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1 Local Hamiltonians

Recall that one postulate of quantum mechanics is that the evolution of a closed quantum system is charac-
terized by a unitary transformation. That is, the stgtpof the system at timg is related to the state)’)
of the system at time by a unitary operatiob) which depends only on timtg andt,,

@) =Uly).

Today we introduce a more refined version of this postulate, which describes the evolution of a quantum
system incontinuoudime. It is stated as follows:

The time evolution of a state of a closed quantum system is describ8diginger’'s equation

d|y)
=Hly).
=5 = Hlw)
H is a fixed Hermitian operator known as the Hamiltonian of the system. In specific, fegahit system,

its HamiltonianH is a 2" x 2" Hermitian matrix, i.eH = HT.

SupposeH has a spectral decomposition
H =73 Ajlep{eil;
]

with eigenvalues\;’s and corresponding eigenvectoes)’s. The statese;)’s are conventionally referred to

as energy eigenstates, or stationary statesjaigithe energy of the state;j). The lowest energy is known

as the ground state energy for the system, and the corresponding energy eigenstate is known as the ground
state.

Now suppose that at tinte= 0 the initial state of the system fig/(0)) = [ej). Then a little calculus tells us
that, at any time t, the system’s state is giverjyt)) = e-!it|g;). So this explains whyg;) are also called
stationary states: their only change in time is to acquires an overall numerical factor.

Generally, suppose that at tirhe- O the initial state i$(0)) = ¥ ; yj|e;), then at any time the state of the
system is given byy(t)) =U (t)[@(0)) = 3 ; uje*it|gj), where

. Zn .
Ut)y=e™ =73 e™e)(el.
=1

Remember that any unitary transformatldrcan be realized by a quantum circuit constructed from a uni-
versal set of quantum gates, il¢.= UtUr_1...Us, whereUj’s are local operations. However, a counting
argument tells us that most unitary operations cannot be efficiently implemented in this way, i.e. they require
the circuit to contain exponentially number of gates. The picture is also similar for Hamiltonians. Not all
Hamiltonians can be easily implemented. The realistic Hamiltonians are local Hamiltonians. They are the

=
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Hamiltonian that can be written as a sum over many local interactions. Specifically, suppose for a system of
n particles,

.
H:ZHJ,
J:

where eacli; acts on at most a constanumber of particles (i.eH; = Aj ® | for somec-particle operator
Aj). Then we say thal is c-local. Such locality is quite physically reasonable, and originates in many
systems from the fact that most interactions fall off with increasing distance of difference in energy.

Local Hamiltonians and quantum circuits can (approximately) simulate each other with polynomial over-
head. To prove this, first observe that for arpcal HamiltoniarH; = A;®1, the exponeng Hi = e A @

is ac-local unitary operations; conversely, for acyocal unitary operationslj, we can also find a-local
HamiltonianH; such thatJ; = e~ Hi.

Suppose we are given a circlit = UrUr_1...U;, whereU;’s are gates. We can write each gate=

e Hi for some local Hamiltoniam;. ThenU = e Hre~Hz et SoU can be implemented by local
Hamiltonians as follows: we first let set the Hamiltonian of the system tid;ba&nd let it evolve for a unit
time, then change its Hamiltonian inkty and let it evolve for another unit time, and so on.

The converse direction is a little complicated. Given a local Hamiltoriany j_; Hj and a time, we want

to use a quantum circuit to simulate the transition opefaioy = e ™Ht. The difficulty arises from the fact
thate Ht £ g-Mitg Mt | =Mt in general, becausd;’s may not commute with each other. Then, how
can we use it to construce "2 Recall thae* has the following Taylor expansion

0 i 2
eX:Zj)J'(':1+X+X+""
j=07

2
So we get
e Hit/n = —iHjt/n+O(n—12),
and hence

efi(H1+H2)t/n —_ efiHlt/ne*int/n + O(iz)
n

Noting thate (Hi+H2)t — (g-i(FitH)t/mn \ye optain
efi(H;H»Hz)t — (efiHlt/nefint/n)n +O(%)

This formula is called Trotter expansion. It can be further generalized to

o i(HuHHo o HOE _ (efiHlt/nefngt/n'_.efiHrt/n)n_i_O(%)_
This gives us the method of simulatieg™t with a quantum circuit, because eaghi!/" is local and can

be efficiently implemented by a quantum circuit. By choosintg be large enough we can obtain a good
approximation oe—'Ht,
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2 QMA

The class NP (non-deterministic polynomial time) contains many thousand of the most important compu-
tational problems. Of these problems, the vast majority are NP-complete. This means that these are the
hardest problems in NP. By this we mean that, if anyone of them can be solved by a polynomial time al-
gorithm, then every problem in NP can be solved by a polynomial time algorithm. The cornerstone of this
theory of NP-completeness is the Cook-Levin theorem, which states that 3-SAT is NP-complete.

A languageL is in NP if there is a polynomial time proof check€rand a polynomialpoly, with the
following property: ifx € L then there is a string with |y| < poly|x|, such thaC(x,y) = 1. If x¢ L, then
for everyy such thaty| < poly(|x|), C(x,y) = 0.

Kitaev gave the quantum analogue of the Cook-Levin theorem by showing that QSAT the quantum analogue
of 3-SAT is complete for the quantum analogue of NP, called BQNP or QMA.

QMA is the quantum generalization of MA — the probabilistic analogue of NP. To define MA, we simply
replace the deterministic polynomial time proof checker with a probabilistic polynomial time proof checker
C. Now if x € L, then there is a stringwith |y| < poly|x|, such thaC(x,y) = 1 with probability at least 23.

If x ¢ L, then for every such thaty| < poly(|x|), C(x,y) = 0 with probability at least 23.

To define QMA, the quantum analogue of MA, we replace the probabilistic polynomial time proof checker
by a quantum polynomial time proof checker. Equally important, the witness stisngow allowed to be
a quantum witness, i.e., it can be a superposition over strings of length apoiggk|).

Remark: If we require the witness y to be classical, but leave the verifier C to be quantum, then the cor-
responding class is usually called QCMA. It is obvious that QCMAMA. But we do not know whether
QCMA is equal to QMA.

BQP is trivially contained in BQNP since it can be simulated by the verifier alone. MA is also contained
in BONP since quantum machines can perform the classical computations of their classical counterparts.
Kitaev's proof that QSAT is BQNP-complete implies a non-trivial upper bound, showind@QatPC P#.

A QMA-Complete Problem

Consider the following probleni:ocal Hamiltonians or QSSAT: LetH; (for j =1,...r) be 5-local Hamil-

tonians om qubits (each specified by compleX 2 2° matrices.). Assume that eath) is scaled so that

all eigenvalues\ of H; satisfy 0< A < 1. LetH = zﬁlej. There is a promise abott that either all

eigenvalues oH are> b or there is an eigenvalue bf that is< a, where 0< a < b < 1 and the difference
1

b—ais at least inverse polynomial m i.e.,b—a> TGOR The problem asks whethklrhas an eigenvalue
<a

The Connection with 3-SAT

In 3-SAT, we are given a formul& on n variables in 3-CNF (conjunctive normal form.) That sjs a
conjunction of many clauses:

f(X1,%X2,...,Xn) =CLAC2A...ACm),

where each clausg is a disjunction of three variables or their negations. For examplaay be(xa VX, V
Xc)-
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We would like to make a corresponding Hamiltontfor each clause;. H; should penalize an assignment
which does not satisfy the clause In the example where; = (Xa VX, V Xc), we want to penalize the assign-
ment state010). If our notion ofpenalizeis to have a positive eigenvalue, then we carHgt |010 (010,

and define the othdd;’s similarly, i.e., eaclH; has a 1 eigenvalue with a corresponding eigenvector that
causes clausg to be false.

Finally, we let

H m
Zi;Hn

so thatH is a sum of 3-local Hamiltonians. It is not hard to see that the smallest eigenvalligsathe
minimum (over all assignments) number of unsatisfied clauses. In partieutaas a 0 eigenvalue exactly
when there is a satisfying assignment for

For general QSAT instances, the Hamiltonidhscannot be simultaneously diagonalized in general, and
the problem appears much harder.

Membership in QMA

We can assume without loss of generality that édgls just a projection matri*(pj> <(Pj } ® 1. The prover
would like to provide convincing and easily verifiable evidence tat 3 ;H; has a small eigenvalue
A < a. The proof consists of (a tensor product of) polynomiahicopies of the corresponding eigenvector
|n), which satisfies\ =5 ; (n|Hj[n). Given a single copy of), the verifier can flip a coin with bia%. as
follows:

1. PickHj = |¢;) (¢ ® 1 at random,

2. Measurén) by projecting ontq (pj>.
This succeeds with probabilitﬁr‘y. Given the promise that < aor A > b, it suffices for the verifier to repeat
this testﬁ times to conclude with high confidence thiak a. Thus polynomial im copies of|n) are

sufficient. Note that since the verifier is performing each test randomly and independently, the prover gains
no advantage by sending an entangled state to the verifier.

QMA-Completeness

To show that QSAT is complete in QMA, we need to show that the universal BQNP problem reduces to it.
That is, given a quantum circdit =U U, _7...U; and a promise that exactly one of the following holds:

1. 3|n), U accepts on inputy) with probability> p; = 1—¢,
2. ¥|n), U accepts on input) with probability < pp = ¢,

The challenge is to design an instance of QSAT which allows us to distinguish the above two cases. i.e. we
wish to specify a sum of local Hamiltonians that has an eigenvector with small eigenvalue if and only if case
1 happens.
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The construction of the local Hamiltonian is analogous to Cook’s theorem. The quantum analogue of the
accepting tableau in Cook’s theorem will be the computational history of the quantum circuit:

L
T = gyl

1 L
S UUia. Uil e,
mt;t t-1 1‘%> |>

where |@) is a valid initial state and@) = U;j|@-1). Thus the computation historyl') is an element
of (¢2)®"@ % *1. Itis a superposition over time steps of the state of the qubits as the quantum circuit
operates on them.

Now the idea of the QMA-completeness proof is to design the Hamiltddianch that:

1. if 3|n), U accepts on inputy) with probability at least * €, then the corresponding computational
history|T) is an eigenvector dfl with eigenvalue at mosgj—,

2. if U rejects on every input with probability at least-k, then all the eigenvalues ¢f are at least

c(l—¢)
LiDe for some constart.

Our Hamiltonian will be the sum of three terms,

H= Hinitial + Hfinal + Hpropagate
The first two terms are simple and express the condition that the computational history starts with a valid
input state, and ends in an accepting state.

We consider the firain qubits ofU’s state to be the input qubits and the remaining m qubits to be the
clean work qubits. The design of thi,itias component should then reflect that at time 0, all of the work bits
are clear:

n
Hinitial = > N ©10) (0],
s=m+1

wherel‘lél) denotes projection onto theeth qubit with value|1).

Assume that the state of the first qubit at the output determines whether or not the input is accepted. Then
Htinal Needs to indicate that at tinhethe first qubit is d1):
Hrinal = N1 @ [L) (L]

The most complicated componentldfis Hpropagate Which captures transitions between time steps.

L
H propagate=— Zl H; )
t=
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where
1 1 .+ 1
Hi = —éut®|t) (t—1|—§Ut ®t-1) (t|+§| @ (Jty ¢|+ [t —12) (t—1)).

The fact that the computational history is a superposition over time steps is quite crucial here. To check that
the correct operation has been applied in stepsuffices to restrict attention to tHe— 1) and|t) clock

states. Now the quantum register is in a superposition over its state at tirheand at timet. Locally
checking this superposition is sufficient to determine whether its ¢looknponent is the result of applying

the quantum gaté; to the clockt — 1 component. This is precisely what the Hamiltontdnabove is
designed to do.

Next we show that ifJ accepts on inputn) with probability at least t €, then the corresponding compu-

tational history|T) = ﬁ St ol@) ®[t) is an eigenvector ofl with eigenvalue at mostt;. We analyze

the contribution from each componentidf First, |T) starts with qubitan+ 1 throughn clear, soHintial
does not contribute tbl |T). Second|T) is a computation of), i.e. |@) = U |@_1) for all t, so we get:

HIT) =~ (=W @) 10— 50 (@) =1+ 5l 1)+ 5 @) [t=1)
= &(—; @~ 5la D=1+ 3@+ 5la 1)
-0,

for no contribution fromHpropergate Finally, U accepts with probability at least-1¢, so onlyH¢ina con-
tributes a penalty to the sum, which is at mp$.

The hard part of the proof lies in showing the converse, i.8.1i&jects on every input with high probability,
then all the eigenvalues ¢f are high. Here we only sketch the proof. For more technical details, please
referto [, 2].

The idea is to writeH as a sum of two Hamiltonian$j; = Hinitiar + Hfinal, H2 = Hpropagate @and to use
the following geometrical lemma, which gives a lower bound on the lowest eigenvalue of a sum of two
Hamiltonians, given some conditions on the eigenvalues and eigenspaces of the two Hamiltonians.

Lemma 8.1 Let H; and H be two Hermitian positive semi-definite matrices, and leaNd N be the
eigenspaces of the eigenvalligespectively. If the angle between &hd N is somef > 0, and the second
eigenvalues of both+and H; are at leastA, then the minimal eigenvalue of H H is at leastA sin2(6/2).

Proof: Supposdd) is an arbitrary eigenvector ¢i; + H,. For at least one of the subspadésor N, the
angle betweend) and this subspace is at Ie%st Without loss of generality, let this subspaceNye Then
we have

(6](H1+H2)[6) = (6]H1|d) + (8]H2|5) > (5|H1]|d).

Supposep), |ut) are the projections db) ontoN; and its orthogonal complemeNt- respectively. Then
we have

(3[H1|8) = (uH|Halp) = All|u™) |2 = A sinf(6/2),

where the first equality follows from the fact thdt and and its complement are invariant to the application
of Hy, the second follows from the definition &f andA, and the last follows fronf||u)||? > sir?(6/2)
because the angle betweldnand|d) is at least9 /2. O

To use the geometrical lemma, we need to give lower bounds on the second eigenvadlyesndi,, as
well as a lower bound ofl.
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We will first bound the second eigenvalueg-ifandH,.
Lemma 8.2 The second eigenvalue of ks at leastl.

Proof: SinceHinitias andHsina are projections, and the eigenspaces of the eigenvaluélili@fi andH+ina
are orthogonal (because they operate on different times), the second eigenvdiue bfyiiia + Hinal iS
simply the minimal second eigenvalue of the two.

Lemma 8.3 The second eigenvalue o} i at Ieastz(Liil)z.

Proof: It turns out that for this argument it is simpler to look-#opagatein a rotated basis. The eigenvalues
of a matrix are not changed when looked at in a different basis. Hence we define the unitaryRyaesrix

follows:

L
R= ZOUtUt,]_...U]_ ® |t> <t|
t=

It is easy to check that
t 1g
R Hpropagat(R: é Zi(l ®|t><t|+| ®|tfl><t*1‘ —1® ‘t71><t| -1 ®|t><t71|>-
t=

We can writeH propagate= | ® AwhereAis a(L+ 1) x (L + 1) matrix of the form:

i -1 0 o o 0o o0 O
-2 1 -3 0o o 0 0 O
o -2 1 -2 0o o o0 o
A_| 0 0 -3 1 -3 0 0 0
]l 0o o 0 -3 1 -3 0 O
o 0 0 0 -3 1 -3 O
o 0o 0 0 0 -3 1 -3
o 0o 0 0 0 0 -3 3
3 3000000
3 0200000
030320000
1 1
| 909203 0000 | g
00030300
000030730
000O0OS3 03
0 00O0OUOZ35 3

So the second smallest eigenvalueH¥opagate IS simply 1 minus the second largest eigenvaludBof
Interestingly, the matriB is the stochastic matrix corresponding to a simple random walk on a line with
L + 1 vertices, with a loop at both ends. By Cheeger inequality, we can ®arsgcond largest eigenvalue
A2 by the conductance of the underlying graph,

l—/\z > Cp2/2,

The conductance of this graphﬂ%, which gives - A, > 2(L7—:5L—1)2 This implies the desired resultl
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It is left to give a lower bound on the angle between the two null spaces.

c(l—¢)
L+1

Proof Sketch We note thaiN;, the null space oH; = Hinitiar + Hrinal, IS the space spanned by all states
with valid input (i.e. all work qubits are clear) and accepting output (i.e. the first qudif)isNz, the null

space ofH, = Hpropagate is the space spanned by all valid computations starting with arbitrary input. We
now want to bound the angBbetweerN; andN,, which is the minimal angle between any two states from
both spaces. For any such two states, their inner product is the sum of contributions from every time leaf
t=0,1,...,L. Due to the fact that) rejects on any input with high probability, the contribution from the

t =0 andt =T leafs together is far from the maximal possible contributﬁﬁl. A careful computation

.. . d(1-¢ d(1-¢
tells us that their inner product is 1 — === L, I(_+1 Lo

Putting the above lemmas together, we obtain the soundness of our construction.

Lemma 8.4 The angle betweenNand N satisfies sif(6/2) > for some constant c.

which implies siR 6 >

To make our Hamiltonian truly 5-local, we need to move from operators on the entire clock to local oper-
ators. To achieve this, we represent the time in unary representatibrobits which serve as the clock
qubits. Specifically, any timeis represented by the stdfiel.. .. 100. .. 0) which begins witht 1's. To modify

the Hamiltonian accordingly, we replace all operators on the clock space by operators that operate on three
qubits at most. We apply the following modifications:

It)(t — 1] — 110/(100 @ |
It — 1) (t] — 100/ (110 @ |
[t)(t| — [110(110 ® |
t—1)(t—1  ~— |100(100® |

where in all these cas¢$10) (100 or the similar terms operate on qubits 1,t,t + 1 of the clock qubits
and the identity operates on the remainirig— 3 clock qubits. To avoid referring to qubits 0 ahd+ 1
which do not exist, we make two exceptions: fot 1, we drop the first bit of the 3-bit operator; foe L,
we drop the last bit of the 3-bit operator.

In addition, we introduce a new terl, ., which checks that the clock bits are a valid unary representation
and penalizes them if they are not. It can be done locally as follows:

L
(/:Iock = 22 |01 (011t ®1.

t=

Our final Hamiltonian is defined to be

/

H' = Hi/nitial + H%inal + Hé)ropagate"" Hclockv
whereH; ..., ;inaI,HI’[,mpagateare the modified version of corresponding original terms.
It is easy to see that the following statement go through with these modificatidhisad€epts on input)
with probability at least 1- €, and|T’) is the corresponding computational history, tHgfH'|T’) < 5.

For the converse direction, observe tHakeeps the subspace that is spanned by all states in which the clock
gubits are valid unary representations invariant, and let us call this subgpalkte orthogonal complement
w is also invariant under the operationldf. H’ operates or? just as the previousl did, and hence
on this subspace the lower bound on the eigenvalues holds as before; on the orthogonal stibsfiaee
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eigenvalue oH’ is at least 1 sincél/, ., detects at least one violation. Hence, overall, the original lower
bound still holds.

Upper bound on QMA

One consequence of the previous proof of QMA-completeness is the following:

Theorem 8.1 QMAC P*,

ReplaceH with | —H, so it either has an eigenvalue greater than or equail+ol — a or all eigenvalues are
smaller thart’ = 1 —b. Consider the trace dfi¥. This is either at least’® or at mostNb¥. We can make
sure thae’® >> N, by choosing >> n%logN. So we just need to estimafa(HK) in P*.

To see this, writelr(H*) = Tr((3;H)*) = Tr(3;,. i Hi.---Hi) = 5,5 Tr(Hj, ---Hj,). Each trace in
this sum is itself just a sum of exponentially many easy to compute contributions, and thus the entire sum is
easily seen to be estimatedRf.
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