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1 Local Hamiltonians
Recall that one postulate of quantum mechanics is that the evolution of a closed quantum system is charac-
terized by a unitary transformation. That is, the state|ψ〉 of the system at timet1 is related to the state|ψ ′〉
of the system at timet2 by a unitary operationU which depends only on timet1 andt2,

|ψ ′〉= U |ψ〉.

Today we introduce a more refined version of this postulate, which describes the evolution of a quantum
system incontinuoustime. It is stated as follows:

The time evolution of a state of a closed quantum system is described byShr̈odinger’s equation:

i
d|ψ〉

dt
= H|ψ〉.

H is a fixed Hermitian operator known as the Hamiltonian of the system. In specific, for ann-qubit system,
its HamiltonianH is a 2n×2n Hermitian matrix, i.e.H = H†.

SupposeH has a spectral decomposition

H = ∑
j

λ j |ej〉〈ej |,

with eigenvaluesλ j ’s and corresponding eigenvectors|ej〉’s. The states|ej〉’s are conventionally referred to
as energy eigenstates, or stationary states, andλ j is the energy of the state|ej〉. The lowest energy is known
as the ground state energy for the system, and the corresponding energy eigenstate is known as the ground
state.

Now suppose that at timet = 0 the initial state of the system is|ψ(0)〉= |ej〉. Then a little calculus tells us
that, at any time t, the system’s state is given by|ψ(t)〉= e−iλ j t |ej〉. So this explains why|ej〉 are also called
stationary states: their only change in time is to acquires an overall numerical factor.

Generally, suppose that at timet = 0 the initial state is|ψ(0)〉= ∑ j µ j |ej〉, then at any timet the state of the
system is given by|ψ(t)〉= U(t)|ψ(0)〉= ∑ j µ je−iλ j t |ej〉, where

U(t) = e−iHt =
2n

∑
j=1

e−iλ j t |ej〉〈ej |.

Remember that any unitary transformationU can be realized by a quantum circuit constructed from a uni-
versal set of quantum gates, i.e.U = UTUT−1 . . .U1, whereU j ’s are local operations. However, a counting
argument tells us that most unitary operations cannot be efficiently implemented in this way, i.e. they require
the circuit to contain exponentially number of gates. The picture is also similar for Hamiltonians. Not all
Hamiltonians can be easily implemented. The realistic Hamiltonians are local Hamiltonians. They are the
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Hamiltonian that can be written as a sum over many local interactions. Specifically, suppose for a system of
n particles,

H =
r

∑
j=1

H j ,

where eachH j acts on at most a constantc number of particles (i.e.H j = A j ⊗ I for somec-particle operator
A j ). Then we say thatH is c-local. Such locality is quite physically reasonable, and originates in many
systems from the fact that most interactions fall off with increasing distance of difference in energy.

Local Hamiltonians and quantum circuits can (approximately) simulate each other with polynomial over-
head. To prove this, first observe that for anyc-local HamiltonianH j = A j⊗ I , the exponente−iH j = e−iA j ⊗ I
is ac-local unitary operations; conversely, for anyc-local unitary operationsU j , we can also find ac-local
HamiltonianH j such thatU j = e−iH j .

Suppose we are given a circuitU = UTUT−1 . . .U1, whereU j ’s are gates. We can write each gateU j =
e−iH j for some local HamiltonianH j . ThenU = e−iHT e−iH2 . . .e−iH1. SoU can be implemented by local
Hamiltonians as follows: we first let set the Hamiltonian of the system to beH1 and let it evolve for a unit
time, then change its Hamiltonian intoH2 and let it evolve for another unit time, and so on.

The converse direction is a little complicated. Given a local HamiltonianH = ∑r
j=1H j and a timet, we want

to use a quantum circuit to simulate the transition operatorU(t) = e−iHt . The difficulty arises from the fact
that e−iHt 6= e−iH1te−iH2t . . .e−iHr t in general, becauseH j ’s may not commute with each other. Then, how
can we usee−iH j t to constructe−iHt ? Recall thatex has the following Taylor expansion

ex =
∞

∑
j=0

x j

j!
= 1+x+

x2

2
+ . . . .

So we get

e−iH j t/n = I − iH jt/n+O(
1
n2),

and hence

e−i(H1+H2)t/n = e−iH1t/ne−iH2t/n +O(
1
n2).

Noting thate−i(H1+H2)t = (e−i(H1+H2)t/n)n, we obtain

e−i(H1+H2)t = (e−iH1t/ne−iH2t/n)n +O(
1
n
).

This formula is called Trotter expansion. It can be further generalized to

e−i(H1+H2+···+Hr )t = (e−iH1t/ne−iH2t/n . . .e−iHr t/n)n +O(
r
n
).

This gives us the method of simulatinge−iHt with a quantum circuit, because eache−iH j t/n is local and can
be efficiently implemented by a quantum circuit. By choosingn to be large enough we can obtain a good
approximation ofe−iHt .
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2 QMA

The class NP (non-deterministic polynomial time) contains many thousand of the most important compu-
tational problems. Of these problems, the vast majority are NP-complete. This means that these are the
hardest problems in NP. By this we mean that, if anyone of them can be solved by a polynomial time al-
gorithm, then every problem in NP can be solved by a polynomial time algorithm. The cornerstone of this
theory of NP-completeness is the Cook-Levin theorem, which states that 3-SAT is NP-complete.

A languageL is in NP if there is a polynomial time proof checkerC and a polynomialpoly, with the
following property: ifx∈ L then there is a stringy with |y| ≤ poly|x|, such thatC(x,y) = 1. If x /∈ L, then
for everyy such that|y| ≤ poly(|x|), C(x,y) = 0.

Kitaev gave the quantum analogue of the Cook-Levin theorem by showing that QSAT the quantum analogue
of 3-SAT is complete for the quantum analogue of NP, called BQNP or QMA.

QMA is the quantum generalization of MA — the probabilistic analogue of NP. To define MA, we simply
replace the deterministic polynomial time proof checker with a probabilistic polynomial time proof checker
C. Now if x∈ L, then there is a stringy with |y| ≤ poly|x|, such thatC(x,y) = 1 with probability at least 2/3.
If x /∈ L, then for everyy such that|y| ≤ poly(|x|), C(x,y) = 0 with probability at least 2/3.

To define QMA, the quantum analogue of MA, we replace the probabilistic polynomial time proof checker
by a quantum polynomial time proof checker. Equally important, the witness stringy is now allowed to be
a quantum witness, i.e., it can be a superposition over strings of length at mostpoly(|x|).
Remark: If we require the witness y to be classical, but leave the verifier C to be quantum, then the cor-
responding class is usually called QCMA. It is obvious that QCMA⊆ QMA. But we do not know whether
QCMA is equal to QMA.

BQP is trivially contained in BQNP since it can be simulated by the verifier alone. MA is also contained
in BQNP since quantum machines can perform the classical computations of their classical counterparts.
Kitaev’s proof that QSAT is BQNP-complete implies a non-trivial upper bound, showing thatBQNP⊆ P#P.

A QMA-Complete Problem

Consider the following problem:Local Hamiltonians or Q5SAT: Let H j (for j = 1, . . . r) be 5-local Hamil-
tonians onn qubits (each specified by complex 25×25 matrices.). Assume that eachH j is scaled so that
all eigenvaluesλ of H j satisfy 0≤ λ ≤ 1. Let H = ∑r

j=1H j . There is a promise aboutH that either all
eigenvalues ofH are≥ b or there is an eigenvalue ofH that is≤ a, where 0≤ a < b≤ 1 and the difference
b−a is at least inverse polynomial inn, i.e.,b−a≥ 1

poly(n) . The problem asks whetherH has an eigenvalue
≤ a.

The Connection with 3-SAT

In 3-SAT, we are given a formulaf on n variables in 3-CNF (conjunctive normal form.) That is,f is a
conjunction of many clausesci :

f (x1,x2, . . . ,xn) = c1∧c2∧ . . .∧cm ,

where each clausec j is a disjunction of three variables or their negations. For example,c j may be(xa∨xb∨
xc).
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We would like to make a corresponding HamiltonianHi for each clauseci . Hi should penalize an assignment
which does not satisfy the clauseci . In the example wherec j = (xa∨xb∨xc), we want to penalize the assign-
ment state|010〉. If our notion ofpenalizeis to have a positive eigenvalue, then we can letH j = |010〉〈010|,
and define the otherHi ’s similarly, i.e., eachHi has a 1 eigenvalue with a corresponding eigenvector that
causes clauseci to be false.

Finally, we let

H =
m

∑
i=1

Hi ,

so thatH is a sum of 3-local Hamiltonians. It is not hard to see that the smallest eigenvalue ofH is the
minimum (over all assignments) number of unsatisfied clauses. In particular,H has a 0 eigenvalue exactly
when there is a satisfying assignment forf .

For general QSAT instances, the HamiltoniansH j cannot be simultaneously diagonalized in general, and
the problem appears much harder.

Membership in QMA

We can assume without loss of generality that eachH j is just a projection matrix
∣∣φ j

〉〈
φ j

∣∣⊗ I . The prover
would like to provide convincing and easily verifiable evidence thatH = ∑ j H j has a small eigenvalue
λ ≤ a. The proof consists of (a tensor product of) polynomial inn copies of the corresponding eigenvector
|η〉, which satisfiesλ = ∑ j 〈η |H j |η〉. Given a single copy of|η〉, the verifier can flip a coin with biasλr as
follows:

1. PickH j =
∣∣φ j

〉〈
φ j

∣∣⊗ I at random,

2. Measure|η〉 by projecting onto
∣∣φ j

〉
.

This succeeds with probabilityλr . Given the promise thatλ ≤ a or λ ≥ b, it suffices for the verifier to repeat

this test r2

(b−a)2 times to conclude with high confidence thatλ ≤ a. Thus polynomial inn copies of|η〉 are
sufficient. Note that since the verifier is performing each test randomly and independently, the prover gains
no advantage by sending an entangled state to the verifier.

QMA-Completeness

To show that QSAT is complete in QMA, we need to show that the universal BQNP problem reduces to it.
That is, given a quantum circuitU = ULUL−1 . . .U1 and a promise that exactly one of the following holds:

1. ∃|η〉, U accepts on input|η〉 with probability≥ p1 = 1− ε,

2. ∀|η〉, U accepts on input|η〉 with probability≤ p0 = ε,

The challenge is to design an instance of QSAT which allows us to distinguish the above two cases. i.e. we
wish to specify a sum of local Hamiltonians that has an eigenvector with small eigenvalue if and only if case
1 happens.
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The construction of the local Hamiltonian is analogous to Cook’s theorem. The quantum analogue of the
accepting tableau in Cook’s theorem will be the computational history of the quantum circuit:

|T〉 =
1√

L+1

L

∑
t=0

|φt〉⊗ |t〉

=
1√

L+1

L

∑
t=0

UtUt−1 . . .U1|φ0〉⊗ |t〉,

where |φ0〉 is a valid initial state and|φi〉 = Ui |φi−1〉. Thus the computation history|T〉 is an element
of (C 2)⊗n⊗C L+1. It is a superposition over time steps of the state of the qubits as the quantum circuit
operates on them.

Now the idea of the QMA-completeness proof is to design the HamiltonianH such that:

1. if ∃|η〉, U accepts on input|η〉 with probability at least 1− ε, then the corresponding computational
history|T〉 is an eigenvector ofH with eigenvalue at mostεL+1,

2. if U rejects on every input with probability at least 1− ε, then all the eigenvalues ofH are at least
c(1−ε)
(L+1)3 for some constantc.

Our Hamiltonian will be the sum of three terms,

H = Hinitial +H f inal +Hpropagate.

The first two terms are simple and express the condition that the computational history starts with a valid
input state, and ends in an accepting state.

We consider the firstm qubits ofU ’s state to be the input qubits and the remainingn−m qubits to be the
clean work qubits. The design of theHinitial component should then reflect that at time 0, all of the work bits
are clear:

Hinitial =
n

∑
s=m+1

Π(1)
s ⊗|0〉〈0| ,

whereΠ(1)
s denotes projection onto thes-th qubit with value|1〉.

Assume that the state of the first qubit at the output determines whether or not the input is accepted. Then
H f inal needs to indicate that at timeL the first qubit is a|1〉:

H f inal = Π(0)
1 ⊗|L〉〈L| .

The most complicated component ofH is Hpropagate, which captures transitions between time steps.

Hpropagate=
L

∑
t=1

Ht ,
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where

Ht =−1
2

Ut ⊗|t〉〈t−1|− 1
2

U†
t ⊗|t−1〉〈t|+ 1

2
I ⊗ (|t〉〈t|+ |t−1〉〈t−1|).

The fact that the computational history is a superposition over time steps is quite crucial here. To check that
the correct operation has been applied in stept, it suffices to restrict attention to the|t −1〉 and |t〉 clock
states. Now the quantum register is in a superposition over its state at timet − 1 and at timet. Locally
checking this superposition is sufficient to determine whether its clockt component is the result of applying
the quantum gateUt to the clockt − 1 component. This is precisely what the HamiltonianHt above is
designed to do.

Next we show that ifU accepts on input|η〉 with probability at least 1− ε, then the corresponding compu-
tational history|T〉 = 1√

L+1 ∑L
t=0 |φt〉⊗ |t〉 is an eigenvector ofH with eigenvalue at mostε

L+1. We analyze

the contribution from each component ofH. First, |T〉 starts with qubitsm+ 1 throughn clear, soHinitial

does not contribute toH |T〉. Second,|T〉 is a computation ofU , i.e. |φt〉= Ut |φt−1〉 for all t, so we get:

Ht |T〉=
1√

L+1
(−1

2
Ut |φt−1〉 |t〉− 1

2
U†

t |φt〉 |t−1〉+ 1
2
|φt〉 |t〉+ 1

2
|φt−1〉 |t−1〉)

=
1√

L+1
(−1

2
|φt〉 |t〉− 1

2
|φt−1〉 |t−1〉+ 1

2
|φt〉 |t〉+ 1

2
|φt−1〉 |t−1〉)

= 0,

for no contribution fromHpropergate. Finally, U accepts with probability at least 1− ε, so onlyH f inal con-
tributes a penalty to the sum, which is at mostε

L+1.

The hard part of the proof lies in showing the converse, i.e. ifU rejects on every input with high probability,
then all the eigenvalues ofH are high. Here we only sketch the proof. For more technical details, please
refer to [1, 2].

The idea is to writeH as a sum of two Hamiltonians,H1 = Hinitial + H f inal, H2 = Hpropagate, and to use
the following geometrical lemma, which gives a lower bound on the lowest eigenvalue of a sum of two
Hamiltonians, given some conditions on the eigenvalues and eigenspaces of the two Hamiltonians.

Lemma 8.1: Let H1 and H2 be two Hermitian positive semi-definite matrices, and let N1 and N2 be the
eigenspaces of the eigenvalue0, respectively. If the angle between N1 and N2 is someθ > 0, and the second
eigenvalues of both H1 and H2 are at leastλ , then the minimal eigenvalue of H1+H2 is at leastλ sin2(θ/2).

Proof: Suppose|δ 〉 is an arbitrary eigenvector ofH1 +H2. For at least one of the subspacesN1 or N2, the
angle between|δ 〉 and this subspace is at leastθ

2 . Without loss of generality, let this subspace beN1. Then
we have

〈δ |(H1 +H2)|δ 〉= 〈δ |H1|δ 〉+ 〈δ |H2|δ 〉 ≥ 〈δ |H1|δ 〉.
Suppose|µ〉, |µ⊥〉 are the projections of|δ 〉 ontoN1 and its orthogonal complementN⊥

1 respectively. Then
we have

〈δ |H1|δ 〉= 〈µ⊥|H1|µ⊥〉 ≥ λ‖|µ⊥〉‖2 ≥ λ sin2(θ/2),

where the first equality follows from the fact thatN1 and and its complement are invariant to the application
of H1, the second follows from the definition ofH1 andλ , and the last follows from‖|µ⊥〉‖2 ≥ sin2(θ/2)
because the angle betweenN1 and|δ 〉 is at leastθ/2. 2

To use the geometrical lemma, we need to give lower bounds on the second eigenvalues ofH1 andH2, as
well as a lower bound onθ .
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We will first bound the second eigenvalues ofH1 andH2.

Lemma 8.2: The second eigenvalue of H1 is at least1.

Proof: SinceHinitial andH f inal are projections, and the eigenspaces of the eigenvalue 1 ofHinitial andH f inal

are orthogonal (because they operate on different times), the second eigenvalue ofH1 = Hinitial + H f inal is
simply the minimal second eigenvalue of the two.2

Lemma 8.3: The second eigenvalue of H2 is at least 1
2(L+1)2 .

Proof: It turns out that for this argument it is simpler to look atHpropagatein a rotated basis. The eigenvalues
of a matrix are not changed when looked at in a different basis. Hence we define the unitary matrixR as
follows:

R=
L

∑
t=0

UtUt−1...U1⊗|t〉〈t|.

It is easy to check that

R†HpropagateR=
1
2

L

∑
t=1

(I ⊗|t〉〈t|+ I ⊗|t−1〉〈t−1|− I ⊗|t−1〉〈t|− I ⊗|t〉〈t−1|).

We can writeHpropagate= I ⊗A whereA is a(L+1)× (L+1) matrix of the form:

A =




1
2 −1

2 0 0 0 0 0 0
−1

2 1 −1
2 0 0 0 0 0

0 −1
2 1 −1

2 0 0 0 0
0 0 −1

2 1 −1
2 0 0 0

0 0 0 −1
2 1 −1

2 0 0
0 0 0 0 −1

2 1 −1
2 0

0 0 0 0 0 −1
2 1 −1

2
0 0 0 0 0 0 −1

2
1
2




= I −




1
2

1
2 0 0 0 0 0 0

1
2 0 1

2 0 0 0 0 0
0 1

2 0 1
2 0 0 0 0

0 0 1
2 0 1

2 0 0 0
0 0 0 1

2 0 1
2 0 0

0 0 0 0 1
2 0 1

2 0
0 0 0 0 0 1

2 0 1
2

0 0 0 0 0 0 1
2

1
2




= I −B.

So the second smallest eigenvalue ofHpropagate, is simply 1 minus the second largest eigenvalue ofB.
Interestingly, the matrixB is the stochastic matrix corresponding to a simple random walk on a line with
L+1 vertices, with a loop at both ends. By Cheeger inequality, we can boundB’s second largest eigenvalue
λ2 by the conductanceφ of the underlying graph,

1−λ2 ≥ φ2/2,

The conductance of this graph is1L+1, which gives 1−λ2 ≥ 1
2(L+1)2 . This implies the desired result.2
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It is left to give a lower bound on the angle between the two null spaces.

Lemma 8.4: The angle between N1 and N2 satisfies sin2(θ/2)≥ c(1−ε)
L+1 for some constant c.

Proof Sketch: We note thatN1, the null space ofH1 = Hinitial + H f inal, is the space spanned by all states
with valid input (i.e. all work qubits are clear) and accepting output (i.e. the first qubit is|1〉); N2, the null
space ofH2 = Hpropagate, is the space spanned by all valid computations starting with arbitrary input. We
now want to bound the angleθ betweenN1 andN2, which is the minimal angle between any two states from
both spaces. For any such two states, their inner product is the sum of contributions from every time leaf
t = 0,1, . . . ,L. Due to the fact thatU rejects on any input with high probability, the contribution from the
t = 0 andt = T leafs together is far from the maximal possible contribution2

L+1. A careful computation

tells us that their inner product is≤ 1− c′(1−ε)
L+1 , which implies sin2 θ ≥ c′(1−ε)

L+1 . 2

Putting the above lemmas together, we obtain the soundness of our construction.

To make our Hamiltonian truly 5-local, we need to move from operators on the entire clock to local oper-
ators. To achieve this, we represent the time in unary representation onL qubits which serve as the clock
qubits. Specifically, any timet is represented by the state|11. . .100. . .0〉which begins witht 1’s. To modify
the Hamiltonian accordingly, we replace all operators on the clock space by operators that operate on three
qubits at most. We apply the following modifications:

|t〉〈t−1| 7−→ |110〉〈100|⊗ I

|t−1〉〈t| 7−→ |100〉〈110|⊗ I

|t〉〈t| 7−→ |110〉〈110|⊗ I

|t−1〉〈t−1| 7−→ |100〉〈100|⊗ I

where in all these cases|110〉〈100| or the similar terms operate on qubitst−1, t, t + 1 of the clock qubits
and the identityI operates on the remainingL−3 clock qubits. To avoid referring to qubits 0 andL + 1
which do not exist, we make two exceptions: fort = 1, we drop the first bit of the 3-bit operator; fort = L,
we drop the last bit of the 3-bit operator.

In addition, we introduce a new termH ′
clock which checks that the clock bits are a valid unary representation

and penalizes them if they are not. It can be done locally as follows:

H ′
clock =

L

∑
t=2

|01〉〈01|t−1,t ⊗ I .

Our final Hamiltonian is defined to be

H ′ = H ′
initial +H ′

f inal +H ′
propagate+H ′

clock,

whereH ′
initial ,H

′
f inal,H

′
propagateare the modified version of corresponding original terms.

It is easy to see that the following statement go through with these modifications: IfU accepts on input|η〉
with probability at least 1− ε, and|T ′〉 is the corresponding computational history, then〈T ′|H ′|T ′〉 ≤ ε

L+1.

For the converse direction, observe thatH ′ keeps the subspace that is spanned by all states in which the clock
qubits are valid unary representations invariant, and let us call this subspaceW . Its orthogonal complement
W ⊥ is also invariant under the operation ofH ′. H ′ operates onW just as the previousH did, and hence
on this subspace the lower bound on the eigenvalues holds as before; on the orthogonal subspaceW ⊥ the
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eigenvalue ofH ′ is at least 1 sinceH ′
clock detects at least one violation. Hence, overall, the original lower

bound still holds.

Upper bound on QMA

One consequence of the previous proof of QMA-completeness is the following:

Theorem 8.1: QMA⊆ P#P.

ReplaceH with I−H, so it either has an eigenvalue greater than or equal toa′ = 1−a or all eigenvalues are
smaller thanb′ = 1−b. Consider the trace ofHk. This is either at leasta′k or at mostNb′k. We can make
sure thata′k >> Nb′k, by choosingk >> ndlogN. So we just need to estimateTr(Hk) in P#P.

To see this, writeTr(Hk) = Tr((∑ j H j)k) = Tr(∑ j1,... jk H j1 · · ·H jk) = ∑ j1,... jk Tr(H j1 · · ·H jk). Each trace in
this sum is itself just a sum of exponentially many easy to compute contributions, and thus the entire sum is
easily seen to be estimated inP#P.
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