From time to time, the qubits in quantum registers get caediwith certain probability. Therefore, we need a
method to correct errors in quantum registers for faultreslequantum computation. In order to study quantum error
correction, we first need to understand what quantum errerg@ssible.

The first kind of errors are bit flips, analogous to the clasdiit flips. For example, a state| 0000> + B\llll> may
be corrupted tar|0010) + B|1101) if the third bit is flipped. We model a bit flip as an applicatioia NOT gate to a
certain qubit, represented by the matix= %] .
[scale=1, auto] (data) [register, text width = 3cm] at (0QB)ginal Data; (codeword) [register, text width = 9cm] at
(9, 0) Codeword; (corrupted) [register, text width = 9cm{®t-1.4) Corrupted Codeword; (recovered) [register, text
width = 3cm] at (0, -1.4) Recovered Data; [-¢, thick] (dadatto node Encode (codeword.west); [-¢,, thick]
(codeword.south) to node Bit Flips (corrupted.north), fhick] (corrupted.west) to node [swap] Reconstruct
(recovered.east);
dat a. nort hwest ) +0,.2) coordinate (data north westlat a. nor t heast ) +0,.2) coordinate (data north east);
codewor d. nor t hwest ) +0,.2) coordinate (codeword north westhpdewor d. nor t heast ) +0,.2) coordinate
(codeword north east); [j-¢] (data north west) to nndeata north east); [i-¢,] (codeword north west) to node 3
(codeword north east);

Figure 1: Flow Diagram of the Imagined Error Correction far Bips

If we take the quantum analogue of classical error corracti@ may want to introduce redundancy into the data by
repeating qubits, so that when a small fraction of qubithédodeword is corrupted, hopefully we can reconstruct the
original data. For example, we may naively want to stretdhta ofn qubits into a codeword offBqubits by repeating
each qubit three times. However, there is no transformddoturning\qo) into \qo) ](p) \(p) for a general state in
superposition, by the no-cloning theorem. So we cannottijr&ranslate the classical error correction techniqoes f
guantum error correction, even for the analogous errortdfips.

The second kind of errors are unwanted interaction with therenment, which is modeled as bit measurements by
the environment on certain qubits. For example, a s\%ﬂ@OOO) + % |1111) may turn into|0000) or [1111) with
equal probability, if the environment measures it on anglsitgubit.

7 Noise Model

Let us be more specific about what quantum error correcticanse

Assume that we have some qudi@ in a quantum register. To guard against quantum errors, werapa number

of qubits initialized to the all-zero sta16>, and transform (encode) the resultant qubits with a unibgerator?/

into a state suitable for correction. After the codewordasrgpted, we append a number of fresh all-zero qubits, and
apply an error correction circuit to extract and throw awag érror, recovering the encoded codew@fnj\ qo> \0> ).

The original qubits{(p> can be reconstructed with an applicatiorzof L.

We are going to model a general quantum error (e.g. bit fligskdihmeasurements) as a unitary operatishper-
formed by the environment, with part of the output thrown gwa

Under this model, the corrupted steﬁm)rrupted is a linear (and in general non-unitary) transformatiorhefariginal

state]OriginaI). For a system with a single qubit (modeled by the Hilbert spét), all linear transformations are
spanned by the four matrices: identitybit flip X, phase flipZ, and bit-and-phase flig = XZ.

. 10 — 0 1
Identity | = {O 1] Bit Flip X = [1 0]

. 1 0 . . 0 1

Phase Flipz = {O _1} Bit-and-Phase Flify = [_1 0]
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[scale=1, auto] (data) [register, text width = 2cm] at (O|@); (data zero) [register, text width = 2cm] at (2.25, 0)
|0); (codeword) [register, text width = 4cm] at (8, @) (|@) |0) ); (corrupted) [register, text width = 4cm] at (8, -1.5)
\Corrutped ; (corrupted zero) [register, text width = 3cm] at (11.755)10) ; (correction) [register, text width =
7cm] at (9.65, -2.5) Error Correction; (recovered) [regiistext width = 4cm] at (8, —3.%/(](;}) \0> ); (recovered
error) [register, text width = 3cm] at (11.75, -3.‘5:':)rror> ; (reconstructed) [register, text width = 2cm] at (0, -3.5)
\qo> ; (reconstructed zero) [register, text width = 2cm] at (2-355) |O> ;
cor rupt ed. sout h) +-1.5, 0) coordinate (corrupted soutbpr r ect i on. nort h) +-3.15, 0) coordinate
(correction north)xin 0, 10, ..., 180cor r upt edsout h) +xpt, 0 cm) coordinate (corrupted south;
correctionnorth) +xpt, 0 cm) coordinate (correction north ; (corrupted soutlx) — (correction nortkx);
correction. sout h) +-3.15, 0) coordinate (correction southgcover ed. nort h) +-1.5, 0) coordinate
(recovered northXin 0, 10, ..., 180cor r ect i onsout h) +xpt, 0 cm) coordinate (correction sout)y
recover ednort h) +xpt, 0 cm) coordinate (recovered nok}) (correction soutkx) — (recovered nortk);
[-¢, thick] (data zero.east) to node (codeword.west); [-¢, thick] (codeword.south) to noderQation
(corrupted.north); [-¢,, thick] (recovered.west) to nosledp]# ~* (reconstructed zero.east);

Figure 2: Quantum Error Correction

[scale=1, auto] (data) [register, text width = 3cm] at (Oj(()yiginal> ; (environment) [register, text width = 3cm] at
(3.25, 0)|Environmen); (corruption) [register, text width = 6.25cm] at (1.625) %’; (corrupted) [register, text
width = 3cm] at (0, -2) Corrupted ;
dat a. sout h) +-1.25,0) coordinate (data soutle)or r upt i on. nort h) +-2.875,0) coordinate (corruption north
west);xin 0, 10, ..., 70dat asout h) +xpt, O pt) coordinate (data soutl; cor r upt i onnor t hwest ) +xpt, 0 pt)
coordinate (corruption north wes}; (data southx) — (corruption north west);
corrupti on. sout h) +-2.875,0) coordinate (corruption soutkpr r upt ed. nort h) +-1.25,0) coordinate
(corrupted north)xin 0, 10, ..., 70cor r upt i onsout h) +xpt, O pt) coordinate (corruption soux;
cor rupt ednor t h) +xpt, 0 pt) coordinate (corrupted nort; (corruption souttx) — (corrupted nortkx);
envi ronnent . sout h) +1.25, 0) coordinate (environment soutbfir r upt i on. nor t h) +2.875, 0) coordinate
(corruption north eastxin 0, 10, ..., 70envi r onment sout h) +-xpt, O pt) coordinate (data soutl;
corruptionnort heast) +-xpt, 0 pt) coordinate (corruption north ea3t (data souttx) — (corruption north east
X);
corruption. sout h) +2.875, 0) coordinate (corruption south eagi); 0, 10, ..., 70 (corruption south east) +
(-xpt, O pt) — ++ (xpt, -.8cm);

Figure 3: Noise Model for a General Quantum Error

And for a system witln qubits, all linear transformations are spanned bydbid tensor products of the above four
matrices. Therefore, to correct a general quantum errisreihough to be able to correct bit flips and phase flips.

8 C(lassical Error Correction Codes

We review the elementary theory of (binary) classical ecmrecting codes. An error correcting cddés a collection
of codewords irF} (i.e.C C F5), whereF, is the finite field with two elements. We will only be interesia linear
codes, wher€ is in fact a linear subspace &5, regarded as an dimensional vector space ovEs. If we denote
k := dimC to be the dimension & as a linear space, we think of the encoding as stretchingggh&message into a
lengthn codeword (i.e. a linear map froﬁt to F5).

The distance of a cod®:= ming, c,c.c Hamming-distanoer,cy) is the minimum hamming distance (i.e. number of
unequal symbols) between two distinct codewords.iffor linear codes, the distande= ming.occ Hamming-weigh(c)

is given by the minimum hamming weight (i.e. number of onds) aon-zero codeword. As can be easily seen, an
error correcting code can detect updte- 1 errors, and can correct up Eﬂg—lj errors.

We can associate with a linear cod& Ay n matrix G, known as the generator matrix. The encoding of a lekgth
messagen € F‘g is given by the lengtim codewordc € F3, wheremG = c¢. Similarly, we can associate with a linear
code am by k matrix P, known as the parity check matrix. The columnsPogenerate€+, so a wordc € F} is a
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valid codeword (i.ec € C) iff cP = 0. Assume that a valid codewocd: C is corrupted by some errerc F5, forming
a wordc+e. We can use the parity check matrix to detect errors, simplgdmputing(c+ €)P. By properties of
P, we know that(c+ e)P = cP + eP = eP, which is known as the syndrome. We can detect errors by ahgdk
eP = 0 (provided that the hamming weight efs at mostd — 1), and can correct errors by deducing a unigfie®m
eP (provided that the hamming weight efs at mostL%J).

9 CSS code

We describe a quantum error correcting code due to CaldkySdwor and Stein.

Our starting point is two linear error correcting co@sandC,, whereC; C C, C FJ' with |Cy| = 2k and|C;| = 2ke,
We require that the second co@e and the dual code of the first co@ be good error correcting codes, each
correcting up td errors.

In our quantum error correcting code, the codewords ares0$€; in Cy, having the form

1
+X),
V |C1|y€Zl‘y >

for somex € C,. Hence, the quantum error correcting code Hask® codewords. CSS code encodes- k; qubits
into mqubits and can correct up taubit errors. The theory of classical error correcting asteows that we can find
codesC; andC; with reasonable value of given parameteis, — k; andm.

|C1—|—X> =

Recall that it is enough to be able to correct all bit flips alhghlaase flips. Assume that a codewc}ﬁ:ier) is first
corrupted by a phase flip errep and then a bit flip errogy,, giving the corrupted state

1
VICil

Our quantum error correcting algorithm has two stages, onkif flips and one for phase flips.

(—1)UH0e |y x4 &) = Y+ X+ ).
y; | ) y;lﬁﬂ )

In the first stage we correct up tdit flips. Essentially, we apply the parity check matfy for codeC, to compute
the syndrome, allowing us to undo the bit flips.

applyR applyre, compute and unde,

Z B/ly+x+e)|0) —— Z B/ly+x+e) |eR,) > Byly+x)|eRe,) -
1 yely

We discard (or measure) the second register to obtain tteeXfa:, By|y+ x> , which is only corrupted by phase flips.

In the second stage we correct ug fohase flips. Essentially, we convert phase flips into bit fipd repeat the first
stage to correct the errors. Recall t[ﬁﬁ—x |s mapped tog( (X ]Ci under Fourier transform, meaning that Fourier
transform turns bit flips into phase flips, and vice versaebd

Fourier transform

1
Byly+x) Z (=
yety v |Cl| ye \/ICLH kecL keCi

We repeat the first stage, using the parity check mﬁglixof the codeC; instead.

appIyPcll
> ak+ep)[0) 3 ak‘k+ep>‘eppcl¢> > ak’k>‘eppc1¢>-
keCi keCi keCi

compute and undey

After discarding (or measuring) the second register tog@% ak]k>, we recover the codeword with a Fourier
transform.

1 1
z ak\k> _ z (—1)X‘k\k Fourier transform Z ]y+x \Cl+x
S

keCt \/ICi | kéct VICily

Ccs 294, Spring 20009, 5



