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1.

 

  Exhibit  n  and  n  positive integers  k

 

1

 

, k

 

2

 

, …, k

 

n

 

  whose sum  k

 

1

 

 + k

 

2

 

 + … + k

 

n

 

 = 174  and 
whose product  k

 

1

 

·k

 

2

 

·…·k

 

n

 

  is as big as possible,  and explain why.

Solution:  n = 174/3 = 58 ,  and  k

 

1

 

 = k

 

2

 

 = … = k

 

n

 

 = 3 .  To see why,  observe first that every  
k

 

j

 

 

 

≥

 

 2  since otherwise any  k

 

j

 

 = 1  could be added to some other and increase the product.  
Observe second that every  k

 

j

 

 

 

≤

 

 4  since  k = 2m+1 < (m+1)m  if integer  m 

 

≥

 

 2 ,  and  

k = 2m < m

 

2

 

  if integer  m 

 

≥

 

 3 .  Observe third that any  k

 

j

 

 = 4  can be replaced by two  k’s  
equal to  2  without changing the sum nor the product,  though  n  increases by  1 .  Therefore 
only  2’s  and  3’s  need appear among the  k’s .  Observe fourth that replacing any three  k’s  
equal to  2   by two  k’s  equal to  3  increases the product by a factor  9/8  without changing the 
sum,  though  n  decreases by  1 .  Therefore at most two  2’s  need appear among the  k’s .  But  
neither  174–2  nor  174–4  is divisible by  3 ,  so no  2’s  appear among the  k’s ;  they are all  3 .

 

( E.F. Krause (1996) 

 

Math. Magazine

 

 

 

69

 

 #4 (Oct.) 270-278 )

 

2.

 

  Prove that   

 

∑

 

0

 

≤

 

k

 

≤

 

4n–3 

 

exp( 2

 

π

 

ı

 

k

 

m

 

/(4n–2) )  = 0  for all positive integers  m  and  n .  Here  

 

ı

 

2

 

 = –1 ,  and  Euler’s  formula  exp(

 

ı

 

·x) = cos(x) + 

 

ı

 

·sin(x)  may be used.

Proof:  After some experiments with small values of  m  and  n  it becomes apparent that

 

∑

 

0

 

≤

 

k

 

≤

 

4n–3 

 

exp(

 

 

 

2

 

π

 

ı

 

k

 

m

 

/(4n–2)

 

 

 

) = 

 

∑

 

0

 

≤

 

k

 

≤

 

2n–2 

 

(

 

 exp(

 

 

 

2

 

π

 

ı

 

k

 

m

 

/(4n–2)

 

 

 

) + exp(

 

 

 

2

 

π

 

ı

 

(k+2n–1)

 

m

 

/(4n–2)

 

 

 

) 

 

)

 

and,  as we shall see soon,  every term in the latter sum vanishes.  To this end observe first that  

L := ( (k+2n–1)

 

m

 

 – k

 

m

 

 )/(2n–1)  must be a positive odd integer;  L  is an integer because of the 

identity  (K

 

m

 

 – k

 

m

 

)/(K–k) = K

 

m–1

 

 + K

 

m–2 

 

k + K

 

m–3 

 

k

 

2

 

 + … + K

 

 

 

k

 

m–2

 

 + k

 

m–1

 

 .  And  L  is odd 
because just one of  (k+2n–1)  and  k  can be odd.  Consequently the asserted result follows from

exp(

 

 

 

2

 

π

 

ı

 

(k+2n–1)

 

m

 

/(4n–2)

 

 

 

)  =  exp

 

(

 

 

 

2

 

π

 

ı

 

(k

 

m

 

 + (2n–1)L)/(4n–2)

 

 

 

)

 

  =  (–1)

 

L

 

·exp(

 

 

 

2

 

π

 

ı

 

k

 

m

 

/(4n–2)

 

 

 

) .

 

( J.P.R. Christensen & M.E. Larsen (1996) 

 

Math. Magazine

 

 

 

69

 

 #4 (Oct.) 305 & 310 )

 

3.

 

  Let the side-lengths  x,  y,  z  of an acute-angled triangle be so ordered that  x 

 

≥

 

 y 

 

≥

 

 z > 0 .  
Of the three inscribed squares each erected on one of the triangle’s sides,  which is biggest?  
Why?

Solution:  The biggest square is on the smallest side.  To see why,  let the triangle’s angles be  
X, Y, Z  opposite sides with lengths  x, y, z  respectively,  and let  

 

ξ

 

  be the side-length of the 
square erected on the side of length  x ,  and let  

 

Ξ

 

  be the length of the perpendicular dropped 
from  X ,  as shown here:

x

y
z

Y Z

X
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From similarity of triangles follows that   (Ξ–ξ)/ξ = Ξ/x ,  whence  ξ = xΞ/(Ξ+x) = 2∆/(Ξ+x) ,  
wherein  ∆  is the triangle’s area.  Thus,  the biggest square is erected on the side whose length 
plus perpendicular add up to the least.  Let  Η  be the length of the perpendicular dropped from  
Y  onto  y ,  so  η = 2∆/(H+y)  is the side-length of the square opposite  Y .  Then 

2∆/ξ – 2∆/η = (Ξ+x) – (H+y) = (y·sin(Z) + x) – (x·sin(Z) + y) = (x–y)(1 – sin(Z)) > 0 ,
so  η > ξ .  Similarly the side-length of the square opposite  Z  is  ζ > η ;  it is biggest as claimed.
( E. Sard (1996) Math. Magazine 69 #4 (Oct.) 305 & 310 )

4.  The  Combinatorial Coefficient  is  nCk := n!/(k!·(n–k)!)  for integers  n ≥ k ≥ 0 .  Prove that

( n – k + k√(k!) )k/k!  ≤ nCk ≤  ( n – (k–1)/2 )k/k! .

Proof:  The inequalities to be proved are equalities if  k = 0  or  k = 1 ,  so suppose  n ≥ k ≥ 2 .  
The proof will invoke the well-known  Arithmetic-Geometric Means Inequality:

If every  xj > 0  then    k√(x1·x2·x3·…·xk) ≤ (x1+x2+x3+…+xk)/k .

First set  ƒ(z) := k+z – k√((z+1)·(z+2)·(z+3)·…·(z+k))  for all  z ≥ 0  and let  xj := 1/(z+j)  to 

discover that  ƒ'(z) ≤ 0  and consequently  (k–1)/2 = ƒ(∞) < ƒ(z) ≤ ƒ(0) = k – k√(k!) .  Then set  

z := n–k  to infer that   nCk·k! = n·(n–1)·(n–2)·…·(n+1–k) = (n – ƒ(n–k))k  lies above  

(n – ƒ(0))k  and below  (n – ƒ(∞))k ,  as requested.  ( When  k  is big,  ƒ(0) – ƒ(∞)  is roughly 
1/2 + (1/2 – 1/e)·k ,  but that is a story for another day.)

These four problems were presented for solution in two hours.  Of course,  hardly anybody can 
do that.  However,  the  Putnam  exam is like this;  it presents six problems for solution in three 
morning hours,  and six more for solution in three afternoon hours,  and hardly anybody can do 
that.  Among about two thousand contestants perhaps half solve no more than one or two out of 
twelve problems,  yet there are usually several contestants who solve most of the problems.  If 
you solved one of these four problems you are about average;  if two,  superior;  if three,  wow!
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