
Phase Estimation

In this lecture we will describe Kitaev’s phase estimation algorithm, and use it to obtain an alternate derivation of a
quantum factoring algorithm. We will also use this technique to design quantum circuits for computing the Quantum
Fourier Transform modulo an arbitrary positive integer.

0.1 Phase Estimation Technique

In this section, we define the phase estimation problem and describe an efficient quantum circuit for it.

Property 0.1 Let U be a N×N unitary transformation. U has an orthonormal basis of eigenvectors
∣

∣ψ1
〉

,
∣

∣ψ2
〉

, . . . ,
∣

∣ψN
〉

with eigenvaluesλ1,λ2, . . . ,λN, whereλ j = e2π iθ j for someθ j .

Proof: U , being unitary, maps unit vectors to unit vectors and hence all the eigenvalues have unit magnitude, i.e. they
are of the forme2π iθ for someθ . Let

∣

∣ψ j
〉

and
∣

∣ψk
〉

be two distinct eigenvectors with distinct eigenvaluesλ j andλk.
We have thatλ j〈ψ j ,ψk〉 = 〈λ jψ j ,ψk〉 = 〈Uψ j ,ψk〉 = 〈ψ j ,Uψk〉 = 〈ψ j ,λ ψk〉 = λk〈ψ j ,ψk〉. Sinceλ j 6= λk, the inner
product〈ψ j ,ψk〉 is 0, i.e. the eigenvectors

∣

∣ψ j
〉

and
∣

∣ψk
〉

are orthonormal.2

Given a unitary transformationU , and one of its eigenvector
∣

∣ψ j
〉

, we want to figure out the corresponding eigenvalue
λ j (or, equivalently,θ j ). This is the phase estimation problem.

Definition 0.2 For any unitary transformation U, let C-U stand for a “controlled U” circuit which conditionally
transforms

∣

∣ψ
〉

to U
∣

∣ψ
〉

as shown in Figure??.

∣

∣ψ
〉

U
∣

∣ψ ′
〉

b

if b = 0 then
∣

∣ψ ′
〉

=
∣

∣ψ
〉

else ifb = 1 then
∣

∣ψ ′
〉

= U
∣

∣ψ
〉

Figure 0.1: Controlled U Circuit

Assume that we have a circuit which implements the controlledU transformation (We will see later in the course how
to construct a circuit that implements a controlledU transformation given a circuit that implementsU). The phase
estimation circuit in Figure??can be used to estimate the value ofθ .

The phase estimation circuit performs the following sequence of transformations:

∣

∣0
〉∣

∣ψ
〉 H−→ s.t. (

∣

∣0
〉

+
∣

∣1
〉

)
∣

∣ψ
〉

C-U−→ s.t.
∣

∣0
〉∣

∣ψ
〉

+ s.t.
∣

∣1
〉

λ
∣

∣ψ
〉

= ( s.t.
∣

∣0
〉

+
λ√
2

∣

∣1
〉

)⊗
∣

∣ψ
〉
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∣

∣ψ
〉

U

∣

∣0
〉

MeasureH H

Figure 0.2: Phase Estimation Circuit

Note that after theC-U transformation, the eigenvector remains unchanged while we have been able to putλ into the
phase of the first qubit. A Hadamard transform on the first qubit will transform this information into the amplitude
which we will be able to measure.

H−→ 1+ λ√
2

∣

∣0
〉

+
1−λ√

2

∣

∣1
〉

Let P(0) andP(1) be the probability of seeing a zero and one respectively on measuring the first qubit. If we write
λ = e2π iθ , we have:

P(0) =

∣

∣

∣

∣

1+cos2πθ + i sin2πθ√
2

∣

∣

∣

∣

2

=
1+cos2πθ

2

P(1) =

∣

∣

∣

∣

1−cos2πθ − i sin2πθ√
2

∣

∣

∣

∣

2

=
1−cos2πθ

2

There is a bias of12 cos2πθ in the probability of seeing a 0 or 1 upon measurement. Hence,we can hope to estimate
θ by performing the measurement several times. However, to estimate cos2πθ within m bits of accuracy, we need to
performΩ(2m) measurements. This follows from the fact that estimating the bias of a coin to withinε with probability

at least 1− δ requiresΘ( log(1/δ )
ε2 ) samples.

We will now see how to estimateθ efficiently. Suppose we can implement theCm-U transformation as defined below.

∣

∣ψ
〉

U Uk(
∣

∣ψ
〉

)

k
(m bits)

k∈ {0,1, . . . ,2m−1}

Figure 0.3: m-Controlled U Circuit

Definition 0.3 For any unitary transformation U, let Ck-U stand for a “k-controlled U” circuit which implements the
transformation

∣

∣k
〉

⊗
∣

∣ψ
〉

−→
∣

∣k
〉

⊗Uk
∣

∣ψ
〉

as shown in Figure??.
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Estimatingθ within m bits of accuracy is equivalent to estimating integerj, where j
2m is the closest approximation to

θ . Let M = 2m andwM = e
2π i
M .

The circuit in Figure??performs the following sequence of transformations:

∣

∣0m〉
∣

∣ψ
〉 H⊗m

−→
(

1√
M

M−1

∑
k=0

∣

∣k
〉

)

⊗
∣

∣ψ
〉

Cm-U−→
(

1√
M

M−1

∑
k=0

λ k
∣

∣k
〉

)

⊗
∣

∣ψ
〉

=

(

1√
M

M−1

∑
k=0

wjk
M

∣

∣k
〉

)

⊗
∣

∣ψ
〉

Note that the first register now contains the Fourier Transform mod M of j and if we apply the reverse of the Fourier
Transform mod M (note that quantum circuits are reversible), we will get backj.

QFT−1
M−→

∣

∣ j
〉

⊗
∣

∣ψ
〉

∣

∣ψ
〉

U

∣

∣0m
〉 ∣

∣ j
〉

QFT−1
MH⊗m

Figure 0.4: Efficient Phase Estimation Circuit

If θ = j
2m , then clearly the circuit outputsj. If θ ≈ j

2m , then the circuit outputsj with high probability (Exercise!).

0.2 Kitaev’s Factoring Algorithm

In this section, we will see how to use the phase estimation circuit to factor a number.

Recall that the problem of factoring reduces to the problem of order finding. To factorN, it is sufficient to pick a
random numbera and compute the minimum positiver such thatar ≡ 1 modN. With reasonable probability,r is even
andar/2 6≡ ±modN and henceN | ar −1, i.e.N | (ar/2+1)(ar/2−1). SinceN does not dividear/2±1, it must be the
case that a part of it dividesar/2 +1 and hencegcd(N,ar/2 +1) is a non-trivial factor ofN.

We now reduce the problem of order finding to the phase estimation problem. Consider the unitary transformation
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Ma :
∣

∣x
〉

→
∣

∣xamodN
〉

. Its eigenvectors are
∣

∣ψk
〉

= 1√
r

(

∣

∣1
〉

+w−k
∣

∣a
〉

+ . . .+w−k(r−1)
∣

∣ar−1
〉

)

, wherew = e2π i/r :

Ma
∣

∣ψk
〉

=
1√
r

(

∣

∣a
〉

+w−k
∣

∣a2〉 + . . .+w−k(r−1)
∣

∣ar〉
)

= wk 1√
r

(

∣

∣1
〉

+w−k
∣

∣a
〉

+ . . .+w−k(r−1)
∣

∣ar−1〉
)

= wk
∣

∣ψk
〉

It follows that
∣

∣ψk
〉

is an eigenvector ofMa with eigenvaluewk. Hence, if we can implement theCm-Ma transformation
and construct the eigenvectorψk for some suitablek, we can use the phase estimation circuit to obtain an approximation
to the eigenvaluewk and therefore reconstructr as follows: wk = e2π iθ for θ = k/r. Recall that phase estimation
reconstructsθ ≈ j

2m where j is the output of the phase estimation procedure carried out to m bits of precision. Thus

with high probability j
2m is a very close approximation tokr . Assuming thatk is relatively prime tor (which we will

ensure with high probability) we can estimater using the method of continued fractions if we chooseM ≈ N2.

Lets look carefully at theCm-Ma transformation. It transforms
∣

∣k
〉∣

∣x
〉

→
∣

∣xak modN
〉

. But this is precisely the
transformation that does modular exponentiation. There exists a classical circuit that performs this transformationin
O(|x|2|k|) time, and thus we can construct a quantum circuit that implements theCm-Ma transformation.

It is not obvious how to obtain an eigenvector
∣

∣ψk
〉

for somek, but it is easy to obtain the uniform superposition of

the eigenvectors
∣

∣ψ0
〉

,
∣

∣ψ1
〉

. . .
∣

∣ψr−1
〉

. Note that 1√
r

r−1
∑

k=0

∣

∣ψk
〉

=
∣

∣1
〉

. Hence, if we use
∣

∣1
〉

as the second input to the

phase estimation circuit, then we will be able to measure a random eigenvaluewk, wherek is chosen u.a.r. from the
set{0, . . . , r − 1}. Note thatk = 0 is completely useless for our purposes. Butk will be relatively prime tor with
reasonable probability.

∣

∣1
〉

Ma

∣

∣0m
〉 ∣

∣ j
〉

QFT−1
MQFTM

Figure 0.5: Order Finding Circuit (Kitaev’s)

With these observations, it is easy to see that the circuit inFigure??outputs
∣

∣ j
〉

with high probability, where j
2m is the

closest approximation tokr for some randomk. Note that with reasonable probability,k is relatively prime tor and if
that is the case, then we can estimater using the method of continued fractions if we chooseM ≈ N2. Note also that
QFTM andH⊗q act in an identical manner on

∣

∣0q
〉

, soH⊗q could be used in the above circuit in place of theQFTM

transformation.

Though the thinking and the analysis behind the Kitaev’s andShor’s order-finding algorithm are different, it is inter-
esting to note that the two circuits are almost identical. Figure??describes the Shor’s circuit. The quantitiesq, Q and
x in the Shor’s algorithm correspond tom, M anda in the Kitaev’s algorithm. Also, note that raisinga to some power
is same as performing controlled multiplication.
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x xk( modN)

∣

∣0q
〉

measureQFTQQFTQ

Figure 0.6: Order Finding Circuit (Shor’s)

0.3 QFT mod Q

In this section, we will present Kitaev’s quantum circuit for computing Fourier Transform over an arbitrary positive
integerQ, not necessarily a power of 2. Letm be such that 2m−1 < Q≤ 2m and letM = 2m.

Recall that the Fourier Transform modQ sends

∣

∣a modQ
〉

−→ 1√
Q

Q−1

∑
b=0

wab
∣

∣b
〉 let

=
∣

∣χa
〉

wherew = e2π i/Q. Note that{
∣

∣χa
〉

| a = 0,1, . . . ,Q−1} forms an orthonormal basis, so we may regard the Fourier
Transform as a change of basis.

Consider the following sequence of transformations, whichcomputes something close to the Fourier Transform mod
Q:

∣

∣a
〉∣

∣0
〉

−→
∣

∣a
〉

⊗ 1√
Q

Q−1

∑
b=0

∣

∣b
〉

−→
∣

∣a
〉

⊗ 1√
Q

Q−1

∑
b=0

wab
∣

∣b
〉

=
∣

∣a
〉

⊗
∣

∣χa
〉

We can implement the circuit that sends
∣

∣0
〉

−→ 1√
Q

Q−1
∑

b=0

∣

∣b
〉

efficiently in the following two ways:

1. Perform the following sequence of transformations.

∣

∣0
〉m⊗

∣

∣0
〉 H⊗m

−→ 1
M

2m−1

∑
x=0

∣

∣x
〉∣

∣0
〉 x≥Q−→ 1

M

2m−1

∑
x=0

∣

∣x
〉∣

∣x≥Q
〉

Note that since we can efficiently decide whether or notx≥Q classically, we can also do so quantum mechan-
ically. Now take measurement on the second register. If the result is a 0, the first register contains a uniform
superposition over

∣

∣0
〉

, . . . ,
∣

∣Q−1
〉

. If not, we repeat the experiment. At each trial, we succeed with probability
Q/M > 2m−1/2m = 1/2.

2. If we pick a number u.a.r. in the range 0 toQ−1, the most significant bit of the number is 0 with probability
2m−1/Q. We can therefore set the first bit of our output to be the superposition:

√

2m−1

Q

∣

∣0
〉

+

√

1− 2m−1

Q

∣

∣1
〉
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If the first bit is 0, then the remainingm−1 bits may be chosen randomly and independently, which correspond
to the output ofH⊗m−1 on

∣

∣0m−1
〉

. If the first bit is 1, we need to pick the remainingm−1 bits to correspond to
a uniformly chosen random number between 0 andQ−2m−1, which we can do recursively.

The second transformation
∣

∣a
〉∣

∣b
〉

→ wab
∣

∣a
〉∣

∣b
〉

can be made using the controlled phase shift circuit.

This gives us an efficient quantum circuit for
∣

∣a
〉∣

∣0
〉

→
∣

∣a
〉∣

∣χa
〉

, but what we really want is a circuit for
∣

∣a
〉

→
∣

∣χa
〉

.
In particular, for application to factoring, we need a circuit that “forgets” the inputa in order to have interference in
the superposition over

∣

∣χa
〉

.

What we would like is a quantum circuit that transforms
∣

∣a
〉∣

∣χa
〉

→
∣

∣0
〉∣

∣χa
〉

. If we could find a unitary transformation
U with eigenvector

∣

∣χa
〉

and eigenvaluee2π ia/Q, then we could use phase estimation to implement the transformation
∣

∣0
〉∣

∣χa
〉

→
∣

∣a
〉∣

∣χa
〉

. By reversing the quantum circuit for phase estimation (which we could do since quantum circuits
are reversible), we have an efficient quantum circuit for

∣

∣a
〉∣

∣0
〉

→
∣

∣a
〉∣

∣χa
〉

→
∣

∣0
〉∣

∣χa
〉

which is what we need. Note that the phase estimation circuitwith mbits of precision outputsj such that j
2m ≈ a

Q . So

if we take 2m >> Q2, we can use continued fractions to reconstructa as required above.

To see that the requiredU exists, considerU :
∣

∣x
〉

→
∣

∣x−1 modQ
〉

. Then,

U(χa) = U

(

Q−1

∑
b=0

wab
∣

∣b
〉

)

=
Q−1

∑
b=0

wab
∣

∣b−1
〉

= wa
Q

∑
b=1

wa(b−1)
∣

∣b−1
〉

= waχa.

In addition, note thatUk can be efficiently computed with a classical circuit, and cantherefore be both efficiently and
reversibly computed with a quantum circuit. The overall circuit to computeQFT modQ is shown in Figure?? (The
circuit should be read from right to left).

U

QFT−1
MH⊗m

H⊗m
∣

∣0m
〉

∣

∣a
〉

Controlled
Phase
Shift

∣

∣a
〉

χa

←−

Figure 0.7: Using Reverse Phase Estimation Circuit to do QFTmod Q for arbitrary Q

0.4 Mixed Quantum State

Next, we will outline a very interesting application of phase estimation. Before we can do this, we must introduce
some concepts in quantum information theory.

So far we have dealt withpurequantum states

|ψ〉= ∑
x

αx|x〉.
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This is not the most general state we can think of. We can consider a probability distribution of pure states, such as|0〉
with probability 1/2 and|1〉 with probability 1/2. Another possibility is the state

{

|+〉= 1√
2
(|0〉+ |1〉) with probability 1/2

|−〉= 1√
2
(|0〉− |1〉) with probability 1/2

In fact, no measurement can distinguish the first case
(∣

∣0
〉

or
∣

∣1
〉)

from this case. This will be seen below.

In general, we can think ofmixedstate{pi , |ψi〉} as a collection of pure states|ψi〉, each with associated probability
pi , with the conditions 0≤ pi ≤ 1 and∑i pi = 1. One context in which mixed states arise naturally is in quantum
protocols, where two players share an entangled (pure) quantum state. Each player’s view of their quantum register
is then a probability distribution over pure states (achieved when the other player measures their register). Another
reason we consider such mixed states is because the quantum states are hard to isolate, and hence often entangled to
the environment.

0.5 Density Matrix

Now we consider the result of measuring a mixed quantum state. Suppose we have a mixture of quantum states|ψi〉
with probability pi . Each|ψi〉 can be represented by a vector inC 2n

, and thus we can associate the outer product
|ψi〉〈ψi |= ψiψ∗i , which is an 2n×2n matrix











a1

a2
...

aN











(

ā1 ā2 · · · āN
)

=











a1ā1 a1ā2 · · · a1āN

a2ā2 a1ā2 · · · a2āN
...

...
aNā1 aNā2 · · · aNāN











.

We can now take the average of these matrices, and obtain thedensity matrixof the mixture{pi , |ψi〉}:

ρ = ∑
i

pi |ψi〉〈ψi |.

We give some examples. Consider the mixed state|0〉 with probability of 1/2 and|1〉 with probablity 1/2. Then

|0〉〈0|=
(

1
0

)

(

1 0
)

=

(

1 0
0 0

)

,

and

|1〉〈1|=
(

0
1

)

(

0 1
)

=

(

0 0
0 1

)

.

Thus in this case

ρ =
1
2
|0〉〈0|+ 1

2
|1〉〈1|=

(

1/2 0
0 1/2

)

.

Now consider another mixed state, this time consisting of|+〉 with probability 1/2 and|−〉 with probability 1/2. This
time we have

|+〉〈+|= (1/2)

(

1
1

)

(

1 1
)

=
1
2

(

1 1
1 1

)

,

and

|−〉〈−|= (1/2)

(

1
−1

)

(

1 −1
)

=
1
2

(

1 −1
−1 1

)

.
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Thus in this case the offdiagonals cancel, and we get

ρ =
1
2
|+〉〈+|+ 1

2
|−〉〈−|=

(

1/2 0
0 1/2

)

.

Note that the two density matrices we computed are identical, even though the mixed state we started out was different.
Hence we see that it is possible for two different mixed states to have the same density matrix.

Nonetheless, the density matrix of a mixture completely determines the effects of making a measurement on the
system:

Theorem 0.1: Suppose we measure a mixed state{p j , |ψ j〉} in an orthonormal bases|βk〉. Then the outcome is|βk〉
with probability〈βk|ρ |βk〉.

Proof: We denote the probability of measuring|βk〉 by Pr[k]. Then

Pr[k] = ∑
j

p j |〈ψ j |βk〉|2

= ∑
j

p j〈βk|ψ j〉〈ψ j |βk〉

=

〈

βk

∣

∣

∣

∣

∣

∑
j

p j |ψ j〉〈ψ j |
∣

∣

∣

∣

∣

βk

〉

= 〈βk|ρ |βk〉.
2

Thus mixtures with the same density matrix are indistinguishable by measurement. It will be shown in the next section
that, in fact, two mixtures are distinguishable by measurement if and only if they have different density matrices.

We list several properties of the density matrix:

1. ρ is Hermitian, so the eigenvalues are real and the eigenvectors orthogonal.

2. If we measure in the standard basis the probability we measure i, P[i] = ρi,i . Also, the eigenvalues ofρ are
non-negative. Suppose thatλ and|e〉 are corresponding eigenvalue and eigenvector. Then if we measure in the
eigenbasis, we have

Pr[e] = 〈e|ρ |e〉= λ 〈e|e〉= λ .

3. trρ = 1. This is because if we measure in the standard basisρi,i = Pr[i] but also∑i Pr[i] = 1 so that∑i ρi,i =

∑i Pr[i] = 1.

Consider the following two mixtures and their density matrices:

cosθ |0〉+sinθ |1〉 w.p. 1/2 = 1
2

(

cθ
sθ

)

(

cθ sθ
)

= 1
2

(

c2θ cθsθ
cθsθ s2θ

)

cosθ |0〉−sinθ |1〉 w.p. 1/2 = 1
2

(

cθ
−sθ

)

(

cθ −sθ
)

= 1
2

(

c2θ −cθsθ
−cθsθ s2θ

)















=

(

cos2 θ 0
0 sin2 θ

)

|0〉 w.p.cos2 θ = cos2
(

1
0

)

(

1 0
)

= cos2
(

1 0
0 0

)

|1〉 w.p. sin2 θ = sin2 θ
(

0
1

)

(

0 1
)

= sin2
(

0 0
0 1

)















=

(

cos2 θ 0
0 sin2 θ

)

Thus, since the mixtures have identical density matrices, they are indistinguishable.
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0.6 Von Neumann Entropy

We will now show that if two mixed states are represented by different density measurements, then there is a measure-
ment that distinguishes them. Suppose we have two mixed states, with density matricesA andB such thatA 6= B. We
can ask, what is a good measurement to distinguish the two states? We can diagonalize the differenceA−B to get
A−B= EΛE∗, whereE is the matrix of orthogonal eigenvectors. Then ifei is an eigenvector with eigenvalueλi, then
λi is the difference in the probability of measuringei :

PrA[i]−PrB[i] = λi .

We can define the distance between two probability distributions (with respect to a basisE) as

|DA−DB|E = ∑ (PrA[i]−PrB[i]) .

If E is the eigenbasis, then
|DA−DB|E = ∑

i
|λi|= tr|A−B|= ‖A−B‖tr,

which is called the trace distance betweenA andB.

Claim Measuring with respect to the eigenbasisE (of the matrixA−B) is optimal in the sense that it maximizes the
distance|DA−DB|E between the two probability distributions.

Before we prove this claim, we introduce the following definition and lemma without proof.

Definition Let {ai}Ni=1 and{bi}Ni=1 be two non-increasing sequences such that∑i ai = ∑i bi. Then the sequence{ai}
is said to majorize{bi} if for all k,

k

∑
i=1

ai ≥
k

∑
i=1

bi .

Lemma[Schur] Eigenvalues of any Hermitian matrix majorizes the diagonal entries (if both are sorted in nonincreasing
order).

Now we can prove our claim.

Proof Since we can reorder the eigenvectors, we can assumeλ1≥ λ2≥ ·· · ≥ λn. Note that tr(A−B) = 0, so we must
have∑i λi = 0. We can split theλi ’s into two groups: positive ones and negative ones, we must have

∑
λi>0

=
1
2
‖A−B‖tr ∑

λi<0

=−1
2
‖A−B‖tr.

Thus

max
k

k

∑
i=1

λi =
1
2
‖A−B‖tr.

Now consider measuring in another basis. Then the matrixA−B is represented asH = F(A−B)F∗, and letµ1 ≥
µ2≥ ·· · ≥ µn be the diagonal entries ofH. Similar argument shows that

max
k

k

∑
i=1

µi =
1
2

n

∑
i=1
|µi |=

|DA−DB|F
2

.

But by Schur’s lemma theλi ’s majorizesµi ’s, so we must have

|DA−DB|F ≤ |DA−DB|E = ‖A−B‖tr.
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Let H(X) be theShannon Entropyof a random variable X which can take on statesp1 . . . pn.

H({pi}) = ∑
i

pi log
1
pi

In the quantum world, we define an analogous quantity,S(ρ), theVon Neumann entropyof a quantum ensemble with
density matrixρ with eigenvaluesλ1, . . . ,λn:

S(ρ) = H{λ1, . . . ,λn}= ∑
i

λi log
1
λi

0.7 Phase Estimation and Mixed State Computation

Liquid NMR (Nuclear Magnetic Resonance) quantum computershave successfully implemented 7 qubits and per-
formed a stripped down version of quantum factoring on the number 15. In liquid NMR, the quantum register is
composed of the nuclear spins in a suitably chosen molecule -the number of qubits is equal to the number of atoms
in the molecule. We can think of the computer as consisting ofabout 1016 such molecules (a macroscopic amount
of liquid), each controlled by the same operations simultaneously. Thus we will have 1016 copies of our state, each
consisting of say 7 qubits. We assume that we can address the qubits individually, so that for example, we could
preform an operation such asCNOT on the 2nd and 4th qubit (simultaneously on each copy).

The catch in liquid NMR quantum computing is that initializing the register is hard. Each qubit starts out in state|0〉
with probability 1/2+ ε and in state|1〉 with probability 1/2− ε. Hereε depends upon the strength of the magnetic
field that the liquid sample is placed in. Using very strong magnets in the NMR apparatus, the polarizationε is still
about 10−5.

If ε = 0 then the density matrix describing the quantum state of theregister isρ = 1
2n I . This means that if we apply

a unitary transformationU , the density matrix of the resulting state isI →U UIU † = I . So you cannot perform any
meaningful computation.

The way NMR quantum computation works is this: the initial mixed state (withε = 10−5) is preprocessed (through a
sequence of quantum gates) to obtain a new mixed state which is maximally mixed (12n I ) with probability 1− δ and
|0000000〉 with probability δ . Now, if we apply a unitary transformation to this state, we get 1

2n I with probability
1−δ andU |0000000〉with probabilityδ . Thus if we measure the state, we obtain a coin flip with biasδ 2 towards the
correct answer. Another way of thinking about this is that the 1

2n I gives no net signal in the measurement, while the
δ 2 signal gets amplified by the 1016 copies of the computation being carried out simultaneously. The problem is that
δ is exponentially small inn the number of qubits. Therefore liquid NMR quantum computation cannot scale beyond
10-20 qubits.

What if we tried one qubit withε-bias and n-1 qubits maximally mixed?

Question: Say we have a single clean bit (andn maximally mixed qubits), what can we do with this?

We can do at least one quantum computation, phase estimationto approximate the trace of a unitary matrix. Use the
single clean qubit as the control bit and apply the (controlled) unitary to then maximally mixed qubits. We can think
of the n qubits as being a uniform mixture over the eigenvectors of the unitary, and upon measuring, we get out a
random eigenvalue estimate for trace(U). See Figure??
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Figure 0.8: Phase Estimation Circuit for Trace(U)

Is there anything else that we can do with just one qubit? Can you prove limits on what can be done with one clean
qubit? And where is the entanglement in the computation?
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