
Putnam Mathematical Competition, 2 December 2000

Problem A1

Let A be a positive real number. What are the possible values of
P1

j=0 x
2
j , given that

x0; x1; x2; : : : are positive numbers for which
P1

j=0 xj = A?

Problem A2

Prove that there exist in�nitely many integers n such that n, n+ 1, and n+ 2 are each
the sum of two squares of integers.

[Example: 0 = 02 + 02, 1 = 02 + 12, and 2 = 12 + 12.]

Problem A3

The octagon P1P2P3P4P5P6P7P8 is inscribed in a circle, with the vertices around the
circumference in the given order. Given that the polygon P1P3P5P7 is a square of area
5 and the polygon P2P4P6P8 is a rectangle of area 4, �nd the maximum possible area of
the octagon.

Problem A4

Show that the improper integral

lim
B!1

Z B

0

sin(x) sin(x2) dx

converges.

Problem A5

Three distinct points with integer coordinates lie in the plane on a circle of radius r > 0.
Show that two of these points are separated by a distance of at least r1=3.

Problem A6

Let f(x) be a polynomial with integer coe�cients. De�ne a sequence a0; a1; : : : of integers
such that a0 = 0 and an+1 = f(an) for all n � 0. Prove that if there exists a positive
integer m for which am = 0 then either a1 = 0 or a2 = 0.



Problem B1

Let aj , bj , and cj be integers for 1 � j � N . Assume, for each j, that at least one of
aj ; bj ; cj is odd. Show that there exist integers r; s; t such that raj + sbj + tcj is odd for
at least 4N=7 values of j, 1 � j � N .

Problem B2

Prove that the expression
gcd(m;n)

n

�
n

m

�

is an integer for all pairs of integers n � m � 1. [Here
�
n
m

�
= n!

m!(n�m)!
and gcd(m;n) is

the greatest common divisior of m and n.]

Problem B3

Let f(t) =
PN

j=1 aj sin(2�jt), where each aj is real and aN 6= 0. Let Nk denote the

number of zeros (including multiplicities) of
dkf

dtk
. Prove that

N0 � N1 � N2 � � � � and lim
k!1

Nk = 2N:

Problem B4

Let f(x) be a continuous function such that f(2x2 � 1) = 2xf(x) for all x. Show that
f(x) = 0 for �1 � x � 1.

Problem B5

Let S0 be a �nite set of positive integers. We de�ne �nite sets S1; S2; : : : of positive
integers as follows:

Integer a is in Sn+1 if and only if exactly one of a� 1 or a is in Sn.

Show that there exist in�nitely many integers N for which SN = S0 [ fN + a : a 2 S0g.
Problem B6

Let B be a set of more than 2n+1=n distinct points with coordinates of the form
(�1;�1; : : : ;�1) in n-dimensional space, with n � 3. Show that there are three dis-
tinct points in B which are the vertices of an equilateral triangle.



Uno�cial Solutions

D. J. Bernstein, 3 December 2000

Problem A1

Let A be a positive real number. What are the possible values of
P1

j=0 x
2
j , given that

x0; x1; x2; : : : are positive numbers for which
P1

j=0 xj = A?

Solution: One can achieve any real number s with 0 < s < A2 as follows. De�ne
u = s=A2; then 0 < u < 1. De�ne r = (1 � u)=(1 + u); then 0 < r < 1. De�ne
xj = A(1 � r)rj ; then xj > 0. Finally

P
xj = A(1 � r)

P
rj = A and

P
x2j =

A2(1� r)2
P

r2j = A2(1 � r)2=(1� r2) = A2(1� r)=(1 + r) = A2u = s.

One cannot achieve any other number, since 0 <
P

x2j < (
P

xj)2 = A2.

Problem A2

Prove that there exist in�nitely many integers n such that n, n+ 1, and n+ 2 are each
the sum of two squares of integers.

[Example: 0 = 02 + 02, 1 = 02 + 12, and 2 = 12 + 12.]

Solution: There are in�nitely many integers n of the form 2k2(k + 1)2; note that n =
(k2+k)2+(k2+k)2, n+1 = (k2+2k)2+(k2�1)2, and n+2 = (k2+k+1)2+(k2+k�1)2.

Problem A3

The octagon P1P2P3P4P5P6P7P8 is inscribed in a circle, with the vertices around the
circumference in the given order. Given that the polygon P1P3P5P7 is a square of area
5 and the polygon P2P4P6P8 is a rectangle of area 4, �nd the maximum possible area of
the octagon.

Solution: The circle circumscribes a square of area 5, so the circle has radius
p
5=2.

Hence the rectangle has sides
p
2 and

p
8. Without loss of generality assume that P2P4

has length
p
2.

Put P2; P4; P6; P8 into the complex plane at
p
2(1=2 + i),

p
2(�1=2 + i),

p
2(�1=2� i),p

2(1=2 � i). Put P1 into the complex plane at
p
5=2 exp(i�); then P3; P5; P7 are at

i
p
5=2 exp(i�), �p5=2 exp(i�), �ip5=2 exp(i�).

The triangles P8P1P2 and P4P5P6 each have area
p
5 cos � � 1. The triangles P2P3P4

and P6P7P8 each have area
p
5=4 cos � � 1. Hence the octagon has area 3

p
5 cos �. The

maximum possible area is 3
p
5, achieved for � = 0.

Problem A4



Show that the improper integral

lim
B!1

Z B

0

sin(x) sin(x2) dx

converges.

Solution: Rewrite sinx sin x2 as (cos(x2�x)� cos(x2+x))=2. In the improper integralR1
0

cos(x2 + x) dx substitute u = x2 + x to obtain
R1
0

2 cosudu=(
p
1 + 4u � 1). The

integrand is negative on (�=2; 3�=2), positive on (3�=2; 5�=2), etc. The corresponding
integrals form an alternating decreasing series since

Z s+�

s

2 jcosuj dup
1 + 4u� 1

>

Z s+�

s

2 jcosuj dup
1 + 4u+ 4� � 1

=

Z s+2�

s+�

2 jcos vj dvp
1 + 4v � 1

:

Thus
R1
0

cos(x2 + x) dx converges. Similar comments apply to
R1
0

cos(x2 � x) dx.

Problem A5

Three distinct points with integer coordinates lie in the plane on a circle of radius r > 0.
Show that two of these points are separated by a distance of at least r1=3.

Solution: The following solution is stolen from Dave Rusin.

The triangle formed by the points has area abc=4r where a; b; c are the distances between
the points. If a; b; c < r1=3 then the area is smaller than 1=4; but the area is at least 1=2
since the points have integer coordinates.

Problem A6

Let f(x) be a polynomial with integer coe�cients. De�ne a sequence a0; a1; : : : of integers
such that a0 = 0 and an+1 = f(an) for all n � 0. Prove that if there exists a positive
integer m for which am = 0 then either a1 = 0 or a2 = 0.

Solution: The stated conclusion is false, because the word \either" means that exactly
one is true. Presumably the intent was to say that a1 = 0 or a2 = 0.

Fact 1: am�1 divides a1. Proof: am�1 divides f(am�1)� f(0) = am � a1 = �a1.
Fact 2: a1 divides an if n � 0. Proof: If n = 0 then an = 0. Otherwise a1 divides an�1
by induction, so it divides f(an�1)� f(0) = an � a1.

Fact 3: an � an�1 divides an+k � an+k�1 if n � 1 and k � 0. Proof: If k = 0 then
an�an�1 = an+k�an+k�1. Otherwise an�an�1 divides an+k�1�an+k�2 by induction,
so it divides f(an+k�1)� f(an+k�2) = an+k � an+k�1.

Fact 4: an � an�1 2 f�a1; a1g if 1 � n � m. Proof: De�ne k =m� n. Then an � an�1
divides an+k�an+k�1 = am�am�1 = �am�1, which divides a1; and a1 divides an�an�1.



Fact 5: a2 = 0. Proof: a2 � a1 2 f�a1; a1g. Suppose that a2 6= 0. Then a2 = 2a1 and
a1 6= 0, so m � 3. Observe that an = na1 for n 2 f0; 1; 2g, but not for n = m. Find
the smallest n � 3 for which an 6= na1. Then an�1 = (n � 1)a1, so an � an�1 6= a1,
so an � an�1 = �a1, so an = (n � 2)a1 = an�2. By induction ak 2 fan�1; an�2g for
all k � n. In particular 0 = am 2 fan�1; an�2g. Thus (n � 1)a1 = 0 or (n � 2)a1 = 0.
Contradiction.

I would have written this problem as follows: \De�ne a0 = 0 and an+1 = f(an), where
f is a polynomial with integer coe�cients. Assume that a2000 = 0. Prove that a2 = 0."

Problem B1

Let aj , bj , and cj be integers for 1 � j � N . Assume, for each j, that at least one of
aj ; bj ; cj is odd. Show that there exist integers r; s; t such that raj + sbj + tcj is odd for
at least 4N=7 values of j, 1 � j � N .

Solution: De�ne f(u; v;w) = # fj : (aj mod 2; bj mod 2; cj mod 2) = (u; v;w)g. De�ne
g(r; s; t) = # fj : raj + sbj + tcj is oddg. Then

g(1; 0; 0) = f(1; 0; 0) + f(1; 0; 1) + f(1; 1; 0) + f(1; 1; 1);

g(0; 1; 0) = f(0; 1; 0) + f(0; 1; 1) + f(1; 1; 0) + f(1; 1; 1);

g(0; 0; 1) = f(0; 0; 1) + f(0; 1; 1) + f(1; 0; 1) + f(1; 1; 1);

g(1; 1; 0) = f(1; 0; 0) + f(0; 1; 0) + f(1; 0; 1) + f(0; 1; 1);

g(1; 0; 1) = f(1; 0; 0) + f(0; 0; 1) + f(1; 1; 0) + f(0; 1; 1);

g(0; 1; 1) = f(0; 1; 0) + f(0; 0; 1) + f(1; 1; 0) + f(1; 0; 1);

g(1; 1; 1) = f(1; 0; 0) + f(0; 1; 0) + f(0; 0; 1) + f(1; 1; 1):

Add: g(1; 0; 0) + g(0; 1; 0) + g(0; 0; 1) + g(1; 1; 0) + g(1; 0; 1) + g(0; 1; 1) + g(1; 1; 1) =
4f(1; 0; 0)+4f(0; 1; 0)+4f (0; 0; 1)+4f(1; 1; 0)+4f (1; 0; 1)+4f(0; 1; 1)+4f (1; 1; 1) = 4N .
Thus g(r; s; t) � 4N=7 for some (r; s; t).

Problem B2

Prove that the expression
gcd(m;n)

n

�
n

m

�

is an integer for all pairs of integers n � m � 1. [Here
�
n
m

�
= n!

m!(n�m)! and gcd(m;n) is

the greatest common divisior of m and n.]

Solution: Presumably \divisior" means \divisor."

Find integers a; b with gcd(m;n) = am+ bn. Then (gcd(m;n)=n)
�
n
m

�
= a

�
n�1
m�1

�
+ b

�
n
m

�
.



Problem B3

Let f(t) =
PN

j=1 aj sin(2�jt), where each aj is real and aN 6= 0. Let Nk denote the

number of zeros (including multiplicities) of
dkf

dtk
. Prove that

N0 � N1 � N2 � � � � and lim
k!1

Nk = 2N:

Solution: The stated conclusion is false: f has in�nitely many roots. Presumably the
intent was to say \roots in [0; 1)." Does anyone proofread the Putnam problems before
they are printed?

Say the roots of f in [0; 1) are r1 < r2 < � � � < rn with multiplicities m1;m2; : : : ;mn.
Then f 0 has a root at ri with multiplicity mi � 1 if mi � 2; a root in (ri; ri+1) for
1 � i � n � 1; a root in (rn; 1 + r1); and possibly more roots. Thus there are at least
1 + (n � 1) +

P
i(mi � 1) =

P
imi roots of f 0 in [r1; 1 + r1), hence in [0; 1); and there

are exactly
P

imi roots of f in [0; 1). Thus N0 � N1. By the same argument N1 � N2,
N2 � N3, etc.

Find k0 such that
P

1�j<N (j=N)k jaj=aN j < 1=2 for all k � k0. Abbreviate d=dt as D.

I will show that Dkf has exactly 2N roots in [0; 1) for k � k0.

Find a real number s with (Dk sin)(2�Ns) = 1. Then (Dk sin)(2�Nt) decreases from 1
at s to �1 at s+ 1=2N , increases to 1 at s + 2=2N , etc. By construction

(Dkf)(t)

(2�N)kaN
= (Dk sin)(2�Nt) +

X
1�j<N

�
j

N

�k
aj
aN

(Dk sin)(2�jt);

so (Dkf)(t) has the same sign as aN (Dk sin)(2�Nt) whenever
��(Dk sin)(2�Nt)

�� > 1=2:
in particular, at s; s + 1=2N; s + 2=2N; : : :. Therefore Dkf has at least one root in
[s; s + 1=2N).

It is not possible for Dkf to have two roots in [s; s+1=2N). Indeed, the roots are in the
subinterval [s + 1=6N; s + 1=3N ] where (Dk sin)(2�Nt) is in [�1=2; 1=2]. If there were
two roots then Dk+1f would also have a root in the subinterval, so (Dk+1 sin)(2�Nt)
would be in [�1=2; 1=2]; contradiction.
The same comments apply to [s + 1=2N; s + 2=2N) and so on. Thus Dkf has exactly
2N roots in [s; s + 1), hence in [0; 1).

Problem B4

Let f(x) be a continuous function such that f(2x2 � 1) = 2xf(x) for all x. Show that
f(x) = 0 for �1 � x � 1.



Solution: Thanks to Kahan for pointing out the role of cos here. My original solution
constructed cos manually.

De�ne g(y) = f(cos 2�y). Then g is continuous; g is even; g has period 1; and g(2y) =
f(cos 4�y) = f(2(cos 2�y)2 � 1) = 2(cos 2�y)f(cos 2�y) = 2(cos 2�y)g(y).

In particular, g(1=3) = g(�1=3) = g(2=3) = �g(1=3), so g(1=3) = 0. Thus g(n+1=3) = 0
for all integers n. In fact, g((n+1=3)=2k) = 0 for all n and all k � 0. Indeed, if k � 1, then
g((n+1=3)=2k�1) = 0 by induction, and cos(2�(n+1=3)=2k) 6= 0, so g((n+1=3)=2k) = 0.

The set f(n+ 1=3)=2kg is dense, so g is 0 everywhere. Thus f is 0 on the range of cos,
namely [�1; 1].
Robin Chapman comments that one can remove the 2 cos 2�y factor by considering
f(cos 2�y)= sin 2�y for all non-integer y.

Problem B5

Let S0 be a �nite set of positive integers. We de�ne �nite sets S1; S2; : : : of positive
integers as follows:

Integer a is in Sn+1 if and only if exactly one of a� 1 or a is in Sn.

Show that there exist in�nitely many integers N for which SN = S0 [ fN + a : a 2 S0g.
Solution: De�ne a polynomial fn as

P
a2Sn

xa. Then fn+1 � (x + 1)fn (mod 2), so
fn � (x + 1)nf0.

In particular, if n is a power of 2 larger than deg f0, then fn � (x+1)nf0 � (xn+1)f0 =
xnf0 + f0, and all coe�cients of xnf0 + f0 are 0 or 1, so fn = xnf0 + f0; i.e., a 2 Sn if
and only if a 2 S0 or a� n 2 S0.

Problem B6

Let B be a set of more than 2n+1=n distinct points with coordinates of the form
(�1;�1; : : : ;�1) in n-dimensional space, with n � 3. Show that there are three dis-
tinct points in B which are the vertices of an equilateral triangle.

Solution: The following solution is a composite of solutions from several other people.

De�ne A = f(�1;�1; : : : ;�1)g. For each p 2 A de�ne �p = fq 2 B : jp� qj = 2g. ThenP
p2A#�p =

P
q2B # fp 2 A : jp� qj = 2g =

P
q2B n = n#B > 2n+1 = 2#A. Thus

#�p > 2 for some p 2 A. Any distinct q1; q2; q3 2 �p form an equilateral triangle in B.


