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Names  for  Standardized Floating-Point Formats

 

Abstract

 

I lack the courage to impose names upon floating-point formats of diverse widths,  precisions,  
ranges and radices,  fearing the damage that can be done to one’s progeny by saddling them with 
ill-chosen names.  Still,  we need at least a list of the things we must name;  otherwise how can we 
discuss them without talking at cross-purposes?  These things include ...

 

 

Wordsize

 

,  

 

Width

 

,  

 

Precision

 

,  

 

Range

 

,  

 

Radix

 

, …
all of which must be both declarable by a computer programmer,  and ascertainable by a program 
through  

 

Environmental Inquiries

 

.  And precision must be subject to truncation by  

 

Coercions

 

.

 

Conventional Floating-Point Formats

 

Among the names I have seen in use for floating-point formats are …

 

float

 

,  

 

double

 

,  

 

long double

 

,  

 

real

 

,
REAL*…,  SINGLE PRECISION,  DOUBLE PRECISION,
double extended,  doubled double,  TEMPREAL,  quad,  … .

Of these floating-point formats the conventional ones include finite numbers  x  all of the form

x =  (–1)

 

s

 

·m·ß

 

n+1–P

 

 
in which  s,  m,  ß,  n  and  P  are integers with the following significance:

s  is the  

 

Sign bit

 

,  0  or  1  according as  x 

 

≥

 

 0  or  x 

 

≤

 

 0 .
ß  is the  

 

Radix

 

  or  

 

Base

 

,  two for  

 

Binary

 

  and ten for  

 

Decimal

 

.  (I exclude all others).
P  is the  

 

Precision

 

  measured in  

 

Significant Digits

 

  of the given radix.
m  is the  

 

Significand

 

  or  

 

Coefficient

 

  or (wrongly)  

 

Mantissa

 

  of  |

 

 

 

x

 

 

 

|  running in the range

0 

 

≤

 

 m 

 

≤

 

 ß

 

P

 

–1 .
n  is the  

 

Exponent

 

,  perhaps  

 

Biased

 

,  confined to some interval  N

 

min

 

 

 

≤

 

 n 

 

≤

 

 N

 

max

 

 .
Other terms are in use.  Precision can be measured in  “Sig. Dec.”  (but only approximately  when  

ß 

 

≠

 

 10 ).  A  

 

Normalized

 

  nonzero significand can be represented as a  

 

Fraction

 

  f = m/ß

 

P

 

  in the 
range  1/ß 

 

≤

 

 f < 1 ,  or in  

 

Scientific Notation

 

  as a number  ßf  in  1 

 

≤

 

 ßf < ß ;  in binary this  
Scientific  notation looks like  1

 

.

 

ƒ  for some fraction  ƒ .  Decimal Scientific  notation is what the  
1PEw.d  

 

FORMAT

 

  mask in  Fortran  displays,  and then the exponent displayed is just  n ,  as in

 

6

 

.

 

0225

 

 

 

E+23

 

 which is easier to read than

 

0

 

.

 

60225

 

 

 

E+24

 

 

for  Avogadro’s  number   60225·10

 

19

 

  to  5  sig. dec.  of precision.

What most distinguishes the floating-point formats of  IEEE Standards 754/854  from all previous 
formats is the simplicity with which  

 

all

 

  of a format’s finite floating-point numbers  x  can be 
characterized.  That set of available finite numbers  x  is determined completely by just three 
positive integers  N

 

max

 

,  P  and either  ß = 2  or  ß = 10 .  A fourth integer  N

 

min 

 

< 0  is determined 

by the requirement of an exponent range so  

 

balanced

 

  that  ß

 

Nmax+Nmin+1

 

 

 

≥

 

 4  as barely as 
possible;  this means  N

 

min

 

 := –floor( N

 

max

 

 + 1 – log

 

ß

 

4 ) .  Then  

 

every

 

  number of the form

x = (–1)

 

s

 

·m·ß

 

n+1–P

 

   with  s

 

2

 

 = s ,   0 

 

≤

 

 m 

 

≤

 

 ß

 

P

 

 – 1   and   N

 

min

 

 

 

≤

 

 n 

 

≤

 

 N

 

max

 

 
is a floating-point number in that format,  and it has no others besides  

 

±∞

 

  and some  

 

NaN

 

s .
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Previous floating-point formats allowed only  

 

Normalized

 

  numbers  x .  These are  x = 0  and  

x = 

 

±

 

m·ß

 

n+1–P

 

  with  ß

 

P–1 

 

≤

 

 m 

 

≤

 

 ß

 

P 

 

– 1 .  (Some old machines  “Normalized”  slightly differently.)  
Allowing only normalized numbers compelled  

 

Underflow

 

  to flush to zero.  IEEE Standards 
754/854  underflow  

 

Gradually

 

  through the  

 

Subnormal

 

  numbers,  namely the values  x  with  

n = N

 

min

 

  and  0 < m < ß

 

P–1

 

 ;  these are now  754/854’s  only unnormalized numbers.  All told,  

each  754/854  format has  2

 

 

 

ß

 

P–1

 

(

 

 

 

ß

 

 + (ß–1)(Nmax – Nmin) ) – 1  finite floating-point numbers 
besides  –0 ,  plus  ±∞  and some  NaNs .   ( “NaN”  means  “Not a Number”.)

Fully Specified Standard Binary Floating-Point Formats
Originally  IEEE 754  specified two  Binary  floating-point formats so tightly that they could be 
used to share numerical data among diverse conforming computer systems.  Now three binary  
(ß = 2)  formats are so specified by their wordsizes in bytes,  precisions  P  in sig. bits,  and their  

(k+1)-bit  exponent fields that keep exponents between  Nmax = 2k–1  and   Nmin = 1 – Nmax :

Except for  Big-Endian  vs. Little-Endian  variations,  these formats are specified down to the 

location of every bit.  Each floating-point word encodes a floating-point value  x = (–1)s·m·2n+1–P  
in a word  X := [s, Exp, SigBits]  in which the leading bit  s  is  x’s  sign bit,  0  for  “ + ”  or else  
1  for  “ – ” ;  the next  (k+1)-bit  field holds the  Biased Exponent  Exp ;  and the last field holds 
the  Significand’s  all-but-leading-bits.  The fields of  X  after the sign bit  s   are decoded thus:

1 ≤ Exp ≤ 2·Nmax  for  Normalized  x  with  n = Exp–Nmax  and  m = SigBits + 2P–1 ;  but
Exp = 0  for  Subnormal   x  with  n = 1–Nmax  and  m = SigBits ,  so  m = 0  for  x = ±0 .

Exp = 2·Nmax + 1 = 2k+1–1  and  SigBits = 0  for  Infinite  x = ±∞ ;  but

Exp = 2·Nmax + 1  and  SigBits > 0  when  x  is  NaN ,  a  Quiet NaN  if  SigBits ≥ 2P–1 .

    Signaling NaNs  with  0 < SigBits < 2P–1 trap immediately before arithmetic operations.

IEEE 754  specified also a family of  Extended  binary floating-point formats,  but not so tightly 
that they could usefully be copied  verbatim  from one computer’s memory to another’s.  The  

Double-Extended  formats were required only to have  Nmax = 2k – 1  for some  k ≥ 14 ,  and  
P ≥ 64 ,  both chosen at the implementor’s option.  For example,  Quadruple Precision  listed 
above is a  Double-Extended  format with minimal  k = 14  but  P = 113 .  The minimal values of  
k  and  P = 64  are found in a  de facto  standard  Double-Extended  used by  Intel Pentiums  and 
their clones manufactured by others,  by  H-P/Intel’s  Itanium,  and by the now almost extinct  
Motorola  88110  and  680x0.  Correct use of this format is a nontrivial challenge to programmers 
for reasons varying from nonexistent support by compilers to a lack in standard languages of 
suitable  Environmental Inquiries  that properly written programs must invoke to discover an  
Extended  format’s range and precision at run-time .  Such programs can run correctly though 
they deliver different accuracies on different machines with different  Extended  formats.

 Format Names  (among others) Bytes wide Nmax  Precision  P  sig. bits

Single Precision,  float,  REAL*4 4 27 – 1 24

Double Precision,  double,  REAL*8 8 210 – 1 53

Quadruple Precision,  quad,  REAL*16 16 214 – 1 113
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Families of Wider Standardized Floating-Point Formats
What follows expands upon the  IEEE  standards’ presently allowed  Double-Extended  formats.

Conceivably occasions will arise for floating-point formats wider than the aforementioned ones,  
and somebody will have to give them names.  For the present I propose to call them

FloatBin(k, p) and FloatDec(k, p)
for binary  ( ß = 2 )  and decimal  ( ß = 10 )  formats respectively with the indicated precisions of  

at least  p  digits of radix  ß ,  and exponent range up to  at least   Nmax ≥ ßk – 1 .  Actual 
precisions and ranges  (and sometimes the radix  ß  too)  are intended to be ascertained at run-time 
by apt  Environmental Inquiries  based upon the  NextAfter  function,  about which more later.

This is not the place to explore memory-saving encodings of decimal floating-point formats beyond observing that in 
general,  for both binary and decimal,  a computer’s floating-point registers may well contain information besides 
what is normally stored in memory packed into a standard format.  What matters most to applications programmers 
using higher-level languages like  C  and  Fortran  is that they may specify what they regard as the least amount of 
precision and range adequate for their purposes.  What matters to the numerical specialists who provide software 

support for applications programmers is that there be ascertainable parameters  P ≥ p  and  Nmax ≥ ßk – 1  by which 
the standardized inequalities

0 ≤ m ≤ ßP – 1      and      Nmin := –floor( Nmax + 1 – logß4 ) ≤ n ≤ Nmax       for     x = ±m·ßn+1–P 
characterize  all  of a standard format’s set of finite floating-point numbers  x .  Both kinds of programmers must be 
able to choose the standard format of the destination for every floating-point operation’s result.  We hope language 
conventions will help make that choice both apt and convenient;  but for more than three formats,  or if the widest 
runs too much slower than the others,  these are tricky issues to be discussed another day.

Implementors will find some formats’ choices of precision and range  “natural”  because they can 
be made to run at least as fast as other narrower formats.  This slight anomaly,  namely that range 
and/or precision slightly increased sometimes runs faster,  is a consequence of  processors’ buss- 
and register-widths.  The run-time library of mathematical functions also exhibits such anomalies 
because different formulas for a function,  differing perhaps in the number of a series’ terms 
summed,  may provide different accuracies either rather less or rather more than the requested 
precision.  Consequently an implementor must be allowed to exploit her processor architecture’s 
features in ways that optimize the performance of her multi-word arithmetics only for certain 
discrete choices of precision and range.  In particular,  the  Width  of a standardized format need 
not be minimal for any particular choice of precision or range lest word alignment delays cripple 
performance.  For instance,  though  Intel’s  Double-Extended  fits in  10  bytes,  Motorola  spread 
it in  12-byte  words,  and  16-byte  words for it are commonplace now that memory is so cheap 
but time is still dear.  Sizeof(…)  should reveal an implementation’s width.

What remain to be discussed are the granularity of ranges and precisions that an implementor 
should support,  and the  Environmental Inquiries  and  Coercions  that languages should provide.

A plausible if not foolproof strategy for an applications programmer who does not know in 
advance how much precision he needs is to repeat a computation using a sequence of ever wider 
precisions until the computed result settles down in as many leading digits as he desires.

“If at first you don’t succeed,  try,  try,  try again.”
How hard?

This question happens to have a provably near-optimal answer:
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Try again with about  √2  times as many sig. digits as before.

Consequently the implementor of a family of arithmetics of ever higher precisions need not offer 
precisions closer than in a ratio of roughly  √2 = 1.414… .  For instance,  after  16-byte  quad  the 
implementor may reasonably offer only formats  24,  32,  48,  64,  96,  128,  …  bytes wide in the 
event that these turn out to be substantially easier to support than a finer granularity of widths.

Environmental Inquiries
A program may have to discover the actual precision and range of the arithmetic it is executing in 
order to decide when an iteration has converged as well as can be expected,  and when to scale 
variables to prevent over/underflow.  For all floating-point arithmetics that conform to  IEEE  
standards,  if not for others,  a recommended function  NextAfter(x, y)  can serve this purpose 
well.  This function should be regarded as  Generic  in the  Fortran  sense,  returning a value in the 
wider of its arguments’ formats;  the returned value is that format’s next floating-point number 
after  x  in the direction towards  y .  In other words,  this is  x’s  neighbor on the same side as  y  
unless  y = x ,  in which case  NextAfter(x, y)  is  y  (to handle  ±0  nicely).

If such generic functions are not natural to the programming language in use,  names like
“sNextAfter”,  “dNextAfter”,  “eNextAfter”,  “qNextAfter”,  …,  NextAfterß(k, p)

may become necessary.  I prefer generic functions and will take them for granted henceforth.

The implementor of  NextAfter  for the  IEEE Standard’s  three  Fully Specified Binary  formats,  namely  Single,  
Double  and  Quadruple precisions,  can exploit their  Lexicographic Order.  This means that two words  X  and  X'  
that encode respective floating-point values  x  and  x'  in the same format,  but neither value  NaN,  share the same 
sign-magnitude ordering:  X < X'  if and only if  x < x' .  Therefore  NextAfter  can be implemented  (not necessarily 
faster)  using exclusively integer arithmetic operations including a few integer comparisons that are necessary to get 
the direction of incrementation right and to detect special cases like  NaNs.  If  x' = NextAfter(x, y) ≠ x  then the 
corresponding words  X'  and  X  differ by  1  as sign-magnitude integers.

Environmental Inquiries  can be fashioned out of  NextAfter  plus a few arithmetic operations to 
reveal at run-time the radix  ß ,  the precision  P ,  the maximum exponent  Nmax  and the 
minimum exponent  Nmin  of standard floating-point formats and some others.  Here is how:

The arithmetic’s radix  ß  for variables of the same format as  U  can be determined by setting
   U := 1.0 ;    eps := NextAfter(U, +∞) – U ;    ulp1 := U – NextAfter(U, –∞) ;    ß := eps/ulp1 .

After that the arithmetic’s actual precision  P  can be determined from
P :=  Round_to_Nearest_Integer( –logß(ulp1) ) .

The arithmetic’s overflow threshold is  Ω := NextAfter(+∞·U, –∞) ,  and then the actual exponent 
range becomes apparent from  Nmax := Round_to_Nearest_Integer( logß(Ω) ) – 1   and finally a 
standard format’s  Nmin := –floor( Nmax + 1 – logß(4.0) ) .  (Other formats’  Nmin  may differ.)

Alternatively,  to avoid arithmetic with  ∞ ,  compute the format’s smallest positive number  
eta := NextAfter(0.0, U) .  It is subnormal for a standard format,  and then its arithmetic’s normal 
underflow threshold is  µ := eta/eps .  (Most non-standard formats,  like the  DEC VAX’s,  flush 
underflow to zero;  their  eta  is roughly our  µ .)   Now the standard extreme exponents are

Nmin := Round_to_Nearest_Integer( (logß(µ) ) ;    Nmax = ceil( logß(4) – Nmin – 1 ) .
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Computing  logß(x) := log(x)/log(ß)  is accurate enough for the foregoing purposes provided that  
log2(4.0) = 2  exactly.

In short,  practical ways exist to determine at run-time the few integer constants that characterize 
any floating-point format conforming to  IEEE 744/854  provided the programming language in 
use offers well-implemented versions of  NextAfter,  Round_to_Nearest_Integer  and  log .

WARNING:  The foregoing environmental inquiries need not work for arithmetics that do not conform to  IEEE 
754/854,  nor for conforming arithmetics accessed by languages that deny the programmer adequate control over the 
destinations of his floating-point operations.  An instance of the last kind is a compiler that evaluates  NextAfter  in a 
precision wider than either of its operands.  An instance of the former kind is  Doubled-Double Precision,  which 
represents each floating-point variable as an unevaluated sum of two  Doubles  that,  if added and rounded to  Double,  
would round to the bigger of the two.  Alas,  many algorithms successful in every arithmetic that conforms to an  
IEEE  standard fail in  Doubled-Double.  For example its  eps ,  if computed from the formula above,  would turn out 
to be  eta  instead of a value like  | (4.0*U/3.0 – 1.0)*3.0 – 1.0 |  which gives a better indication of roundoff though 
still not quite right.  Doubled-Double  is probably satisfactory for matrix multiplication and power series,  probably 
less satisfactory for solving differential equations by finite difference methods,  and dangerous for some now widely 
used algorithms that exploit delicate relationships preserved by arithmetics conforming to  IEEE  standards  854/754.

Coercions and Conversions
Every implementation of radix  ß  floating-point arithmetic should offer a function  Roundfß(j, x)  
that rounds its floating-point operand  x  to integer  j  sig. digits in radix  ß .  Usually  j ≤ P .  This 
is a special case,  with the same format for both  x  and  Roundfß,  of conversion between different 
formats each with perhaps its own radix,  as in  Binary <—> Decimal  conversion.  Conversions 
and coercions between different formats with the same radix are normally accessed in a simpler 
way by an assignment statement like  “ x := y ”  or,  amidst an arithmetic expression,  a cast like  
“ (float)x ”  when the variables  x  and  y  have data-types fully supported by the programming 
language.  All such conversions and coercions,  if inexact,  should honor the directed rounding 
mode in effect at the time,  and respond to  Over/Underflow  in the expected ways.

When conversion is intended to communicate numbers from one computer to another with possibly different 
arithmetics,  the principal challenge is to choose the right names for source and destination formats.  The names,  like  
“FloatBin(k, p)”  and  “FloatDec(k, p)” ,  used by programmers to request adequate precision and range for would-be 
portable software are ill-suited to communication between computers with different arithmetics or even just different 
compilers for ostensibly the same language and arithmetic.  The simplest way transmits decimal strings of  ASCII  
characters long enough that any destination computer’s  Decimal —> FloatBin(k, p)  conversion can reconstruct the 
intended value exactly,  then coerce it into the computer’s own format.  But this simplest way can also be the slowest.

Faster ways require agreement upon parameterized names that describe how the destination computer encodes 
floating-point values as bit- or character-strings in memory.  For  Binary  floating-point conforming to  IEEE 754,  the 
obvious parameters are field widths:  P  for the significand’s precision,  k+1  for the biased exponent’s field.  The 
unobvious parameters are a symbol  “I”  or  “E”  to indicate whether the significand’s leading bit is implicit or 
explicit,  and a number that tells how many bytes the computer addresses  (±1  for byte-addressing,  ±2  for the  DEC 
VAX,  …)  and,  by its sign,  whether addressing is  Big-  or  Little-Endian.

Computers with full hardware support for fast  Decimal  floating-point arithmetic pose additional challenges because 
they may pack,  say,  three decimal digits into ten bits in memory,  unpacking the digits when a number is loaded into 
floating-point registers for arithmetic.  They may also choose binary instead of decimal for the exponent field.  This 
packing saves  16%  of the memory space and transmission time taken by huge arrays of data.  More important,  
packing puts more precision and range into conventional word sizes;  e.g.,  4  bytes can hold  7  sig. dec.  and a range 

from  10–113  to almost  10+114 .  At this time the standardization of decimal floating-point formats seems premature.
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Appendices for future exposition:
• How are  Floating-Point  and  Fixed-Point  Approximate Arithmetics Utterly Different?
• What  Good  are  Extended Floating-Point Formats?
• What Good are  Gradual Underflow  and  Subnormal Numbers?

How are  Floating-Point  and  Fixed-Point  Approximate Arithmetics Utterly Different?
Fixed-point arithmetic differs from floating-point in four ways:

Fixed-point Floating-point
     i Number spacing Uniform Roughly logarithmic
    ii Rounding procedures Many Few
   iii Destinations depend upon Operation as well as … Operands and ambiance
   iv WYSIWYG ? Usually Rarely

Each traditional fixed-point format consists of a set of uniformly spaced fixed-point numbers  x  
characterized completely by three parameters,  its  Low End  L ,  its  High End  H ,  and its  
Quantum  q ,  so that all numbers afforded by the format have the form  x = m·q  in which integer  
m  is bounded thus:  L ≤ m ≤ H .  In memory,  a packed or encoded representation of the integer  
m  is stored in place of  x ;  the programmer or compiler may associate  x  and all other variables 
of the same fixed-point format  (or  Type)  with its parameters  {L, H, q}  stored elsewhere.  The 
quantum  q  is usually  (but not necessarily)  the reciprocal of a positive integer power of a  Radix  
like two for  Binary  or ten for  Decimal;   then the ends’ magnitudes  –L  and  H  are often  (but 
not necessarily)  another integer power of that radix,  or half of one,  or  1  less.  Here are 
examples each of which packs into four-byte words:

4-byte unsigned binary integers: L = 0 ; H = 232–1 ; q = 1

4-byte twos’-complement fractions: L = –231 ; H = 231–1 ; q = 1/231 

15+16 bits sign-magnitude: L = 1–231 ; H = 231–1 ; q = 1/216 

7+2-dec. digits sign-magnitude: L = 1–109 ; H = 109–1 ; q = 1/100
6+2-dec. digits tens’-complement: L = -50000000 ;  H = 49999999;   q = 1/100

The last format packs into eight  BCD  digits,  one nibble each,  without an explicit sign digit;  its 
hundred million numbers  x  consist of  –500000.00  packed as  “50000000”,  –499999.99  packed 
as  “50000001”,  -499999.98  packed as  “50000002”,  …,  –0.01  packed as  “99999999”,  0  
packed as  “00000000”,  0.01  packed as  “00000001”,  …,  499999.98  packed as  “49999998”,  
and  499999.99  packed as  “49999999”.  This format,  a relic from the mechanical calculators’ 
era,  matches in electronic memory the way many people still visualize monetary numbers.

Fixed-point variables of a given format are often associated with a unit of measurement reflected 
in the quantum  q .  For instance,  money in dollars and cents can have  q = 1/100 .  Distances in 

kilometers measured to the nearest millimeter have  q = 1/106 .  Weights in pounds to the nearest 
ounce have  q = 1/16 .  Times in hours to the nearest second have  q = 1/3600 .  The ends  L  and  
H  need not correlate with a radix implied by the quantum  q ;  for instance,  dollars and cents with  

q = 1/100  can also be stored in  4-byte  twos’-complement integers with  L = –231 = –1 – H .

Addition/subtraction of fixed-point variables with the same quantum amounts to exact integer 
arithmetic provided the the sum/difference has the same quantum and does not overflow beyond 
its ends.  Similarly for multiplication provided the product’s quantum is the product of the factors’ 
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quanta.  All programming languages that support many fixed-point formats specify by default,  for 
every arithmetic operation,  a format for its result depending upon the operation as well as the 
operands’ formats,  but often leaving  “undefined”  any intermediate result that overflows beyond 
the result-format’s ends  L  and  H .  A quotient’s result-format may depend more upon the 
operand formats’ ends than their quanta.  Mathematically,  what most distinguishes fixed- from 
floating-point arithmetic is the result-format’s dependence upon the operation.

When fixed-point arithmetic cannot be exact,  it must follow rounding procedures that depend 
upon the application’s and programming language’s conventions in ways too complicated and 
diverse  (and sometimes bizarre)  to discuss at length here.  For example,  some banks still round  
monetary quantum fractions bigger than  0.1  up or down in whichever direction favors the bank. 
Durations of telephone calls are commonly rounded up to minutes before charges are computed.

Ideally,  programmers should be able to express,  by some locution like  “RoundΩ(1/q, Æ)” ,  the 
manner  (specified by  Ω )  in which an expression  Æ  should be rounded to an integer multiple of 
the quantum  q ,  provided  Æ  involves at most one arithmetic operation.  Ideally  Æ  should be 
computed exactly before being rounded according to procedure  RoundΩ  selected from a catalog 
or library supplied by the compiler and perhaps augmented by the programmer;  otherwise  “Æ”  
by itself  (not an argument of  RoundΩ )  within a larger expression would be rounded according 
to whatever rounding procedure and quantum are the programming language’s defaults for the 
operation and operands that appear in  Æ .  I know of no current language that behaves ideally.

Almost any rounding procedure could be simulated relatively easily and quickly on old  680x0-

based  Apple Macintoshes  by using their  SANE comp  format,  with  –L = H = 264–1 ,   as an 
intermediate for every fixed-point arithmetic operation.  This  comp  format also afforded  ±∞  and  
NaNs,  missing from traditional fixed-point formats.  Current  Macintoshes,  based upon  IBM’s  
PowerPC  architecture,  lack the  comp  format.  It is unsupported by  Microsoft’s  programming 
languages though latent in  Wintel  hardware’s  Double-Extended  floating-point format.  Deprived 
of so wide a fixed-point format,  fixed-point programmers must resort to trickery,  sometimes even 
to floating-point arithmetic,  when trying to simulate rounding procedures foreign to their chosen 
programming language.

Hardware to compute  RoundΩ(1/q, Æ)  correctly does not need an infinitely wide register to compute  Æ  exactly 
before rounding.  At least for rational operations and  √ ,  the register need only extend a few digits  (called  “guard, 
round and sticky”)  beyond the desired result’s width to support the desired rounding operation.  A more difficult 
challenge for hardware designers is the accommodation of quanta  q  and rounding procedures  Ω  more numerous for 
fixed-  than needed for floating-point arithmetics.  This implies that working  fixed/floating-point  registers must be 
somewhat wider than all values normally loaded from and stored to memory other than during register-dumps.

The next example illustrates the most pernicious difference between fixed- and floating-point 
arithmetics:

   Assignment Statements Displayed Values
x := 7.0/10.0 x = 0.7000…000
y := 4.0/10.0 y = 0.4000…000
z := 3.0/10.0 z = 0.3000…000
d := (x–y) – z d = 0.0000…000
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Is  d  really zero?  Probably  YES   in fixed-point,  because usually  What You See Is What You Get.  
In binary floating-point no value displayed above can match the value stored in memory;  the 

stored value of  d  can be about   –2.98/108  or  –5.55/1017  or  –2.71/1020  depending upon the 
variables’ precision  (presumed all the same),  respectively  Single,  Double,  or  Double-extended  
IEEE Standard  binary floating-point.

Of course,  displaying too few digits after the point can obscure fixed-point values;  but common 
practice is to display enough digits to distinguish values that differ by one quantum.  Floating-
point values are often displayed in fixed-point fashion  (like  Fortran’s  F-format)  and with fewer 
digits than suffice to distinguish adjacent values.

Many practitioners of fixed-point,  and their clients,  think of numbers as strings of digits that 
combine according to rules that schools and others propagate like  Catechism:-  articles of faith to 
be believed even if not understood.  Some floating-point practitioners think that way too;  but 
more often they think of noninteger numbers as slightly fuzzy things whose rightmost few digits 
are irrelevant and immaterial.  Neither mode of thought is quite right,  but that is also irrelevant 
here.  The point here is that fixed-point practitioners have certain expectations,  not the same for 
everyone,  and are more likely to be surprised and confused by deviations from their expectations 
than are floating-point practitioners who tend to tolerate deviations even when they shouldn’t.

What  Good  are  Extended Floating-Point Formats?
This is more a marketing question than mathematical,  and although the reasoning entails some 
mathematics beyond the acquaintance of most marketing personnel,  they will all appreciate the 
conclusions,  namely that …

• Were the wages of sin collected only by the sinners,  extended formats could be optional.
• Extended formats are required more to support a mass market than for numerical experts.

A capacity for error-analysis is what most distinguishes a numerical expert from a numerically 
inexpert  (but otherwise perhaps quite clever)  programmer.  The latter usually chooses formulas 
that would be correct in the absence of roundoff,  and then executes them in floating-point 
expecting roundoff to contribute negligibly to the desired result.  Usually roundoff is negligible.  
But otherwise,  when roundoff degrades the result substantially,  who suffers?

…  to be continued  …

Cambridge  philosopher  Ludwig Wittgenstein  (1889-1951)  ended his  Tractatus (1921)  with 
almost this tautology:

“What we cannot name we must pass over in silence.”


