Names WORK IN PROGRESS April 19, 2002 11:05 am

Names for Standardized Floating-Point Formats

Abstract
| lack the courage to impose names upon floating-point formats of diverse widths, precisions,
ranges and radices, fearing the damage that can be done to one’s progeny by saddling them with
ill-chosen names. Still, we need at least alist of the things we must name; otherwise how can we
discuss them without talking at cross-purposes? These thingsinclude....

Wordsize, Width, Precision, Range, Radix, ...
all of which must be both declarable by a computer programmer, and ascertainable by a program
through Environmental Inquiries. And precision must be subject to truncation by Coercions.

Conventional Floating-Point Formats
Among the names | have seen in use for floating-point formats are ...
fl oat, doubl e, | ong doubl e, real ,
REAL*..., SINGLE PRECISION, DOUBLE PRECISION,
double extended, doubled double, TEMPREAL, quad,
Of these floating-point formats the conventional ones include finite numbers x all of the form
X = (_1)s_m_8n+1—P
inwhich s, m, 3, n and P areintegerswith the following significance:
s isthe Sgnbit, 0 or 1 accordingas x=0 or x<0.
3 isthe Radix or Base, two for Binary and tenfor Decimal. (I exclude all others).
P isthe Precision measuredin Sgnificant Digits of the given radix.
m isthe Sgnificand or Coefficient or (wrongly) Mantissa of |x| running intherange
Osms -1,
n isthe Exponent, perhaps Biased, confined to someinterval Npin <N < Ny -
Other termsarein use. Precision can be measuredin “Sig. Dec.” (but only approximately when

R#10). A Normalized nonzero significand can be represented asa Fraction f = m/R" inthe

range /R<f<1, orin Sientific Notation asanumber [3f in 1< 3f <[3; inbinary this

Scientific notation looks like 1.f for somefraction f. Decimal Scientific notation iswhat the

1PEw.d FORMAT mask in Fortran displays, and then the exponent displayed isjust n, asin
6. 0225 E+23 whichiseasier toread than 0. 60225 E+24

for Avogadro’'s number 60225-10%° to 5 sig. dec. of precision.

What most distinguishes the floating-point formats of |EEE Standards 754/854 from all previous
formats is the simplicity with which all of aformat’s finite floating-point numbers x can be
characterized. That set of available finite numbers x isdetermined completely by just three
positiveintegers Ny, P and either 3=2 or 3=10. A fourthinteger Ny, <O isdetermined

by the requirement of an exponent range so balanced that RNM&NMINtL> 4 a5 parely as
possible; thismeans N, := —floor(Njya + 1 —10gg4) . Then every number of the form

x = (-1)>m-R"P with =5, 0sm<®-1 and Ny, <n< Ny
is a floating-point number in that format, and it has no others besides +oo and some NaNs.

Prof. W. Kahan Page 1/8

Thic Aaniimant wwiae rrastad wiith Cramallalar A N A

Names WORK IN PROGRESS April 19, 2002 11:05 am

Previous floating-point formats allowed only Normalized numbers x . Theseare x =0 and

x = +m-B"1P with P 1<m<RP-1. (Someold machines “Normalized” dlightly differently.)
Allowing only normalized numbers compelled Underflow to flush to zero. |EEE Standards
754/854 underflow Gradually through the Subnormal numbers, namely the values x with

n=Ny, and 0<m<?; thesearenow 754/854’s only unnormalized numbers. All told,

each 754/854 format has 2R Y(R+ (B-1)(Nmax —Nmir)) —1 finite floating-point numbers
besides -0, plus +o and some NaNs. (“NaN” means “Not a Number”.)

Fully Specified Standard Binary Floating-Point For mats

Originally IEEE 754 specified two Binary floating-point formats so tightly that they could be
used to share numerical data among diverse conforming computer systems. Now three binary
(R=2) formats are so specified by their wordsizesin bytes, precisions P in sig. bits, and their

(k+1)-bit exponent fields that keep exponents between Nz = 251 and Ny =1—Npay :

Format Names (among others) Byteswide | Npax Precision P sig. bits
Single Precision, f| oat, REAL*4 4 2/-1 24
Double Precision, doubl e, REAL*8 8 210_1 53
Quadruple Precision, quad, REAL*16 16 241 113

Except for Big-Endian vs. Little-Endian variations, these formats are specified down to the

location of every bit. Each floating-point word encodes afloating-point value x = (-1)>m-2M1P
inaword X :=[s, Exp, SigBits] inwhich theleading bit s is x’s signbit, O for “ +” or else
1 for “ =", thenext (k+1)-bit field holdsthe Biased Exponent Exp; and thelast field holds
the Sgnificand's all-but-leading-bits. Thefieldsof X after thesign bit s are decoded thus:

1< Exp< 2Npq for Normalized x with n=Exp-Nys and m = SigBits+ 271 ; but

Exp=0 for Subnormal x with n=1-Np ad m=SigBits, so m=0 for x==0.

EXp=2:Npg + 1= 211 and SigBits=0 for Infinite X = +oo ; but

Exp = 2N + 1 and SigBits>0 when x is NaN, a Quiet NaN if SigBits>2"1.
Sgnaling NaNs with 0 < SigBits < 2P trap immediately before arithmetic operations,

|IEEE 754 specified also afamily of Extended binary floating-point formats, but not so tightly
that they could usefully be copied verbatim from one computer’s memory to another’s. The

Double-Extended formats were required only to have Ny = 2K—1 for some k=14, and

P> 64, both chosen at the implementor’s option. For example, Quadruple Precision listed
aboveisa Double-Extended format with minimal k =14 but P=113. The minimal values of
k and P=64 arefoundina defacto standard Double-Extended used by Intel Pentiums and
their clones manufactured by others, by H-P/Intel’s Itanium, and by the now almost extinct
Motorola 88110 and 680x0. Correct use of thisformat isanontrivial challenge to programmers
for reasons varying from nonexistent support by compilersto alack in standard languages of
suitable Environmental Inquiries that properly written programs must invoke to discover an
Extended format’s range and precision at run-time . Such programs can run correctly though
they deliver different accuracies on different machines with different Extended formats.

Prof. W. Kahan Page 2/8

Names WORK IN PROGRESS April 19, 2002 11:05 am

Families of Wider Standardized Floating-Point Formats
What follows expands upon the |IEEE standards’ presently allowed Double-Extended formats.

Conceivably occasions will arise for floating-point formats wider than the af orementioned ones,
and somebody will have to give them names. For the present | propose to call them

FloatBin(k, p) and FloatDec(k, p)
for binary (3=2) anddecimal (3=10) formats respectively with the indicated precisions of

at least p digitsof radix 3, and exponent rangeupto atleast Ny 2 RK—1. Actua

precisions and ranges (and sometimestheradix (3 too) are intended to be ascertained at run-time
by apt Environmental Inquiries based upon the NextAfter function, about which more later.

Thisis not the place to explore memory-saving encodings of decimal floating-point formats beyond observing that in
genera, for both binary and decimal, acomputer’s floating-point registers may well contain information besides
what is normally stored in memory packed into a standard format. What matters most to applications programmers
using higher-level languages like C and Fortran isthat they may specify what they regard as the least amount of
precision and range adequate for their purposes. What matters to the numerical specialists who provide software

support for applications programmersis that there be ascertainable parameters P> p and Ny = k-1 by which
the standardized inequalities

0sms<R—1 and Npjp:=-floor(Npg + 1—loged) SN< Ny for x =xmRMEP
characterize all of astandard format’s set of finite floating-point numbers x . Both kinds of programmers must be
able to choose the standard format of the destination for every floating-point operation’s result. We hope language

conventions will help make that choice both apt and convenient; but for more than three formats, or if the widest
runs too much slower than the others, these are tricky issues to be discussed another day.

Implementors will find some formats’ choices of precision and range “natural” because they can
be made to run at least asfast as other narrower formats. This slight anomaly, namely that range
and/or precision slightly increased sometimes runs faster, isaconsequence of processors buss-
and register-widths. The run-time library of mathematical functions also exhibits such anomalies
because different formulas for afunction, differing perhapsin the number of a series terms
summed, may provide different accuracies either rather less or rather more than the requested
precision. Consequently an implementor must be allowed to exploit her processor architecture’s
features in ways that optimize the performance of her multi-word arithmetics only for certain
discrete choices of precision and range. In particular, the Width of a standardized format need
not be minimal for any particular choice of precision or range lest word alignment delays cripple
performance. For instance, though Intel’s Double-Extended fitsin 10 bytes, Motorola spread
itin 12-byte words, and 16-byte wordsfor it are commonplace now that memory is so cheap
but timeisstill dear. Si zeof (..) should reveal an implementation’s width.

What remain to be discussed are the granularity of ranges and precisions that an implementor
should support, and the Environmental Inquiries and Coercions that languages should provide.

A plausibleif not foolproof strategy for an applications programmer who does not know in
advance how much precision he needs is to repeat a computation using a sequence of ever wider
precisions until the computed result settles down in as many leading digits as he desires.

“If at first you don’t succeed, try, try, try again.”
How hard?

This question happens to have a provably near-optimal answer:

Prof. W. Kahan Page 3/8

Names WORK IN PROGRESS April 19, 2002 11:05 am

Try again with about V2 times as many sig. digits as before.

Consequently the implementor of afamily of arithmetics of ever higher precisions need not offer
precisions closer thanin aratio of roughly v2 = 1.414... . Forinstance, after 16-byte quad the
implementor may reasonably offer only formats 24, 32, 48, 64, 96, 128, ... byteswideinthe
event that these turn out to be substantially easier to support than afiner granularity of widths.

Environmental Inquiries

A program may have to discover the actual precision and range of the arithmetic it is executing in
order to decide when an iteration has converged as well as can be expected, and when to scale
variablesto prevent over/underflow. For all floating-point arithmetics that conform to 1EEE
standards, if not for others, arecommended function NextAfter(x, y) can serve this purpose
well. Thisfunction should be regarded as Generic inthe Fortran sense, returning avaluein the
wider of itsarguments formats; the returned valueis that format’s next floating-point number
after x inthedirection towards y . In other words, thisis x’s neighbor on the same sideas y
unless y = x, inwhich case NextAfter(x,y) is y (tohandle 0 nicdly).

If such generic functions are not natural to the programming language in use, nameslike
“sNextAfter”, “dNextAfter”, “eNextAfter”, “gNextAfter”, ..., NextAfterl¥k, p)
may become necessary. | prefer generic functions and will take them for granted henceforth.

Theimplementor of NextAfter for the |IEEE Standard's three Fully Specified Binary formats, namely Single,
Double and Quadruple precisions, can exploit their Lexicographic Order. This meansthat twowords X and X'
that encode respective floating-point values x and x' inthe sameformat, but neither value NaN, share the same
sign-magnitude ordering: X < X' if andonly if x <x'. Therefore NextAfter can beimplemented (not necessarily
faster) using exclusively integer arithmetic operations including afew integer comparisons that are necessary to get
the direction of incrementation right and to detect special caseslike NaNs. If x' = NextAfter(x, y) # x then the
corresponding words X' and X differ by 1 assign-magnitude integers.

Environmental Inquiries can be fashioned out of NextAfter plusafew arithmetic operationsto
revea at run-timetheradix 3, theprecison P, the maximum exponent N5 andthe

minimum exponent N, of standard floating-point formats and some others. Hereis how:

The arithmetic’sradix 3 for variables of the same format as U can be determined by setting
U:=1.0; eps:=NextAfter(U, +0)—U; ulpl:=U — NextAfter(U, —o); R:=epsulpl.

After that the arithmetic’s actual precision P can be determined from
P:= Round_to_Nearest_Integer(—ogr(ulpl)) .

The arithmetic’s overflow threshold is Q := NextAfter(+c-U, —0) , and then the actual exponent
range becomes apparent from N, := Round_to_Nearest_Integer(log(Q?)) —1 and finaly a

standard format’s Ny, := —floor(Nypax + 1 —1093(4.0)) . (Other formats’ N, may differ.)

Alternatively, to avoid arithmetic with o, compute the format’s smallest positive number
eta:= NextAfter(0.0, U) . Itissubnormal for a standard format, and then its arithmetic’s normal
underflow threshold is [:= eta/leps. (Most non-standard formats, likethe DEC VAX'’s, flush
underflow to zero; their eta isroughly our p.) Now the standard extreme exponents are
Npmin := Round_to_Nearest_Integer((Iogr(H)) ;5 Nmax = ceil(1ogz(4) = Npin—1) .

Prof. W. Kahan Page 4/8

Names WORK IN PROGRESS April 19, 2002 11:05 am

Computing logg(x) := log(x)/log(f3) is accurate enough for the foregoing purposes provided that
l0g,(4.0) = 2 exactly.

In short, practical ways exist to determine at run-time the few integer constants that characterize
any floating-point format conforming to 1EEE 744/854 provided the programming language in
use offers well-implemented versions of NextAfter, Round_to_Nearest_Integer and log .

WARNING: The foregoing environmental inquiries need not work for arithmetics that do not conform to 1EEE
754/854, nor for conforming arithmetics accessed by languages that deny the programmer adequate control over the
destinations of his floating-point operations. An instance of the last kind isacompiler that evaluates NextAfter ina
precision wider than either of its operands. An instance of the former kind is Doubled-Double Precision, which
represents each floating-point variable as an unevaluated sum of two Doubles that, if added and rounded to Double,
would round to the bigger of thetwo. Alas, many algorithms successful in every arithmetic that conformsto an
IEEE standard fail in Doubled-Double. For exampleits eps, if computed from the formula above, would turn out
to be eta instead of avaluelike | (4.0*U/3.0—-1.0)*3.0 — 1.0 | which gives a better indication of roundoff though
still not quite right. Doubled-Double is probably satisfactory for matrix multiplication and power series, probably
less satisfactory for solving differential equations by finite difference methods, and dangerous for some now widely
used algorithms that exploit delicate relationships preserved by arithmetics conforming to IEEE standards 854/754.

Coercions and Conversions

Every implementation of radix 3 floating-point arithmetic should offer afunction Roundf((j, x)
that rounds its floating-point operand x tointeger j sig. digitsinradix 3. Usualy j<P. This
isaspecial case, withthe sameformat for both x and Roundff3, of conversion between different
formats each with perhapsits own radix, asin Binary <—> Decima conversion. Conversions
and coercions between different formats with the same radix are normally accessed in asimpler
way by an assignment statement like “ x :=y " or, amidst an arithmetic expression, acast like
“ (float)x ” when the variables x and y have data-types fully supported by the programming
language. All such conversions and coercions, if inexact, should honor the directed rounding
mode in effect at the time, and respond to Over/Underflow in the expected ways.

When conversion isintended to communicate numbers from one computer to another with possibly different
arithmetics, the principal challengeisto choose the right names for source and destination formats. The names, like
“FloatBin(k, p)” and “FloatDec(k, p)” , used by programmers to request adequate precision and range for would-be
portable software are ill-suited to communication between computers with different arithmetics or even just different
compilers for ostensibly the same language and arithmetic. The simplest way transmits decimal strings of ASCII
characters long enough that any destination computer’s Decima —> FloatBin(k, p) conversion can reconstruct the
intended value exactly, then coerceit into the computer’s own format. But this simplest way can also be the slowest.

Faster ways reguire agreement upon parameterized names that describe how the destination computer encodes
floating-point values as bit- or character-stringsin memory. For Binary floating-point conformingto |EEE 754, the
obvious parameters are field widths: P for the significand’'s precision, k+1 for the biased exponent’sfield. The
unobvious parametersareasymbol “I” or “E” toindicate whether the significand’s leading bit isimplicit or
explicit, and anumber that tells how many bytes the computer addresses (+1 for byte-addressing, +2 for the DEC
VAX, ...) and, by itssign, whether addressing is Big- or Little-Endian.

Computers with full hardware support for fast Decimal floating-point arithmetic pose additional challenges because
they may pack, say, three decimal digitsinto ten bitsin memory, unpacking the digits when anumber isloaded into
floating-point registers for arithmetic. They may aso choose binary instead of decimal for the exponent field. This
packing saves 16% of the memory space and transmission time taken by huge arrays of data. More important,
packing puts more precision and range into conventional word sizes, e.g., 4 bytescan hold 7 sig. dec. and arange

from 1012 to almost 10"114. At this time the standardization of decimal floating-point formats seems premature.

Prof. W. Kahan Page 5/8

Names WORK IN PROGRESS April 19, 2002 11:05 am

Appendicesfor future exposition:
* How are Floating-Point and Fixed-Point Approximate Arithmetics Utterly Different?
* What Good are Extended Floating-Point Formats?
* What Good are Gradua Underflow and Subnorma Numbers?

How are Floating-Point and Fixed-Point ApproximateArithmetics Utterly Different?
Fixed-point arithmetic differs from floating-point in four ways:

Fixed-point Floating-point
i Number spacing Uniform Roughly logarithmic
il Rounding procedures Many Few
iii Destinations depend upon Operation aswell as ... Operands and ambiance
iv WYSIWYG? Usualy Rarely

Each traditional fixed-point format consists of a set of uniformly spaced fixed-point numbers x
characterized completely by three parameters, its Low End L, its HighEnd H, andits
Quantum g, sothat al numbers afforded by the format have theform x = m-q in which integer
m isbounded thus. L<m<H . Inmemory, apacked or encoded representation of the integer
m isstored in place of x ; the programmer or compiler may associate x and all other variables
of the same fixed-point format (or Type) with its parameters {L, H, g} stored elsewhere. The
guantum ¢ isusualy (but not necessarily) thereciprocal of a positive integer power of a Radix
liketwo for Binary or ten for Decimal; then the ends magnitudes —L and H are often (but
not necessarily) another integer power of that radix, or half of one, or 1 less. Here are
examples each of which packs into four-byte words:

4-byte unsigned binary integers: L=0; H=2%1; q=1

4-byte twos -complement fractions: L=-2%1; H=28L1; =123
15+16 bits sign-magnitude: L=1-2%; H=2%1; q=1/21
7+2-dec. digits sign-magnitude: L=1-10°; H=10-1; q=21/100
6+2-dec. digits tens -complement: L =-50000000 ; H =49999999; q=1/100

Thelast format packsinto eight BCD digits, one nibble each, without an explicit sign digit; its
hundred million numbers x consist of —500000.00 packed as “50000000”, —499999.99 packed
as “50000001", -499999.98 packed as “50000002", ..., —0.01 packed as “99999999", 0
packed as “00000000”, 0.01 packed as “00000001", ..., 499999.98 packed as “49999998",
and 499999.99 packed as “49999999”. Thisformat, arelic from the mechanical calculators
era, matchesin electronic memory the way many people still visualize monetary numbers.

Fixed-point variables of a given format are often associated with a unit of measurement reflected
in the quantum ¢ . For instance, money in dollars and cents can have q = 1/100. Distancesin

kilometers measured to the nearest millimeter have q= 1/10°% . Weightsin pounds to the nearest
ounce have q=1/16. Timesin hoursto the nearest second have q=1/3600. Theends L and
H need not correlate with aradix implied by the quantum q ; for instance, dollarsand centswith

= 1/100 can also be stored in 4-byte twos -complement integerswith L =—231=-1—-H .

Addition/subtraction of fixed-point variables with the same quantum amounts to exact integer
arithmetic provided the the sum/difference has the same quantum and does not overflow beyond
itsends. Similarly for multiplication provided the product’s quantum is the product of the factors

Prof. W. Kahan Page 6/8

Names WORK IN PROGRESS April 19, 2002 11:05 am

guanta. All programming languages that support many fixed-point formats specify by default, for
every arithmetic operation, aformat for its result depending upon the operation as well as the
operands formats, but often leaving “undefined” any intermediate result that overflows beyond
theresult-format’sends L and H . A quotient’s result-format may depend more upon the
operand formats' ends than their quanta. Mathematically, what most distinguishes fixed- from
floating-point arithmetic is the result-format’s dependence upon the operation.

When fixed-point arithmetic cannot be exact, it must follow rounding procedures that depend
upon the application’s and programming language’s conventions in ways too complicated and
diverse (and sometimesbizarre) to discuss at length here. For example, some banks still round
monetary quantum fractions bigger than 0.1 up or down in whichever direction favors the bank.
Durations of telephone calls are commonly rounded up to minutes before charges are computed.

Ideally, programmers should be able to express, by some locution like “RoundQ(1/q, &£)” , the
manner (specified by Q) inwhich anexpression A should be rounded to an integer multiple of
the quantum q, provided 4 involves at most one arithmetic operation. Idealy A should be
computed exactly before being rounded according to procedure RoundQ selected from a catalog
or library supplied by the compiler and perhaps augmented by the programmer; otherwise “ /A’
by itself (not an argument of RoundQ) within alarger expression would be rounded according
to whatever rounding procedure and quantum are the programming language’s defaults for the
operation and operands that appear in A . | know of no current language that behavesideally.

Almost any rounding procedure could be simulated relatively easily and quickly on old 680x0-
based Apple Macintoshes by using their SANE comp format, with -L =H=2%-1, asan
intermediate for every fixed-point arithmetic operation. This comp format also afforded +c and
NaNs, missing from traditional fixed-point formats. Current Macintoshes, based upon IBM’s
PowerPC architecture, lack the comp format. It isunsupported by Microsoft’s programming
languages though latent in Wintel hardware’s Double-Extended floating-point format. Deprived
of so wide afixed-point format, fixed-point programmers must resort to trickery, sometimeseven
to floating-point arithmetic, when trying to simulate rounding procedures foreign to their chosen
programming language.

Hardware to compute RoundQ(1/q, /) correctly does not need an infinitely wide register to compute /A exactly
before rounding. At least for rational operationsand v, the register need only extend afew digits (called “guard,
round and sticky”) beyond the desired result’s width to support the desired rounding operation. A more difficult
challenge for hardware designersis the accommodation of quanta g and rounding procedures Q more numerous for
fixed- than needed for floating-point arithmetics. Thisimpliesthat working fixed/floating-point registers must be
somewhat wider than all values normally loaded from and stored to memory other than during register-dumps.

The next example illustrates the most pernicious difference between fixed- and floating-point
arithmetics:

Assignment Statements Displayed Values
X :=7.0/10.0 x =0.7000...000
y :=4.0/10.0 y =0.4000...000
z:=3.0/10.0 z=0.3000...000
d:=Xy)-z d = 0.0000...000

Prof. W. Kahan Page 7/8

Names WORK IN PROGRESS April 19, 2002 11:05 am

Is d really zero? Probably YES infixed-point, becauseusually What You See IsWhat You Get.
In binary floating-point no value displayed above can match the value stored in memory; the

stored value of d can beabout —2.98/108 or —5.55/10% or —2.71/10%° depending upon the
variables precision (presumed all the same), respectively Single, Double, or Double-extended
|EEE Standard binary floating-point.

Of course, displaying too few digits after the point can obscure fixed-point values, but common
practice isto display enough digits to distinguish values that differ by one quantum. Floating-
point values are often displayed in fixed-point fashion (like Fortran’s F-format) and with fewer
digits than suffice to distinguish adjacent values.

Many practitioners of fixed-point, and their clients, think of numbers as strings of digits that
combine according to rules that schools and others propagate like Catechism:- articlesof faithto
be believed even if not understood. Some floating-point practitioners think that way too; but
more often they think of noninteger numbers as slightly fuzzy things whose rightmost few digits
areirrelevant and immaterial. Neither mode of thought is quite right, but that isalso irrelevant
here. The point here is that fixed-point practitioners have certain expectations, not the same for
everyone, and are more likely to be surprised and confused by deviations from their expectations
than are floating-point practitioners who tend to tolerate deviations even when they shouldn't.

What Good are Extended Floating-Point For mats?
Thisis more a marketing question than mathematical, and although the reasoning entails some
mathematics beyond the acquaintance of most marketing personnel, they will all appreciate the
conclusions, namely that ...
» Were the wages of sin collected only by the sinners, extended formats could be optional.
* Extended formats are required more to support a mass market than for numerical experts.

A capacity for error-analysisis what most distinguishes a numerical expert from a numerically
inexpert (but otherwise perhaps quite clever) programmer. The latter usually chooses formulas
that would be correct in the absence of roundoff, and then executes them in floating-point
expecting roundoff to contribute negligibly to the desired result. Usually roundoff is negligible.
But otherwise, when roundoff degrades the result substantially, who suffers?

... tobecontinued ...

Cambridge philosopher Ludwig Wittgenstein (1889-1951) ended his Tractatus (1921) with
almost this tautology:
“What we cannot name we must pass over in silence.”

Prof. W. Kahan Page 8/8

