Phase Estimation
In this lecture we will describe Kitaev’'s phase estimatitgoathm, and use it to obtain an alternate derivation of a
guantum factoring algorithm. We will also use this tech®igo design quantum circuits for computing the Quantum
Fourier Transform modulo an arbitrary positive integer.

0.1 Phase Estimation Technique

In this section, we define the phase estimation problem asctitbe an efficient quantum circuit for it.

Property 0.1 LetU be a Nx N unitary transformation. U has an orthonormal basis of eiwctorq Lp1>, Lp2> e ]l,UN>

with eigenvalueds, Az, ..., An, whereAj = €% for some#;.

Proof: U, being unitary, maps unit vectors to unit vectors and heti¢teeeigenvalues have unit magnitude, i.e. they
are of the forme?™® for some®. Let |gj) and|yi) be two distinct eigenvectors with distinct eigenvaldgsndAy.

We have thaf\ j (@;, Yk) = (Aj@;, di) = U, ) = (W, U ) = (YPj, A ) = AW, Yi). SinceAj # Ay, the inner
product(y;, Yx) is O, i.e. the eigenvectotﬂlj) and]t,uk> are orthonormald

Given a unitary transformatidd, and one of its eigenvect@tq) , we want to figure out the corresponding eigenvalue
Aj (or, equivalentlyf;). This is the phase estimation problem.

Definition 0.2 For any unitary transformation U, let C-U stand for a “contled U” circuit which conditionally
transforms|y) to U|y) as shown in Figur@?.

v — v [ )

if b= 0 then|y’) = |¢)
else ifb = 1 then|y’) =U|y)

Figure 0.1: Controlled U Circuit

Assume that we have a circuit which implements the conaldleransformation (We will see later in the course how
to construct a circuit that implements a controllédransformation given a circuit that implemett3. The phase
estimation circuit in Figur@? can be used to estimate the valuedof

The phase estimation circuit performs the following seqeaesf transformations:

0)]w) = st(0)+[1)]w)
U st |o)|y) + st 1A w)

A
= (s.t.]0>+ﬁ\l>)®]w>
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Figure 0.2: Phase Estimation Circuit

Note that after th€-U transformation, the eigenvector remains unchanged wrél@ave been able to patinto the

phase of the first qubit. A Hadamard transform on the first iqubi transform this information into the amplitude
which we will be able to measure.

H 1+A 1-2
Moo+ A
2 10t Y

Let P(0) andP(1) be the probability of seeing a zero and one respectively omsaréng the first qubit. If we write
A =€ we have:

. 2
P(O):‘1+cosm9+|sm2ne‘ _ 1+ cos26

V2 2
1—cos210 —isin2m@|®> 1— cos2d
P(1) = 7 = >

There is a bias og cos 216 in the probability of seeing a 0 or 1 upon measurement. Hameaan hope to estimate
6 by performing the measurement several times. Howevertim&® cos 216 within m bits of accuracy, we need to
performQ(2™) measurements. This follows from the fact that estimatiregdilas of a coin to withir with probability

atleast - & requires@('c’gé#) samples.

We will now see how to estimati@ efficiently. Suppose we can implement thg-U transformation as defined below.

ke{0,1,...,2m-1}

k
(m bits)

W) — U [ Uw)

Figure 0.3: m-Controlled U Circuit

Definition 0.3 For any unitary transformation U, let)@U stand for a “k-controlled U” circuit which implements the
transformationk) @ |¢) — |k) ® UX|y) as shown in Figure?.
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Estimating@ within mbits of accuracy is equivalent to estimating integ’;,e:vherezim is the closest approximation to
6. LetM = 2" andwy = e

The circuit in Figure?? performs the following sequence of transformations:

M—-1
om il i k
e (s o) el
Cmn-U 1 M-1 Kk )
Y 2§ AMK
(5w ) el

= (ko ) ole)

Note that the first register now contains the Fourier Tramsfimod M of j and if we apply the reverse of the Fourier
Transform mod M (note that quantum circuits are reversjble)will get backj.

QFT,!
—

iely)

07) H=m QFTw' [ [i)

S

Figure 0.4: Efficient Phase Estimation Circuit

If 6= zim then clearly the circuit outputs If 8 ~ zj_m then the circuit outputg with high probability (Exercise!).

0.2 Kitaev's Factoring Algorithm

In this section, we will see how to use the phase estimatimuitito factor a number.

Recall that the problem of factoring reduces to the problémrder finding. To factoiN, it is sufficient to pick a
random numbea and compute the minimum positivesuch thae’ = 1 modN. With reasonable probability,is even
anda’/?2 # + modN and hencé\ | a’ — 1,i.e.N | (@/2+1)(a"/?—1). SinceN does not divide'/2 + 1, it must be the
case that a part of it divide®/? + 1 and hencgcd(N,a /2 + 1) is a non-trivial factor oN.

We now reduce the problem of order finding to the phase estmatroblem. Consider the unitary transformation
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Ma: [X) — [xamodN). Its eigenvectors argi) = % (\1) +wKla) +. ..+W*k(r*1>\ar*1>), wherew = €27/

Ma|th) = \%(]a)+w*k\a2>+...+w*k(r*1)\ar>)
= Wk% (]1) +wX|a) +...+W*k<r’1)]ar’1>)
= wWf|uk)

It follows that|ka> is an eigenvector d¥l, with eigenvalua¥. Hence, if we can implement ti@&,-M, transformation
and construct the eigenvectgy for some suitabl&, we can use the phase estimation circuit to obtain an appetion
to the eigenvalueX and therefore reconstructas follows: wK = €29 for 8 = k/r. Recall that phase estimation
reconstructd ~ 5, wherej is the output of the phase estimation procedure carriedooutlits of precision. Thus
with high probabilityzj—m is a very close approximation é) Assuming thak is relatively prime tar (which we will
ensure with high probability) we can estimatasing the method of continued fractions if we chobse: N2.

Lets look carefully at the&C,-M, transformation. It transforka> |x> — \xak modN>. But this is precisely the
transformation that does modular exponentiation. Theigt®a classical circuit that performs this transformation
O(|x|?|k|) time, and thus we can construct a quantum circuit that imphesitheCr,-M, transformation.

It is not obvious how to obtain an eigenvectqu> for somek, but it is easy to obtain the uniform superposition of
r-1

the eigenvectorfifip), [1) ... |¢r—1). Note that\% Y |W) =|1). Hence, if we us¢l) as the second input to the
k=0

phase estimation circuit, then we will be able to measurendam eigenvalueX, wherek is chosen u.a.r. from the
set{0,...,r —1}. Note thatk = 0 is completely useless for our purposes. Butill be relatively prime tor with
reasonable probability.

0™~ QFTw QFTw I—— |i)

Figure 0.5: Order Finding Circuit (Kitaev’s)

With these observations, it is easy to see that the circltgare?? outputs| j> with high probability, wher%jm is the
closest approximation tb for some randonk. Note that with reasonable probabilikyis relatively prime ta and if
that is the case, then we can estimatesing the method of continued fractions if we chobse: N2. Note also that
QF Ty andH®9 act in an identical manner q0q>, soH®4 could be used in the above circuit in place of QETy
transformation.

Though the thinking and the analysis behind the Kitaev's @ndr’s order-finding algorithm are different, it is inter-
esting to note that the two circuits are almost identicajuFé?? describes the Shor’s circuit. The quantitig€ and

x in the Shor’s algorithm correspondtg M anda in the Kitaev's algorithm. Also, note that raisimgo some power
is same as performing controlled multiplication.
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QFTg QFTo measure

X —— —  xX¥(modN)

Figure 0.6: Order Finding Circuit (Shor’s)

0.0 QFT mod Q

In this section, we will present Kitaev's quantum circuit fmmputing Fourier Transform over an arbitrary positive
integerQ, not necessarily a power of 2. Letbe such that? ! < Q < 2™and letM = 2™,

Recall that the Fourier Transform m@isends

1 Q! let
lamodQ) — 7 bzowab\b> = | Xa)

wherew = €#/Q. Note that{])(a> |la=0,1,...,Q— 1} forms an orthonormal basis, so we may regard the Fourier
Transform as a change of basis.

Consider the following sequence of transformations, wigimmputes something close to the Fourier Transform mod

Q:

0 b) wab b ®
B)10) — )& Z5 3 1b) — [a) 555 5 wl) = Ja) ol
Q-1
We can implement the circuit that senj@ — % y |b) efficiently in the following two ways:
b=0

1. Perform the following sequence of transformations.

0)me o) *0 o 20! j0) =2 20! ) x>Q)

Note that since we can efficiently decide whether onnptQ classically, we can also do so quantum mechan-

ically. Now take measurement on the second register. Ifelsaltis a 0, the first register contains a uniform

superposition ove|t0> \Q— 1> . If not, we repeat the experiment. At each trial, we succeidd pvobability
Q/M >2m-1/om_1/2,

x>Q 1

2. If we pick a number u.a.r. in the range 0@o- 1, the most significant bit of the number is 0 with probability
2™-1/Q. We can therefore set the first bit of our output to be the sagsétion:

il yo+ 1—2;]1>
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If the first bit is 0, then the remaining— 1 bits may be chosen randomly and independently, which spored
to the output oH®™ 1 on \Om*1> . If the first bit is 1, we need to pick the remainimg- 1 bits to correspond to
a uniformly chosen random number between 0 @d2™ 1, which we can do recursively.

The second transformatk}a) |b> — Wab\a> |b> can be made using the controlled phase shift circuit.

This gives us an efficient quantum circuit fiar) |0) — |a) |xa) , but what we really want is a circuit fda) — |xa) -

In particular, for application to factoring, we need a cit¢bat “forgets” the input in order to have interference in
the superposition oveya) .

What we would like is a quantum circuit that transforfa$| xa) — |0) | Xa) . If we could find a unitary transformation

U with eigenvecto*Xa> and eigenvalue?™/Q, then we could use phase estimation to implement the tremafion
|0) | Xa) — |a) | Xa) - By reversing the quantum circuit for phase estimation ¢hie could do since quantum circuits
are reversible), we have an efficient quantum circuit for

[2)10) — [a) |xa) = [0)|Xa)

which is what we need. Note that the phase estimation ciwgtlitm bits of precision output$ such that), ~ % So
if we take 2" >> Q?, we can use continued fractions to reconsteuas required above.

To see that the required exists, considel : |x) — |[x— 1 modQ). Then,
Ut =U [ v} ) = S wilb— 1) —wA S wAb-Y b 1) — v
X = = — = B — = X .
P 2 2 a

In addition, note that/¥ can be efficiently computed with a classical circuit, and itemefore be both efficiently and
reversibly computed with a quantum circuit. The overaltait to computeQFT modQ is shown in Figure? (The
circuit should be read from right to left).

—| Hem QF Ty @ &)
| Controlle
Phase
Shift ‘—
U Xa Heom——— |Om>

Figure 0.7: Using Reverse Phase Estimation Circuit to do @Bd Q for arbitrary Q

0.4 Mixed Quantum State

Next, we will outline a very interesting application of pkasstimation. Before we can do this, we must introduce
some concepts in quantum information theory.

So far we have dealt withurequantum states

W) =3 alx).
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This is not the most general state we can think of. We can densiprobability distribution of pure states, suchGs
with probability 1/2 and|1) with probability 1/2. Another possibility is the state

[+) % (]0) + 1))  with probability 1/2
=) =25 (10)—[1)) with probability 1/2

N

In fact, no measurement can distinguish the first ¢28 or |1) ) from this case. This will be seen below.

In general, we can think ahixedstate{p;, |(i)} as a collection of pure statégi), each with associated probability
pi, with the conditions &< p; <1 andy;pi = 1. One context in which mixed states arise naturally is inndurz
protocols, where two players share an entangled (pure)tagoestate. Each player’s view of their quantum register
is then a probability distribution over pure states (achtewhen the other player measures their register). Another
reason we consider such mixed states is because the quanatesare hard to isolate, and hence often entangled to
the environment.

0.9 Density Matrix

Now we consider the result of measuring a mixed quantum.sBippose we have a mixture of quantum stajes
with probability pi. Each|ys) can be represented by a vectordit', and thus we can associate the outer product
|G (Y| = Yy, which is an 2 x 2" matrix

ar alzil a@z ala:N

a _ _ day aqay -+ aganN
(& & - av)= :

an ayar anaz -+ anan

We can now take the average of these matrices, and obtaitetisity matrixof the mixture{pi, |¢s)}:

p =7 pilun)(Wil.

We give some examples. Consider the mixed g@tevith probability of 1/2 and|1) with probablity /2. Then

oo =(g)10)=(gq).
ma=( 7)o 1)=(g 7).

p=300+3ma-( Y5 2).

Now consider another mixed state, this time consisting-9fwith probability 1/2 and|—) with probability 1/2. This

time we have
=2 (1) =3(1 1)

Si-=wa () -n=3( 1 1)
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Thus in this case the offdiagonals cancel, and we get
1 1 (12 0
=5 gne= (Y5 2.

Note that the two density matrices we computed are idengeah though the mixed state we started out was different.
Hence we see that it is possible for two different mixed statehave the same density matrix.

Nonetheless, the density matrix of a mixture completeledrines the effects of making a measurement on the
system:

Theorem 0.1 Suppose we measure a mixed stgte, |(;) } in an orthonormal baseig). Then the outcome i)
with probability (S| 0| Bk)-

Proof: We denote the probability of measuritfgy) by Piik]. Then
Pk = 3 pjl(wil B0l
]
> Pi(Bl ;) (WilBe)
]
= <Bk > pilwp) (Wil
]
= (BulPlB)-

.

Thus mixtures with the same density matrix are indistinigaide by measurement. It will be shown in the next section
that, in fact, two mixtures are distinguishable by measmtrif and only if they have different density matrices.

O

We list several properties of the density matrix:

1. p is Hermitian, so the eigenvalues are real and the eigemgeatthogonal.

2. If we measure in the standard basis the probability we oreasP]i] = p;i. Also, the eigenvalues ¢ are
non-negative. Suppose thatand|e) are corresponding eigenvalue and eigenvector. Then if vasure in the
eigenbasis, we have

Prie] = (elple) = A(ele) =

3. trp = 1. This is because if we measure in the standard [gasis Pr[i] but alsoy; Pr[i] = 1 so thaty; p;; =

Zi Pr[l] =1

Consider the following two mixtures and their density nes:

2
cos|0) +sinb|l) w.p. 12 = %< gg > (co sb) %( cgsg coso > ( oo . >
cosB|0) —sinf|1) w.p.1/2 = %( _gg )( O —sb) %( cos _C?g ) 0 sirfe

|0) w.p.co8 =cog (1) (1 0) =co§(

10
00 :<c0526 _ O>
1) wp. sifo _sinze(‘l))(o 1) _sinz(g 2) 0 sirfe

Thus, since the mixtures have identical density matri¢esy; &ire indistinguishable.
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0.6 Von Neumann Entropy

We will now show that if two mixed states are represented Hedint density measurements, then there is a measure-
ment that distinguishes them. Suppose we have two mixessstaith density matrices andB such thatA # B. We

can ask, what is a good measurement to distinguish the twes8talNe can diagonalize the differente B to get
A—B=EAE*, whereE is the matrix of orthogonal eigenvectors. Thegifs an eigenvector with eigenvaldg then

Aj is the difference in the probability of measuriag

Prali] — Prg[i] = Ai.
We can define the distance between two probability distidbgt(with respect to a badi) as
(Za~Zele = Y (Prali] - Prali]).
If E is the eigenbasis, then
|Dn— Pl = ZIAiI =tr|A—B[ = |A-Bl|,
which is called the trace distance betweéeandB.

Claim Measuring with respect to the eigenbdasigof the matrixA — B) is optimal in the sense that it maximizes the
distancd Za — Zs|e between the two probability distributions.

Before we prove this claim, we introduce the following ddfom and lemma without proof.

Definition Let {a;}N , and{bj}}\; be two non-increasing sequences such fhat = 5;bi. Then the sequende; }
is said to majorizeb;} if for all k,
k k
a >y b
22

Lemma[Schur] Eigenvalues of any Hermitian matrix majorizes tragdnal entries (if both are sorted in nonincreasing
order).

Now we can prove our claim.

Proof Since we can reorder the eigenvectors, we can asdurmel, > --- > An. Note that tt{A— B) = 0, so we must
havey; A = 0. We can split th;’s into two groups: positive ones and negative ones, we maw h

1 1
3 =5lABle 3 =—jIA-Blk
i>0 Ai<0

Thus
K 1
max) Ai = =||A—Blx.
2X3 X =5 A=l
Now consider measuring in another basis. Then the matrbB is represented dd = F(A— B)F*, and letu; >

U2 > --- > Un be the diagonal entries &f. Similar argument shows that

A |Zn— ZBlr @B|F

malem 5 le pil =

But by Schur’s lemma th&;'s majorizesy;’s, so we must have

|Za— ZBlF < |Za— ZBle = ||A—B||t.
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LetH(X) be theShannon Entropgf a random variable X which can take on stapes. . pn.
1
H({p}) = 3 plog—
|

In the quantum world, we define an analogous quarfig,), the Von Neumann entropyf a quantum ensemble with
density matrixo with eigenvalueds, ..., An:

S(p) =H{A1,...,.An} = Z)\i |09)\£i

0.7 Phase Estimation and Mixed State Computation

Liquid NMR (Nuclear Magnetic Resonance) quantum computesge successfully implemented 7 qubits and per-
formed a stripped down version of quantum factoring on thealmer 15. In liquid NMR, the quantum register is
composed of the nuclear spins in a suitably chosen moledhke rumber of qubits is equal to the number of atoms
in the molecule. We can think of the computer as consistingbmfut 1% such molecules (a macroscopic amount
of liquid), each controlled by the same operations simeltarsly. Thus we will have 16 copies of our state, each
consisting of say 7 qubits. We assume that we can addresautiies ndividually, so that for example, we could
preform an operation such @\ OT on the 2nd and 4th qubit (simultaneously on each copy).

The catch in liquid NMR quantum computing is that initiatigithe register is hard. Each qubit starts out in si@jte
with probability 1/2+ € and in statgl) with probability 1/2 — . Heree depends upon the strength of the magnetic
field that the liquid sample is placed in. Using very stronggmegs in the NMR apparatus, the polarizatois still
about 10°°.

If € =0 then the density matrix describing the quantum state ofdbister isp = 2—1nl. This means that if we apply
a unitary transformatiob, the density matrix of the resulting statelis-y UIUT = I. So you cannot perform any
meaningful computation.

The way NMR quantum computation works is this: the initiaked state (witre = 107°) is preprocessed (through a
sequence of quantum gates) to obtain a new mixed state whiolaximally mixed %I) with probability 1— 6 and
|0000000 with probability 5. Now, if we apply a unitary transformation to this state, et éil with probability

1— 6 andU |0000000 with probabilityd. Thus if we measure the state, we obtain a coin flip with Bfatowards the
correct answer. Another way of thinking about this is th&t%hl gives no net signal in the measurement, while the
&2 signal gets amplified by the 1®copies of the computation being carried out simultaneo@hg problem is that

0 is exponentially small im the number of qubits. Therefore liquid NMR quantum compatatannot scale beyond
10-20 qubits.

What if we tried one qubit wittg-bias and n-1 qubits maximally mixed?
Question Say we have a single clean bit (amdhaximally mixed qubits), what can we do with this?

We can do at least one quantum computation, phase estintatagproximate the trace of a unitary matrix. Use the
single clean qubit as the control bit and apply the (corg)lunitary to then maximally mixed qubits. We can think
of the n qubits as being a uniform mixture over the eigenvectors efuthitary, and upon measuring, we get out a
random eigenvalue estimate for trace(U). See Figare
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Figure 0.8: Phase Estimation Circuit for Trace(U)

Is there anything else that we can do with just one qubit? @anpyove limits on what can be done with one clean
qubit? And where is the entanglement in the computation?
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