Putnam Mathematical Competition, 2 December 2000

Problem A1l

Let A be a positive real number. What are the possible values of E;C:’O x?, given that
xg,1,xo,... are positive numbers for which E;C:’O r; = A7

Problem A2

Prove that there exist infinitely many integers n such that n, n + 1, and n + 2 are each
the sum of two squares of integers.

[Ezample: 0=0*4+0%,1=0%+1% and 2 =12 + 12 ]
Problem A3

The octagon Py Py P3Py P; Ps P; Ps is inscribed in a circle, with the vertices around the
circumference in the given order. Given that the polygon P; P3; P;5P; is a square of area
5 and the polygon P, Py Ps Py 1s a rectangle of area 4, find the maximum possible area of
the octagon.

Problem A4
Show that the improper integral

B

lim sin(x) sin(xz) dz
B—c 0

converges.
Problem A5

Three distinct points with integer coordinates lie in the plane on a circle of radius r > 0.

Show that two of these points are separated by a distance of at least /3.

Problem A6

Let f(x) be a polynomial with integer coefficients. Define a sequence ag, a1, ... of integers
such that ap = 0 and an41 = f(a,) for all n > 0. Prove that if there exists a positive
integer m for which a,, = 0 then either a; = 0 or ay = 0.



Problem B1

Let a;, bj, and ¢; be integers for 1 < j < N. Assume, for each j, that at least one of
aj,b;,c; is odd. Show that there exist integers r, s, such that ra; 4 sb; + tc; is odd for
at least 4N /7 values of j, 1 < j < N.

Problem B2

Prove that the expression

gcd(:;m n) (:)

is an integer for all pairs of integers n > m > 1. [Here (') = Wlm), and ged(m,n) is

the greatest common divisior of m and n.]

Problem B3
Let f(t) = Ej\le a; sin(2mjt), where each a; is real and any # 0. Let Nj denote the
k
number of zeros (including multiplicities) of IR Prove that
N()SNl SNQS and khm Nk:2N
Problem B4

Let f(x) be a continuous function such that f(22? — 1) = 2z f(x) for all #. Show that
flz)=0for -1 <z <1.

Problem B5
Let Sy be a finite set of positive integers. We define finite sets S1,S5,,... of positive
integers as follows:

Integer a 1s in S,,41 if and only if exactly one of @ — 1 or a is in S,,.

Show that there exist infinitely many integers N for which Sy = So U{N +a:a € Sy}.
Problem B6

Let B be a set of more than 2""!/n distinct points with coordinates of the form
(+1,41,...,41) in n-dimensional space, with n > 3. Show that there are three dis-
tinct points in B which are the vertices of an equilateral triangle.



Unofficial Solutions

D. J. Bernstein, 3 December 2000

Problem A1l
Let A be a positive real number. What are the possible values of E;C:’O x?, given that

Tg,%1,2,... are positive numbers for which E;C:’O r; = A?

Solution: One can achieve any real number s with 0 < s < A? as follows. Define
u = s/A%; then 0 < u < 1. Define r = (1 — u)/(1 + u); then 0 < r < 1. Define
z; = A(1 — r)r’/; then z; > 0. Finally Y 2; = A(1 — 7)Y .7/ = A and Ew? =
A2(1 — r)2 Erzj = A2(1 — r)z/(l — r2) = A2(1 —r)/(1+r)= A2y = s.

One cannot achieve any other number, since 0 < > :1:? < (> xj)z — A?

Problem A2

Prove that there exist infinitely many integers n such that n, n + 1, and n + 2 are each
the sum of two squares of integers.

[Ezample: 0=0*4+0%,1=0%+1% and 2 =12 + 12 ]

Solution: There are infinitely many integers n of the form 2k*(k + 1)%; note that n =
(K2 + k) + (B2 4+ k)% n+1 = (k2 +2k)? +(k*—1)?, and n+2 = (K> + k+1)? + (k2 +k—1)%

Problem A3

The octagon Py Py P3Py P; Ps P; Ps is inscribed in a circle, with the vertices around the
circumference in the given order. Given that the polygon P; P3; P;5P; is a square of area
5 and the polygon P, Py Ps Py 1s a rectangle of area 4, find the maximum possible area of
the octagon.

Solution: The circle circumscribes a square of area 5, so the circle has radius v/5/2.
Hence the rectangle has sides v/2 and /8. Without loss of generality assume that P, P,
has length /2.

Put Py, Py, Ps, Pg into the complex plane at v/2(1/2 +1), v/2(—=1/2 + i), V2(=1/2 — i),
V2(1/2 —i). Put Py into the complex plane at \/5/2exp(if); then P3, Ps, P; are at
iv5/2exp(if), —v5/2exp(if), —iv/5/2exp(if).

The triangles Py Py P, and P, P;Ps each have area V5cosf — 1. The triangles Py P3Py
and Ps P; Py each have area \/5/4cosf — 1. Hence the octagon has area 3v/5 cosf. The

maximum possible area is 31/5, achieved for 6 = 0.

Problem A4



Show that the improper integral

B

lim sin(x) sin(xz) dz
B—c 0

converges.

2 2

Solution: Rewrite sin « sin 2% as (cos(x? —x) — cos(2? 4+ «))/2. In the improper integral

foo cos(w2 + ) dx substitute u = z? + x to obtain fooo 2cosudu/(/1+44u —1). The

0
integrand is negative on (7/2,3%/2), positive on (37/2,57/2), etc. The corresponding

integrals form an alternating decreasing series since

ST 2 cosu| du STT 2cosu| du ST2T 2 cos v| dv

— > = .
s v1+4u —1 s vV1+4u +470 —1 s4r V1+4v -1

Thus fooo cos(z? + x) dzx converges. Similar comments apply to fooo cos(2? — z)dz.

Problem A5

Three distinct points with integer coordinates lie in the plane on a circle of radius r > 0.
Show that two of these points are separated by a distance of at least /3.

Solution: The following solution is stolen from Dave Rusin.

The triangle formed by the points has area abc/4r where a, b, ¢ are the distances between
the points. If a,b, ¢ < r'/? then the area is smaller than 1/4; but the area is at least 1/2
since the points have integer coordinates.

Problem A6

Let f(x) be a polynomial with integer coefficients. Define a sequence ag, a1, ... of integers
such that ap = 0 and an41 = f(a,) for all n > 0. Prove that if there exists a positive
integer m for which a,, = 0 then either a; = 0 or ay = 0.

Solution: The stated conclusion is false, because the word “either” means that exactly
one is true. Presumably the intent was to say that a; =0 or ay = 0.

Fact 1: ay,—1 divides a;. Proof: a,,—1 divides f(am—1)— f(0) = am — a1 = —ay.

Fact 2: a; divides a,, if n > 0. Proof: If n = 0 then a,, = 0. Otherwise a; divides a,,_{
by induction, so it divides f(an—1) — f(0) = a, — a;.

Fact 3: a, — a,—1 divides a4+ — @pyr—1 f n > 1 and &k > 0. Proof: If & = 0 then
Ap —Qp—1 = Qpiyk — Gpyk—1. Otherwise a, —a,_1 divides a4 -1 — @n4+x—2 by induction,
so it divides f(ant+r-1) — flanth—2) = Qntk — Anth—1-

Fact 4: a,, —ap—1 € {—ay,a1} if 1 <n < m. Proof: Define k = m —n. Then a,, — a,,—y
divides @y p—apyk—1 = @G —apm—1 = —ay,—1, which divides ay; and a; divides a, —a, 1.



Fact 5: ay = 0. Proof: ay —ay € {—ay,a,}. Suppose that ay # 0. Then ay = 2a; and
ay; # 0, so m > 3. Observe that a, = na; for n € {0,1,2}, but not for n = m. Find
the smallest n > 3 for which a, # na;. Then a,_1 = (n — 1)ay, so a, — an—1 # aq,
SO @y — Ap—1 = —ay, 0 a, = (0 — 2)a; = an—2. By induction a; € {an,—1,a,_2} for
all k > n. In particular 0 = a,,, € {ap—1,an—2}. Thus (n —1)a; = 0 or (n — 2)a; = 0.
Contradiction.

I would have written this problem as follows: “Define ag = 0 and a,+1 = f(a, ), where
f 1s a polynomial with integer coefficients. Assume that asgop = 0. Prove that a; = 0.”

Problem B1

Let a;, bj, and ¢; be integers for 1 < j < N. Assume, for each j, that at least one of
aj,b;,c; is odd. Show that there exist integers r, s, such that ra; 4 sb; + tc; is odd for
at least 4N /7 values of j, 1 < j < N.

Solution: Define f(u,v,w) = # {j : (¢; mod 2,b; mod 2, ¢; mod 2) = (u,v,w)}. Define
g(r,s,t) = #{j : ra; + sb; 4+ tc; is odd}. Then

9(1,0,0) = f(1,0,0) + f(1,0,1) + f(1,1,0) + f(1,1,1),
9(0,1,0) = f(0,1,0) + £(0,1,1) + f(1,1,0) + f(1,1,1),
9(0,0,1) = f(0,0,1) + f£(0,1,1) + f(1,0,1) + f(1,1,1),
9(1,1,0) = f(1,0,0) + £(0,1,0) + f(1,0,1) + £(0,1,1),
9(1,0,1) = f(1,0,0) + £(0,0,1) + f(1,1,0) + £(0,1,1),
9(0,1,1) = f(0,1,0) + £(0,0,1) + f(1,1,0) + f(1,0,1),
g(1,1,1) = £(1,0,0) + f(0,1,0) + £(0,0,1) + f(1,1,1)

Add: ¢(1,0,0) + ¢(0,1,0) + g(0,0,1) + ¢(1,1,0) + ¢(
4(1,0,0) 4 4£(0,1,0)+ 4£(0,0,1)+4£(1,1,0)+ 47(1,0,
Thus g(r,s,t) > 4N /7 for some (r, s,1).

,0,1) + ¢(0,1,1) 4+ ¢g(1,1,1) =
)+47(0,1, )—|—4f(1 1,1) = 4N.

Problem B2

Prove that the expression

gcd(:;m n) (:)

is an integer for all pairs of integers n > m > 1. [Here (') = #Lm), and ged(m,n) is

the greatest common divisior of m and n.]

Solution: Presumably “divisior” means “divisor.”

Find integers a,b with ged(m, n) = am + bn. Then (ged(m,n)/n)(]) = a(g:ll) +5(").



Problem B3
Let f(t) = Ej\le a; sin(2mjt), where each a; is real and any # 0. Let Nj denote the

k
number of zeros (including multiplicities) of TR Prove that
NOSNISNZS and Lm Nk:2N

k—oo

Solution: The stated conclusion is false: f has infinitely many roots. Presumably the
intent was to say “rootsin [0,1).” Does anyone proofread the Putnam problems before
they are printed?

Say the roots of f in [0,1) are r1 < ry < -+ < r,, with multiplicities my,ma, ..., my,.
Then f' has a root at r; with multiplicity m; — 1 if m; > 2; a root in (r;,r;41) for
1 <i<n-—1;arootin (r,,1+ r1); and possibly more roots. Thus there are at least
1+(n—1)+> .(m; —1)=>.m; roots of f' in [rq,1+ ry), hence in [0,1); and there
are exactly El m; roots of f in [0,1). Thus Ny < Ny. By the same argument Ny < N,
N2 S Ng, etc.

Find %k such that E1<j<N(j/N)k laj/an| < 1/2 for all k > k. Abbreviate d/dt as D.
I will show that D* f has exactly 2N roots in [0,1) for k > k.

Find a real number s with (Dk sin)(2rNs) = 1. Then (Dk sin)(2rNt) decreases from 1
at s to —1 at s + 1/2N, increases to 1 at s +2/2N, etc. By construction

(D*f)(t)
(2rN)kay

= (D*sin)(2xNt) + Y (%) 2 (D sin)(27jt),

a
1<j<N N

so (D* f)(t) has the same sign as ay(D* sin)(2xNt) whenever ‘(Dk sin)(ZWNt)‘ > 1/2:
in particular, at s,s + 1/2N,s 4+ 2/2N,.... Therefore D*f has at least one root in
[s,s +1/2N).

It is not possible for D* f to have two roots in [s, s+ 1/2N). Indeed, the roots are in the
subinterval [s +1/6N,s 4+ 1/3N] where (D* sin)(27xNt) is in [~1/2,1/2]. If there were
two roots then D**!f would also have a root in the subinterval, so (D**!sin)(27Nt)
would be in [—1/2,1/2]; contradiction.

The same comments apply to [s + 1/2N,s + 2/2N) and so on. Thus D*f has exactly
2N roots in [s,s 4+ 1), hence in [0,1).
Problem B4

Let f(x) be a continuous function such that f(22? — 1) = 2z f(x) for all #. Show that
flz)=0for -1 <z <1.



Solution: Thanks to Kahan for pointing out the role of cos here. My original solution
constructed cos manually.

Define g(y) = f(cos2my). Then g is continuous; ¢ is even; g has period 1; and ¢g(2y) =
f(cosdny) = f(2(cos 2my)* — 1) = 2(cos 2mwy) f(cos 27y) = 2(cos 2my)g(y).

In particular, g(1/3) = g(—1/3) = g(2/3) = —g(1/3),s0 g(1/3) = 0. Thus g(n+1/3) =0
for all integers n. In fact, g((n+1/3)/2%) = 0 for all n and all k¥ > 0. Indeed, if £ > 1, then
g((n+1/3)/2%=1) = 0 by induction, and cos(27(n+1/3)/2%) # 0, so g((n+1/3)/2%) = 0.

The set {(n 4+ 1/3)/2*} is dense, so g is 0 everywhere. Thus f is 0 on the range of cos,
namely [—1,1].

Robin Chapman comments that one can remove the 2cos2ny factor by considering
f(cos 2wy)/ sin 27y for all non-integer y.

Problem B5

Let Sy be a finite set of positive integers. We define finite sets S1,S5,,... of positive
integers as follows:

Integer a 1s in S,,41 if and only if exactly one of @ — 1 or a is in S,,.

Show that there exist infinitely many integers N for which Sy = So U{N +a:a € Sy}.
Solution: Define a polynomial f, as >, g **. Then f,41 = (2 +1)f, (mod 2), so
fa=(x+1)"fo.

In particular, if n is a power of 2 larger than deg fy, then f, = (2 4+1)"fo = (" +1)fo =
2" fo + fo, and all coefficients of 2" fy + fo are 0 or 1, so f, = " fo + fo; 1.e., a € S, if
and only if a € Sy or a — n € Sy.

Problem B6

Let B be a set of more than 2""!/n distinct points with coordinates of the form
(+1,41,...,41) in n-dimensional space, with n > 3. Show that there are three dis-
tinct points in B which are the vertices of an equilateral triangle.

Solution: The following solution is a composite of solutions from several other people.

Define A = {(£1,41,...,£1)}. For each p € A define A, = {g€ B : |p—¢q| =2}. Then

dopeattdp = cpHir€eA:lp—ql=2} =3 cpn=n#B > 2ntl = 24 A Thus
#A, > 2 for some p € A. Any distinct ¢, g2, 93 € A, form an equilateral triangle in B.



