Solutions to Problems for Math. H90 Issued 27 Aug. 2007

Problem 1: Given is an ellipse E neither a circle nor degeneliate g straight line segment).
Let A be the largest of the areas of triangles inscribed.irHBw many inscribed triangles have
maximal areaA ? At least two do since E is centrally symmetric. Are there more? Why?

Solution 1: There are infinitely many triangles of maximal afeanscribed in E, every
boundary-point of which is a vertex of one such triangle. Here is why:

E =L10 is the image of a circle O mapped by some invertible linear operatorThis
means that, after we move E and O to center both of them at themyigunning x through

all 2-vectors of Euclidean lengthx||[=p, the positive radius of Oruns C1x around E as
x runs around O We may choos@ to make O have the same area as E has, and then L can

be chosen to have det(L) = 1 so that area is preserved by operators Clamkhy triangle T
of maximal areal inscribed in E is the image of L-Ta triangle of maximal areA inscribed
in O. Which inscribed triangles have maximal area? This question’s answer is almost obvious:

>

L =

At each vertex of a triangle of maximal area inscribed in O the tangentto O must be parallel to
the triangle’s opposite side; otherwise the vertex could be moved slightly, without moving the
opposite side, to increase the triangle’s altitude and therefore its area. Therefore a perpendicular
dropped from a vertex to the triangle’s opposite side must pass through the circle’s center, which
makes the circle and the triangle each its own reflection in that perpendicular. Consequently any
two sides of the triangle must have equal lengths. We conclude that every triangle of maximal

area/ inscribed in O is equilateral; every point of O is a vertex of one of them. Ahd L
maps every one of them onto a triangle of maximal @&eascribed in E, as claimed.

This solution takes far longer to read than to visualize after you have seen it.
Infinitely many tetrahedra of maximal volume are inscribed in an ellipsoid for similar reasons.

The next two problems have lengthy solutions which, if you cannot find them for dimension n in
general, should be solved first for dimension n,=tl2en n = 3 in order to get the idea.
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Problem 2: In a Euclidean n-space, where a veatohas length \l|| :=v(v'-v), a reflection
inaline (n =2) or (hyper)planer{= 3) through the origino must be a linear operator of the

form V=1 -2vv'/vT.v =VT =V~ whereinv is any vector perpendicular to the mirror. (Can
you see why? Think about W, and about % whenv':x = 0.) The product R :=V-W of any
two such reflections is a rotation;y R R} and det(R) = 1 Given four nonzero vectors,

y#x, s andt#s with || =ly|l, |Bll = |l ands"x=t"y, sothat[(s,)|= [t ),
show how and why to construct reflections V and W so that R :=V-W will rotedeRx =y
ands to Rs=t, provided such an R exists. When does it not exist? When is R unique?

Solution 2: A requested R :=V-W can be a product of two reflections I\/\»Lz:-w-wT/||W||2
and V =l —2v-v"/|V|P in which w :=x—y andv:=Ws—t, exceptthatif Ws=t thenv
may be any nonzero vector orthogonal to bgtland t provided such a vector exists. Here is
why this works when it works: First confirm that W swapsndy by introducingz :=x+y,

observing thatw'-z = 0, and then substituting = (z+w)/2 andy = (z—w)/2 into the two
equations Wk =y and Wy =x to confirm that both are satisfied. Similarly, vif=Ws—t #Z 0
then V swaps V§-andt while preservingy becausev'-y = 0; grind through the algebra. On

the other hand, if V=t andv # o satisfiesv’:y=v't=0 then V preserves bothandy.
Either way, R :=V-W rotate,[s] to R-Kk, 5] =V-W-:[x, s =V:[y, W5 = [y, t] as required.

Provided R exists. When can no such R exist? Just when the dimensionamd:r2flection

W swapss andt aswellasx andy, and t andy are linearly independent (neither parallel
no antiparallel), in which case and x are linearly independent too because of the constraints
[x,9]7[x, s] = [y, t]"-[y, t] thatwere given: These constraints imply for every 2-vebtdhat

IIx, sI-bI = |Iiy, t]-b|E, so neither ¥, s]-b nor [y, t]-b could vanish unless the other did too.

Then Ws=t butnov # o can satisfyv'-[y, t] = [0, 0]; instead the nonsingular linear equation
R:[x, 8] = [y, t] = W-:[x, s] would pre-emptively force R =\Wa reflection, not a rotation.

What's the difference between Reflection and Rotation? Reflection V has det(V)hisTan be proved either
by choosing a new orthonormal coordinate system withs one of its basis vectors, in which case V becomes a
diagonal matrix obtained from the identity matiixby reversing the sign of one of its diagonal elements, or else it
can be deduced from an important determinantal identity
det(—p-q") =det( ' P|)=1-qTp,
q 1

left for the diligent student to confirm. And then det(R) = det(V-W) = det(V)-det(W). dr-1act everyProper
rotation R that preserves the left- or right-handed orientation of a basis must have determinant det(R) = +1

When is R determined uniquely by the given four nonzero veatoys# X, s andt #s with

IXIl = W, I§l] = |#l] ands"x =tT-y? Not when dimension n > 3simple examples show why.
When dimension n=2 and R exists, the data determine it uniquely. This follows easily when

s and x are linearly independent; then 84 = [y, t] implies R =§,t]:[x, s]"*. Otherwise

s=Rx for some scalar 80, and then puttind := [-B, 1] above impliest = By too, in
which case R is determined uniquely and explicitlyxoyand y alone as follows:

Let J:= h —01} =37 =37L; it rotates the plane a quarter turn becausé-v = 0 for every 2-
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vectorv. Justas R rotates to Rx =y so does it rotatd-x to RJ-x =J-y; in other words,
plane rotations commute. ConsequentlyxRHx] = [y, J-y], whence R =}, Jy][X, J-x]‘1 is
determined uniquely bx andy. An explicit formula R :#xTy/xTx =Jx"-Jy/xTx is left
for the diligent student to confirm. ( This R rotateso Rs=t too even ifs and x are
independent provided such an R exists.)

When dimension n = 3 the given datay, s andt determine R uniquely only § andx are
linearly independent. Then R rotatesto Rx =y, s to Rs=t, and therefore the nonzero
cross-productxxs to R-kxs) = (Rx)x(R<S) =yxt, whereupon R 3y[t, yxt]-[x, s, xxs] L.

Problem 3: In a Euclidean n-space, where a veatohas length \l|| :=v(v'v), a Box is a
Rectangular Parallelepipeda figure bounded by 2n flat facets each of which intersects 2n-2
perpendicular facets; none need be parallel to coordinate (hyper)plan8s (v lines (n = 2).

The Diameter of a box is the distance between any two opposite verticeEllfase (n = 2) or
Ellipsoid (n=> 3) centered ab is the locus of pointx that satisfy an equation of the form

x"-HLx =1 for someSymmetric Positive-Definitenatrix H; “symmetric’ means H = H,

and “positive definite” means'-Hv >0 for every n-vector #o. For any such H every
box that circumscribes the ellipsoid tightly enough for all facets to touch it has the same diameter
2+/(Trace(H)) where Trace(H) 5 h; is the sum of the diagonal elements of Bxplain why.

Solution 3: Let O denote the n-dimensional unit (hyper)cube @) or square (n = 2), the

convex hull of 2 vertices each of whose n coordinates are all selected from the set {1. -1}
Every boxB centered at the origin is obtained fromJ by a Dilatation and aRotation this
meansB = R-V{ where n-by-n diagonal matrix V has n positive elements and represents the

dilatation, and R is an n-by-RAroper Orthogonalmatrix (R = R™! and det(R) = +1) that
represents the rotation. Let be the column n-vector whose every element.islust as point
c liesin O just when d| < u elementwise(which means that no element ofexceeds 1 in

magnitude), so does poifit= R-Vc lie in box B just when V1R 1b|<u elementwise.

Changing coordinates to a new orthonormal basis consisting of the columns of R is tantamount
to rotating everything in the space by'R Whatever point was representedsoyin the original

coordinate system is representedypy= R1x in the new coordinates. Lét denote the new
coordinates’ unit (hyper)cube; don’t confuse it with the old coordinates’Now the change of

coordinates can be construed either as a rotation oBexR-VO to RLB =V.O , or else as
providing a new representation f& = V- in the new coordinates.

A symmetric positive definite matrix H represents an ellipgdidas the locus of points
satisfyingx"-H 1x = 1. How does the change to new coordinates alter the representakio of
Substitutex = Ry into the equation to get™- WLy = 1 for the symmetric positive definite

matrix W := R1.H-R that representd in the new coordinates or RH in the old coordinates.
Note that Trace(W) = Trace(H) his will be needed later and can be proved by rearranging the
ordering of a triple summation; can you do it?
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In the new coordinates = V-0 O H just when Wi = ly| whenevery” WLy =1, and we
seek the smallest positive diagonal V for whighl H so that every facet a8 will touch H .

This sought V is characterized by the equatibV-u = { maxf'-y subject toy™-WLy = 1}

for every n-rowf' =[0,0, ..., 0, 1,0, ..., 0, 0] whose elements are all zeros but one and.itis 1
The desired maxima can be found by uslragrange Multipliers or more directly as follows:

Because W is positive definitef;)(— WLy)T-W-f-u —WLy) = 0 for every real scalan. The
inequality’s left-hand side expands to a quadratic polynomigl that cannot reverse sign, so its

diacriminant cannot be positivef (/)2 < (fT-W1)-(y"-WLy) , with equality achieved when
y = WHNV(T-W{)). Consequently fhaxf’y subject toy™ WLy = 1} = v(fT-WH)).
Let fT have its sole nonzero element in tHe gosition to see that the sought smallest positive

diagonal V has diagonal elements=ww;; . All the vertices of8 = V-0 have new coordinates
[£V11, £V, V33, ..., ¥V Whence follows the desired conclusion that

diameter8) = 2-\/(Zj ijz) = 2+/(Trace(W)) = 2/(Trace(H)) .

Problem 4a: A polynomial M(z) :=5 peken Hi-Z¢ Whose coefficientgy, are all integers is called
“Irreducible” if it is not the product of two nonconstant polynomials with integer coefficients.
Suppose some prime p dividgg, Ky, Mo, ---,» Mn_p and ty_q but notp, nor py/p. Show why
M(z) must be irreducible. (A classical problem treated in some Algebra texts.)

Proof 4a: The proof builds a contradiction. For the sake of argument suppose M(z) = B(2)-P(2)
where B(z) =S p<kem B2 and P(2) S p<k<nmTi-Z¢ With 1< m<n-1 and coefficients

B and 1 all integers, whence = Y max(o,L+m-n}<k<min{L, m} BTk for OsL <n.

Becausep = [T is divisible by p but not 2p just one of § and 1, would be divisible by
p; for definiteness suppose it werg &d notry. But p could not divide every, 3est p also
divide Y, = 3,'T4,_, contrary to our problem’s supposition. Let L be the least index for which

p did not divide (3. Necessarily ¥L<m, sO BT =H. —> | +mn<k<l-1 BTh_k; it
would be divisible by p (as is every term in the right-hand side) if not for our contradictory
suppositions about | Rand 15, . This contradiction proves that M(z) must be irreducible.

Here is an alternative proof. We work in theeld Z, of integersmod p consisting ofResidues
(remainders) 0, 1, 2, ..., p—1 obtained when integers are divided by the pritet p,, R
and T, be the residues whem,, 3 and 1 respectively are divided by p ; these are written

He = iy mod p etc Then Mz) := M(z) mod p = ¥ oeken Hii-Z and similarly for Bz) and P(z) .
Our problem’s hypotheses imply that($)1=jiy-2"# 0 andp, # 0 mod p?. Our supposition for
the sake of argument that M(z) = B(z)-P(z) would imply th@t)-Bz) = M(z) =Hy-Z' whence
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would follow first that §,# 0 andT,_,# O because R, ,,=H,# 0, and consequently that
B(z) =R, Z" and Rz) =m,_yZ"™™ (work it out). These, by forcingy® 1, = 0, would make
Mo = % TH = 0mod p? contrary to the problem’s last hypothesis. Therefore M(z) is irreducible.

Note: These proofs work also for a polynomidl-M(1/x) whose coefficients are M(z)’s in reverse order.

Problem 4a’s assertion is called “Eisenstein’s Criterion for Irreducibility”. It applies to some, not all irreducible
polynomials. The only other scheme we know to determine whether an arbitrary polynomial is irreducible is to
submit it to the factorization program in a computerized algebra systemiéijpds Macsyma Mathematica etc If

none of them can factorize the polynomial, it is irreducible unless a bug not yet discovered lurks in their programs.

Problem 4b: Prove that, for every integer=>riL, there exist irreducible polynomials of degree
n whose n zeros are all real. (Not so Basy

Proof 4b: There are many such polynomials. We’ll ~Bkebyshev Polynomialdefined thus:
To(X) := 1, Ty(x) :=x, and F+1(X) = 2x-T,(X) — Th_1(x) for n=1,2, 3, ... inturn.

By induction we confirm that (x) is a polynomial of degree n whose coefficient bfisc -1
for n>1, and TB,(0) = (-1J', T»,_4(0) =0, and T,(x) = cos(n-arccos(x)) on <Ix<1.

As x runs down from 1 to —1 the value gf(X) oscillates from 1 to -1 to 1 to -1 to ... to

(-1)", crossing through zero n times. Consequently the polynomig(s) Wefined by
Won1(X) 1= 3 Ton ) =1 and  Wh(x) = 3-Tp(x) — 2:(-1)

have all zeros real and satisfy Eisenstein’s Criterion (reversed) for Irreducibility with p=3

An alternative proof shows that the polynomials in question do exist without providing an explicit
construction for any of them. First comes the following observation:

Lemma: If F(x) is areal polynomial of degree=rl whose n zeros are all real and
distinct, then the same is true of F(x)) for each nonzero real constapt
with fg| small enough.

Proof of the Lemma: Rolle’s Theorem says that the derivati{g) fhas n-1 real zerog gach
between adjacent zeros of F(xfonsequently Fgy, F(y,), ... and F(y_,) are the n-1 local

maxima of |F(x)|] with signs alternately positive and negative; each yj is located between two
adjacent zeros of F(x)Provided || < min [F(y)| the same is true of FGx); its n real zeros

straddle the same locations where each F(y—p has the same sign as f(yEnd of proof.

The Lemma will be used to generate in turn polynomiglx)F Fx(x), F3(X), ..., F(X), ...:
each [ will be irreducible with integer coefficients, have degreeand have n real distinct
nonzero zeros. We start withy(¥) := x—3, say. Next, after ffx) has been determined for any
integer =1 we construct f51(X) .= p;Xx-R,(X)—1 where R is a huge prime chosen thus:

Since all n+1 zeros of x;6x) are real and distinct, the Lemma says some posftjvexists
such that all n+1 zeros of x(K) —¢ are real and distinct (and nonzero) for every nongero
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with |@ <@,. Choose prime pbigger than Ap, and also bigger than every prime divisor of

the leading coefficient of "xin F,(x). This is feasible because, as Euclid showed, there are
infinitely many primes. Then all n+1 zeros of. fX) := p,"X-F(x)—1 are real, distinct and
nonzero, and /[, satisfies Eisenstein’s Criterion (reversed) for Irreducibility too.

This Problem 4b was taken from the Fall 2007 Prelim. Exam for Math. Grad Students.

Problem 5a: Suppose the plane is colored with two colors; in other words, suppose some points
are red, say, and the rest blue. Must some two points an inch apart have the same color? Why?

Solution 5a: Yes; here is why: Consider the vertices of any equilateral triangle whose sides are
one inch long. Among the three vertices are only two colors; two vertices must be colored alike.

Problem 5b: The same questions if the plane is colored with three colors instead of two!) (Hard

Solution 5b: Yes, some two points an inch apart must be colored alike; here is how to find some:
First examine any circle of radiué3 inches. If all points on the circle are colored alike, all of its
chords one inch long join two points colored alike. Otherwise, some point(s) on the circle must
be colored differently than its center. Suppose its center C isred, say, and a point P on the
circle is green, say. Two circles of radius one inch centered at C and at P intersect at two points
A and B each distant one inch from the other, froma@d from P (Can you see why?) If

A and B are colored differently, one of them must be colored the same as either C or P since
there are at most three colors among the four points. Therefore some two of the four points A, B,
C and P must be colored alike, and those two are not C arithdPof explanation.

What if the plane is colored witfour colors instead of two or thred=lve ? Nobody knows.

Problem 6: 3 gei<n COS(2k-X) = cos(n-x)-sin((n+1)/gn(x). Why? (Supply a short proof.)

Proof 6: The trigonometric identity sin((2k+1)-x) — sin((2k—1)-x) = 2-cos(2k-x)-sin(x) turns
twice the sum into - pci< COS(2K-X) =Y geken (SIN((2k+1)-X) — sin((2k—1)-}sin(x) which

first collapses into  F-pcy<n COS(2k-X) =(sin((2n+1)-x) — sin((0-1)-¥)sin(x) and then becomes
23 o<ken COS(2k-x) (sin((n+1+n)-x) + sin((n+1-n)-}sin(x) = 2-cos(n-xfsin((n+1)-xJsin(x))

to confirm the problem’s assertion. If x is an integer multipleraeplace(0/0) by n+1 .

An alternative proof uses the complex variable Z*=e&os(x) + I1-sin(x) wherein | ¥-1:

Then #= cos(2k-x) + 1-sin(2k-x) and the sum in question turns into the real part of the finite
geometrical series

S oc ken 22X = @M= 1)(22-1) = 2@ -2 Y (z- 7Y = 2-sin((n+1)-xdsin(x)
whose real partis cos(n-x)-sin((n+1si)(x), confirming the problem’s assertion again.
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Problem 7: Given an arbitrary non-degenerate triangle AB&ect three equilateral triangles
ABC', BCA and CAB, one on each edge of ABQvith C and C on opposite sides of
AB, A and A on opposite sides of BCand B and Bon opposite sides of CALet C' be
the center of ABC, A" the center of BCA and B the center of CAB Explain why

A" B" C" must constitute a fourth equilateral triangle.

Proof 7: Matrix R := {—} fﬂ /2 is Orthogonal (R‘1= RT) and represents a rotation of the
-3 -1

plane counter-clockwise through3 radians {20°), so R—1=0. This last equation factors

into (R-1)-(R?+R+1)=0, but det(R-1)=3#0, so R+R+1=0. This last equation will

let us eliminate R=—R—1 from equations below.

Choose an origiro in the plane arbitrarily, and I& be the 2-vector that displacesto vertex

A . Do similarly forA',A",B,B',B",C,C" andC" . Evidently C'-B=R-8-A), so

C' =(+R)B-R-A. Similarly A' = (1+R)C-R-B andB' = (I+R)-C—R-B. Substitute these
equations into the expressions for the cen@ts= (A+B+C')/3, A" =(B+C+A")/3 and
B"=(C+A+B')/3 toget £" =(I-R)A+(21+R)B, 3A" =(I-R)B+(21+R)C and

3B" = (I-R)-C+(2I+R)-A. Note these equations’ rotational symmetry-M - C - A

which yields two more equations from any one of them, thus diminishing the algebraic work.

Now the edge-vectors of triangle" B" C" will be computed:
3:C"-A")=(I-R)A+(1+2R)B-(2I1+R)-C = 3R:-B"-C");
3-A" -B")=—(2I+R)A+(I-R)B+(1+2R)C =3R-C" -A"); and
3:B8"-C")=(1+2R)A-(2I+R)B+(I-R)-C = 3R-A" —-B").
The rightmost three equations are confirmed by simplification after substituting feR R2.
They say that each edge of B" C" is obtained by rotating a neighboring edge througl8 2
whence A B" C" must be equilateral, as problemclaimed.

By the way, Problem 7’s claim is valid also when ABC is a degenerate triangle but not just a single point.
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