
register = [thick, rectangle, draw=black, minimum height=.7cm, text centered
]

1 Fourier Transform over Finite Abelian Groups

Given a finite abelian groupG with n elements, we want to study the Fourier transform over it. Usually, we are
interested in the following two cases: (1)G = Zn := {0,1, . . . ,n−1}, the group of integers modulon under addition;
and (2)G = Zm

2 with m = log2 n, the group ofm-bit strings under bitwise addition modulo two.

To define the Fourier transform, we consider the characters of G. A map χ j : G → C is a character if it is a group
homomorphism, i.e.χ j(gg′) = χ j(g)χ j(g′) for anyg,g′ ∈ G. There are exactly|G| characters, and they form a group
under pointwise multiplication. This group is called the dual group ofG, and is denoted aŝG. The Fourier transform
maps

∣

∣g
〉

to ∑ j∈Ĝ
1√
|G|

χ j(g)
∣

∣ j
〉

.

For example, whenG = Zn, andχ j(1) = ω j, then we haveχ j(k) = ω jk, whereω = e2π i/n is then-th primitive root of
unity. When written as a vector,

∣

∣χ j
〉

= (1,ω j,ω2 j, . . . ,ω(n−1) j)>, and the matrix of Fourier transformF is defined
asFi j = 1√

|G|
ω i j (wherei and j runs from zero ton−1).

In general, whenG ∼= ZN1 ×ZN2 ×·· ·×ZN`
, with its elements identified as(g1,g2, . . . ,g`) (gi ∈ ZNi), G’s characters

have the formχk1,k2,...,k`
(g1,g2, . . . ,g`) = ωk1g1

N1
ωk2g2

N2
· · ·ωk`g`

N`
, whereωNi = e2π i/Ni is theNi-th primitive root of unity.

In this case, the Fourier transform maps
∣

∣g1,g2, . . . ,g`

〉

to 1√
|G| ∑k1,k2,...,k`

χk1,k2,...,k`
(g1,g2, . . . ,g`)

∣

∣k1,k2, . . . ,k`

〉

.

If we identify then distinguishable states
∣

∣0
〉

,
∣

∣1
〉

, . . . ,
∣

∣n−1
〉

in a quantum system with the group elements, we can
express any state

∣

∣φ
〉

as a superposition∑g∈G αg
∣

∣g
〉

.

Fix anyg′ ∈ G, and consider the action of multiplication byg′. It maps∑g∈G αg
∣

∣g
〉

to ∑g∈G αg
∣

∣g′g
〉

. If we express
this linear transformation as a matrixAg′ , mapping

∣

∣φ
〉

to Ag′
∣

∣φ
〉

, thenAg′ is a permutation matrix (a zero-one matrix
having exactly one 1 on each row and each column) in the basis of G. However, if we express the multiplication in the
Fourier basis, we should get a diagonal matrix.

Claim For anyg′ ∈ G, the multiplication byg′ is diagonal in the Fourier basis.
Proof Let Ag′ be the multiplication byg′, and

∣

∣χ j
〉

= (1,ω j,ω2 j, . . . ,ω(n−1) j)> = ∑g∈G χ j(g)
∣

∣g
〉

be a vector repre-
senting a character (up to a normalizing factor of1√

|G|
).

Ag′
∣

∣χ j
〉

= Ag′ ∑
g∈G

χ j(g)
∣

∣g
〉

= ∑
g∈G

χ j(g)
∣

∣g′g
〉

= ∑
g∈G

χ j(g
′−1g)

∣

∣g
〉

= χ j(g
′−1) ∑

g∈G

χ j(g)
∣

∣g
〉

= χ j(g
′−1)

∣

∣χ j
〉

,

so each
∣

∣χ j
〉

in Ĝ is an eigenvector ofAg′ with an eigenvalue ofχ j(g′−1), i.e.Ag′ diagonalizes in the basis of̂G.

2 Subgroups and Cosets

Every subgroupH of G corresponds to a subgroupH⊥ of Ĝ, given byH⊥ = {k ∈ Ĝ | χk(h) = 1 ∀h∈ H}. If we define
∣

∣H
〉

:= 1√
|H| ∑h∈H

∣

∣h
〉

to be the uniform superposition of states inH, its Fourier transform is
∣

∣H⊥〉

=
√

|H|
|G| ∑k∈H⊥

∣

∣k
〉

,

which is the uniform superposition of states inH⊥ (note that|H⊥| = |G|
|H|).

Moreover, if Hg is a coset ofH, the uniform superposition of its states
∣

∣Hg
〉

:= 1√
|H| ∑h∈Hg

∣

∣h
〉

is mapped to
√

|H|
|G| ∑k∈H⊥ χk(g)

∣

∣k
〉

under Fourier transform.

Claim Fourier transform takes
∣

∣H
〉

to
∣

∣H⊥〉

and
∣

∣Hg
〉

to
√

|H|
|G| ∑k∈H⊥ χk(g)

∣

∣k
〉

.

Proof For the first case, considerk ∈ H⊥, its amplitude= ∑h∈H
1√
|H|

χk(h)√
|G|

=
√

|H|
|G| (becauseχk(h) = 1 whenk ∈ H⊥

andh ∈ H).

Fork 6∈H⊥, there is ah′ ∈H such thatχk(h′) 6= 1. Letβk := the amplitude ofk = ∑h∈H
1√
|H|

χk(h)√
|G|

= ∑h∈H
1√
|H|

χk(h
′h)√
|G|

=

χk(h′)∑h∈H
1√
|H|

χk(h)√
|G|

= χk(h′)βk, so we get
(

1−χk(h′)
)

βk = 0 and deduce thatβk = 0. This completes the first case.

For the second case, we observe that the amplitude ofk in
∣

∣Hg
〉

is χk(g) multiplied by its amplitude in
∣

∣H
〉

. Indeed,

its amplitude in
∣

∣Hg
〉

= ∑h∈Hg
1√
|H|

χk(h)√
|G|

= ∑h∈H
1√
|H|

χk(hg)√
|G|

= χk(g)∑h∈H
1√
|H|

χk(h)√
|G|

= χk(g) multiplied by its am-

plitude in
∣

∣H
〉

. From this, we deduce that, fork ∈ H⊥, its amplitude isχk(g)
√

|H|
|G| ; and fork 6∈ H⊥, its amplitude is

CS 294, Spring 2009, 1

for some random cosetHg′, after ignoring (or, equivalently by the safe storage principle, measuring) the second
component.

Step 2 Fourier sampling for a random element in H⊥:
By using the fact that all cosets ofH map to the same vectorH⊥ (up to varying phases but same amplitude),

∣

∣H
〉 Fourier transform−−−−−−−−−−−−→

∣

∣H⊥〉 ∣

∣Hg
〉 Fourier transform−−−−−−−−−−−−→ χ(g) ·

∣

∣H⊥〉

1,

a measurement on the Fourier transform of
∣

∣Hg
〉

gives a random element inH⊥. Each element inH⊥ enforces
a constraint that (elements of)H has to satisfy, and we can then recoverH with high probability given enough
random samples ofH⊥.

4 Factoring

To factorize an integerN, we find the order of a random element by solving a hidden subgroup problem.

First, we need some definitions. LetZ∗
N := {0 < a < N | gcd(a,N) = 1} denotes the set of integers co-prime to

N, which forms a group under multiplication moduloN. Let φ(N) := |Z∗
N | be the Eulerφ function. Recall that if

N = pe1
1 pe2

2 · · · pek
k , then we knowφ(N) = (p1−1)pe1−1

1 (p2−1)pe2−1
2 · · · (pk −1)pek−1

k .

We want to pick a random elementx modN and compute its order given by ordN(x) := minr>0 xr ≡ 1 modN. In fact,
the order of an elementx is defined (or finite) iff gcd(x,N) = 1. However, if gcd(x,N) 6= 1, we already get a non-trivial
factor ofN. Let’s assume that gcd(x,N) = 1, and letr := ordN(x). Clearlyr dividesφ(N) (by the Lagrange theorem).

Let M = φ(N) (or a multiple ofφ(N)). We consider the functionf : ZM → ZN given by f (a) = xa modN. If we
denote〈r〉 := the subgroup generated byr in ZM (using the fact thatr dividesφ(N)), then f is constant on cosets and
is distinct on different cosets of〈r〉. Indeed,f (a) = f (a′) iff xa = xa′ modN iff xa−a′ = 1 modN iff a = a′ modr.

The quantum algorithm gives us the value ofr as a non-trivial factor ofφ(N) (with high probability), which can be
used to factorizeN. More precisely, the Fourier sampling step gives us a randomelement of〈r〉⊥ ∼= 〈M

r 〉, i.e. we get
an elementsM

r for a randoms ∈ {0,1, . . . ,r−1}. With enough samples of the formsM
r (for differents), we know their

gcd= M
r .

The above works ifM is a multiple ofφ(N). But the value ofφ(N) is not known (or we could have factorizedN
directly with it). Therefore, we run the algorithm with a large enoughM � N instead, which works because the error
between the Fourier transform overZM and that overZa large multiple ofφ(N) is small.

5 Discrete Logarithm

In this section, we consider another hardness assumption used in cryptography (e.g. Diffie-Helman cryptosystem),
namely the problem of discrete logarithm.

Let p be a prime, thenZp forms a group under addition modulop. Its non-zero elementsZ∗
p forms a group under

multiplication modulop, which in fact is cyclic, i.e. there is an elementg that generatesZ∗
p = {g0,g1, . . . ,gp−2}. The

question of discrete logarithm is, givenx, p andg, to compute an exponentr such thatgr mod p ≡ x.

Let G := Zp−1×Zp−1, and we definef (a,b) := gax−b mod p. Note thatf (a,b) = 1 iff a−br = 0 modp−1. Hence,
if we let H := the subgroup generated by(r,1), then f is constant on cosets and distinct on different cosets ofH. By
the quantum algorithm, we get a random sample(c,d) ∈ H⊥, satisfyingcr + d = 0 modp−1. With non-negligible
probability, such a random sample satisfies an additional relation that gcd(c, p−1) = 1, which allows us to compute
r = dc−1 mod p−1. We can amplify the success probability by repeating the whole algorithm, and checking for those
r satisfyinggr = x mod p.

1Here, we use the notationχ(g) ·
∣

∣H⊥〉

to mean the pointwise multiplication of the two vectors. That is, for k ∈ Ĝ, its amplitude inχ(g) ·
∣

∣H⊥〉

is χk(g)
√

|H|
|G| if k ∈ H⊥, and is 0 otherwise.

CS 294, Spring 2009, 2

6 Quantum Error Correction

From time to time, the qubits in quantum registers get corrupted with certain probability. Therefore, we need a
method to correct errors in quantum registers for fault tolerant quantum computation. In order to study quantum error
correction, we first need to understand what quantum errors are possible.

The first kind of errors are bit flips, analogous to the classical bit flips. For example, a stateα
∣

∣0000
〉

+ β
∣

∣1111
〉

may
be corrupted toα

∣

∣0010
〉

+β
∣

∣1101
〉

if the third bit is flipped. We model a bit flip as an applicationof a NOT gate to a

certain qubit, represented by the matrixX :=

[

01
10

]

.

[scale=1, auto] (data) [register, text width = 3cm] at (0, 0)Original Data; (codeword) [register, text width = 9cm] at
(9, 0) Codeword; (corrupted) [register, text width = 9cm] at(9, -1.4) Corrupted Codeword; (recovered) [register, text

width = 3cm] at (0, -1.4) Recovered Data; [-¿, thick] (data.east) to node Encode (codeword.west); [-¿, thick]
(codeword.south) to node Bit Flips (corrupted.north); [-¿, thick] (corrupted.west) to node [swap] Reconstruct

(recovered.east);
data.northwest)+0,.2) coordinate (data north west);data.northeast)+0,.2) coordinate (data north east);
codeword.northwest)+0,.2) coordinate (codeword north west);codeword.northeast)+0,.2) coordinate

(codeword north east); [¡-¿] (data north west) to noden (data north east); [¡-¿] (codeword north west) to node 3n
(codeword north east);

Figure 1: Flow Diagram of the Imagined Error Correction for Bit Flips

If we take the quantum analogue of classical error correction, we may want to introduce redundancy into the data by
repeating qubits, so that when a small fraction of qubits in the codeword is corrupted, hopefully we can reconstruct the
original data. For example, we may naı̈vely want to stretch adata ofn qubits into a codeword of 3n qubits by repeating
each qubit three times. However, there is no transformationfor turning

∣

∣φ
〉

into
∣

∣φ
〉
∣

∣φ
〉
∣

∣φ
〉

for a general stateφ in
superposition, by the no-cloning theorem. So we cannot directly translate the classical error correction techniques for
quantum error correction, even for the analogous error of bit flips.

The second kind of errors are unwanted interaction with the environment, which is modeled as bit measurements by
the environment on certain qubits. For example, a state1√

2

∣

∣0000
〉

+ 1√
2

∣

∣1111
〉

may turn into
∣

∣0000
〉

or
∣

∣1111
〉

with
equal probability, if the environment measures it on any single qubit.

7 Noise Model

Let us be more specific about what quantum error correction means.

Assume that we have some qubits
∣

∣φ
〉

in a quantum register. To guard against quantum errors, we append a number
of qubits initialized to the all-zero state

∣

∣0
〉

, and transform (encode) the resultant qubits with a unitaryoperatorU
into a state suitable for correction. After the codeword is corrupted, we append a number of fresh all-zero qubits, and
apply an error correction circuit to extract and throw away the error, recovering the encoded codewordU (

∣

∣φ
〉∣

∣0
〉

).
The original qubits

∣

∣φ
〉

can be reconstructed with an application ofU −1.

We are going to model a general quantum error (e.g. bit flips and bit measurements) as a unitary operationU ′ per-
formed by the environment, with part of the output thrown away.

Under this model, the corrupted state
∣

∣Corrupted
〉

is a linear (and in general non-unitary) transformation of the original
state

∣

∣Original
〉

. For a system with a single qubit (modeled by the Hilbert space C 2), all linear transformations are
spanned by the four matrices: identityI, bit flip X , phase flipZ, and bit-and-phase flipY = XZ.

Identity I =

[

1 0
0 1

]

Bit Flip X =

[

0 1
1 0

]

Phase FlipZ =

[

1 0
0 −1

]

Bit-and-Phase FlipY =

[

0 1
−1 0

]

CS 294, Spring 2009, 3

[scale=1, auto] (data) [register, text width = 2cm] at (0, 0)
∣

∣φ
〉

; (data zero) [register, text width = 2cm] at (2.25, 0)
∣

∣0
〉

; (codeword) [register, text width = 4cm] at (8, 0)U (
∣

∣φ
〉∣

∣0
〉

); (corrupted) [register, text width = 4cm] at (8, -1.5)
∣

∣Corrutped
〉

; (corrupted zero) [register, text width = 3cm] at (11.75, -1.5)
∣

∣0
〉

; (correction) [register, text width =
7cm] at (9.65, -2.5) Error Correction; (recovered) [register, text width = 4cm] at (8, -3.5)U (

∣

∣φ
〉∣

∣0
〉

); (recovered
error) [register, text width = 3cm] at (11.75, -3.5)

∣

∣Error
〉

; (reconstructed) [register, text width = 2cm] at (0, -3.5)
∣

∣φ
〉

; (reconstructed zero) [register, text width = 2cm] at (2.25, -3.5)
∣

∣0
〉

;
corrupted.south)+-1.5 , 0) coordinate (corrupted south);correction.north)+-3.15, 0) coordinate

(correction north);xin 0, 10, ..., 180corruptedsouth)+xpt, 0 cm) coordinate (corrupted southx) ;
correctionnorth)+xpt, 0 cm) coordinate (correction northx) ; (corrupted southx) – (correction northx);
correction.south)+-3.15, 0) coordinate (correction south);recovered.north)+-1.5 , 0) coordinate

(recovered north);xin 0, 10, ..., 180correctionsouth)+xpt, 0 cm) coordinate (correction southx);
recoverednorth)+xpt, 0 cm) coordinate (recovered northx); (correction southx) – (recovered northx);

[-¿, thick] (data zero.east) to nodeU (codeword.west); [-¿, thick] (codeword.south) to node Corruption
(corrupted.north); [-¿, thick] (recovered.west) to node [swap]U −1 (reconstructed zero.east);

Figure 2: Quantum Error Correction

[scale=1, auto] (data) [register, text width = 3cm] at (0, 0)
∣

∣Original
〉

; (environment) [register, text width = 3cm] at
(3.25, 0)

∣

∣Environment
〉

; (corruption) [register, text width = 6.25cm] at (1.625, -1) U ′; (corrupted) [register, text
width = 3cm] at (0, -2)

∣

∣Corrupted
〉

;
data.south)+-1.25,0) coordinate (data south);corruption.north)+-2.875,0) coordinate (corruption north
west);xin 0, 10, ..., 70datasouth)+xpt, 0 pt) coordinate (data southx); corruptionnorthwest)+xpt, 0 pt)

coordinate (corruption north westx); (data southx) – (corruption north westx);
corruption.south)+-2.875,0) coordinate (corruption south);corrupted.north)+-1.25,0) coordinate

(corrupted north);xin 0, 10, ..., 70corruptionsouth)+xpt, 0 pt) coordinate (corruption southx);
corruptednorth)+xpt, 0 pt) coordinate (corrupted northx); (corruption southx) – (corrupted northx);

environment.south)+1.25, 0) coordinate (environment south);corruption.north)+2.875, 0) coordinate
(corruption north east);xin 0, 10, ..., 70environmentsouth)+-xpt, 0 pt) coordinate (data southx);

corruptionnortheast)+-xpt, 0 pt) coordinate (corruption north eastx); (data southx) – (corruption north east
x);

corruption.south)+2.875, 0) coordinate (corruption south east);xin 0, 10, ..., 70 (corruption south east) +
(-xpt, 0 pt) – ++ (-xpt, -.8cm);

Figure 3: Noise Model for a General Quantum Error

And for a system withn qubits, all linear transformations are spanned by alln-fold tensor products of the above four
matrices. Therefore, to correct a general quantum error, itis enough to be able to correct bit flips and phase flips.

8 Classical Error Correction Codes

We review the elementary theory of (binary) classical errorcorrecting codes. An error correcting codeC is a collection
of codewords inFn

2 (i.e.C ⊆ Fn
2), whereF2 is the finite field with two elements. We will only be interested in linear

codes, whereC is in fact a linear subspace ofFn
2, regarded as ann dimensional vector space overF2. If we denote

k := dimC to be the dimension ofC as a linear space, we think of the encoding as stretching a lengthk message into a
lengthn codeword (i.e. a linear map fromFk

2 to Fn
2).

The distance of a coded := minc1 6=c2∈C Hamming-distance(c1,c2) is the minimum hamming distance (i.e. number of
unequal symbols) between two distinct codewords inC. For linear codes, the distanced = minc6=0∈C Hamming-weight(c)
is given by the minimum hamming weight (i.e. number of ones) of a non-zero codeword. As can be easily seen, an
error correcting code can detect up tod−1 errors, and can correct up tob d−1

2 c errors.

We can associate with a linear code ak by n matrix G, known as the generator matrix. The encoding of a lengthk
messagem ∈ Fk

2 is given by the lengthn codewordc ∈ Fn
2, wheremG = c. Similarly, we can associate with a linear

code ann by k matrix P, known as the parity check matrix. The columns ofP generatesC⊥, so a wordc ∈ Fn
2 is a

CS 294, Spring 2009, 4

valid codeword (i.e.c ∈C) iff cP = 0. Assume that a valid codewordc ∈C is corrupted by some errore ∈ Fn
2, forming

a wordc + e. We can use the parity check matrix to detect errors, simply by computing(c + e)P. By properties of
P, we know that(c + e)P = cP + eP = eP, which is known as the syndrome. We can detect errors by checking if
eP = 0 (provided that the hamming weight ofe is at mostd −1), and can correct errors by deducing a uniquee from
eP (provided that the hamming weight ofe is at mostb d−1

2 c).

9 CSS code

We describe a quantum error correcting code due to Calderbank, Shor and Stein.

Our starting point is two linear error correcting codesC1 andC2, whereC1 ⊆C2 ⊆ Fm
2 with |C1| = 2k1 and|C2| = 2k2.

We require that the second codeC2 and the dual code of the first codeC⊥
1 be good error correcting codes, each

correcting up tot errors.

In our quantum error correcting code, the codewords are cosets ofC1 in C2, having the form

∣

∣C1 + x
〉

=
1

√

|C1|
∑

y∈C1

∣

∣y + x
〉

,

for somex ∈ C2. Hence, the quantum error correcting code has 2k2−k1 codewords. CSS code encodesk2− k1 qubits
into m qubits and can correct up tot qubit errors. The theory of classical error correcting codes shows that we can find
codesC1 andC2 with reasonable value oft, given parametersk2− k1 andm.

Recall that it is enough to be able to correct all bit flips and all phase flips. Assume that a codeword
∣

∣C1 + x
〉

is first
corrupted by a phase flip errorep and then a bit flip erroreb, giving the corrupted state

1
√

|C1|
∑

y∈C1

(−1)(y+x)·ep
∣

∣y + x + eb
〉

= ∑
y∈C1

βy
∣

∣y + x + eb
〉

.

Our quantum error correcting algorithm has two stages, one for bit flips and one for phase flips.

In the first stage we correct up tot bit flips. Essentially, we apply the parity check matrixPC2 for codeC2 to compute
the syndrome, allowing us to undo the bit flips.

∑
y∈C1

βy
∣

∣y + x + eb
〉∣

∣0
〉 applyPC2−−−−−−−→ ∑

y∈C1

βy
∣

∣y + x + eb
〉∣

∣ebPC2

〉 compute and undoeb−−−−−−−−−−−−−−−→ ∑
y∈C1

βy
∣

∣y + x
〉∣

∣ebPC2

〉

.

We discard (or measure) the second register to obtain the state∑y∈C1
βy

∣

∣y+x
〉

, which is only corrupted by phase flips.

In the second stage we correct up tot phase flips. Essentially, we convert phase flips into bit flipsand repeat the first
stage to correct the errors. Recall that

∣

∣C1+x
〉

is mapped toχ(x) ·
∣

∣C⊥
1

〉

under Fourier transform, meaning that Fourier
transform turns bit flips into phase flips, and vice versa. Indeed,

∑
y∈C1

βy
∣

∣y + x
〉

=
1

√

|C1|
∑

y∈C1

(−1)(y+x)·ep
∣

∣y + x
〉 Fourier transform−−−−−−−−−−−−→ 1

√

|C⊥
1 |

∑
k∈C⊥

1

(−1)x·k∣
∣k + ep

〉

= ∑
k∈C⊥

1

αk

∣

∣k + ep
〉

.

We repeat the first stage, using the parity check matrixPC⊥
1

of the codeC⊥
1 instead.

∑
k∈C⊥

1

αk

∣

∣k + ep
〉∣

∣0
〉

applyPC⊥
1−−−−−−−→ ∑

k∈C⊥
1

αk

∣

∣k + ep
〉∣

∣epPC⊥
1

〉 compute and undoep−−−−−−−−−−−−−−−→ ∑
k∈C⊥

1

αk

∣

∣k
〉∣

∣epPC⊥
1

〉

.

After discarding (or measuring) the second register to get∑k∈C⊥
1

αk

∣

∣k
〉

, we recover the codeword with a Fourier
transform.

∑
k∈C⊥

1

αk

∣

∣k
〉

=
1

√

|C⊥
1 |

∑
k∈C⊥

1

(−1)x·k∣
∣k

〉 Fourier transform−−−−−−−−−−−−→ 1
√

|C1|
∑

y∈C1

∣

∣y + x
〉

=
∣

∣C1 + x
〉

.

CS 294, Spring 2009, 5

