

Baleful Effect June 11, 1996

1

The Baleful Effect of
Computer Benchmarks

upon
Applied Mathematics,

Physics and Chemistry

by

Prof. W. Kahan

Mathematics Dept., and
Elect. Eng. & Computer Sci. Dept.

University of California

Berkeley CA 94720-1776

(510) 642-5638

Updated version of transparencies
first presented in Park City, Utah,

4 Aug. 1995

PostScript file:

http://http.cs.berkeley.edu/~wkahan/ieee754status/baleful.ps

For more details see also ·····

/ieee754.ps

Baleful Effect June 11, 1996

2

The Baleful Effect of Computer Benchmarks upon
Applied Mathematics, Physics and Chemistry

Abstract:

An unhealthy preoccupation with Speed, as if it were synonymous with
Throughput, has distracted the computing industry and its marketplace from other
important qualities that computer hardware and software should possess too ---

Correctness, Accuracy, Dependability, Ease of Use, Flexibility, ···

Worse, technical and political limitations peculiar to current benchmarking
practices discourage innovations and accommodations of features necessary as
well as desirable for robust and reliable technical computation. Particularly
exasperating are computer languages that lack locutions to access advantageous
features in hardware that we consequently cannot use though we have paid for
them. That lack prevents benchmarks from demonstrating the features'
advantages, thus affording language implementors scant incentive to
accommodate those features in their compilers. It is a vicious circle that the
scientific and engineering community must help the computing industry break.

Baleful Effect June 11, 1996

3

What are Benchmarks ?

Suites of C and Fortran programs, in the custody of industry-acknowledged
authorities, available (for a fee) to test the speeds of computers.

Whom are Benchmarks supposed to serve, and how ?

Two constituencies:

1. Designers and Vendors \ / of Computer Hardware and Software,
2. Purchasers and Users / \ especially of Compilers.

Two presumptions:

1. Benchmarks are representative samples of typical workloads.
2. Other things being equal (though they hardly ever are),
 computer systems are rated according to their speeds on benchmarks.

Designers of computer hardware and software “ tune ” their designs to maximize

speed on benchmarks.

Purchasers compare speeds before they buy, presumably, the faster design.

What is wrong with current benchmarks ?

Their presumptions that ...

(Compare the RISC philosophy.)

1. “ Higher Speed implies Higher Throughput.”
2. “ What does not appear in benchmarks does not matter much.”

These are over-simplifications, not quite correct.
The belief that they are quite correct causes harm.

Baleful Effect June 11, 1996

4

How do you choose which computer to buy?

Compare quantifiable features like ...

Price

Speed

Memory sizes: RAM
Disk(s)

Peripherals: Graphics Display
Multi-Media Capabilities
Instrumentation and Signal Processing
Comfortable Keyboard and Mouse

Available Software: ... (a long list) ...

Hardware Reliability and Maintenance

Do no other features matter ? What about details like ...

Accuracy and Range of Floating-Point Arithmetic ... Hardware
 ... Library

Correct Handling of Floating-Point Exceptions and Special Cases

(Adaptability and Extensibility : Has the future been considered?)

(Ease of Use : How much arbitrariness must be memorized?)

?

(Only Floating-Point features lie within my competency, so I shall not explore the others here.)

Baleful Effect June 11, 1996

5

Practically all commercially significant North American
computer hardware largely conforms to

IEEE Standard 754
 for Binary Floating-Point Arithmetic.

The principal exceptions, --
Cray X-MP, Y-MP,

C90

,

J90

, IBM /370, 3090, DEC VAX, --
are mostly passing rapidly from the scene though still commercially significant.

Among conforming computers are these:

... all well-known.

IBM PC’s and clones based upon
Intel 386 & 387, 486, Pentium or P6 processors
 or clones thereof by Cyrix, IBM, AMD, TI

Apple Macintosh based upon Motorola 68020 + 68881/2 or 68040
···

IBM RS/6000 family, and Power PC - based descendants.
Apple Power Macintosh, based upon Power PC chips too.

Sun Microsystems, formerly based upon M 68020+68881/2,
 currently based upon SPARC chips.

Silicon Graphics, now based upon MIPS chips.

DEC Alpha, based upon DEC 21064 and 21164 chips.
Cray T3D, based upon DEC 21064 too.

Hewlett-Packard, based upon PA-RISC chips.

But floating-point arithmetics differ despite IEEE 754.

Which computers have better arithmetics ?

Baleful Effect June 11, 1996

6

Among IBM, Intel, Apple, Motorola, Sun, SGI, DEC, Cray, H-P, ...

Floating-Point Hardware is intrinsically and substantially

more accurate on some of those computers than on others.

The faster software libraries of
Elementary Transcendental Functions
(exp, log, cos, sin, tan, arctan, ...)

 are substantially

more accurate on some of those computers than on others.

For example, while this slide is being prepared,

Transcendental Functions on Intel Pentium and P6, Cyrix ‘87, and on
 Motorola 68040 are generally 3 dec. more accurate than on the rest.

Next come IBM RS/6000 and the Power PCs, and the Sun SPARCs,
and the public-domain library distributed with 4.3 BSD UNIX.

The library that comes with H-P workstations is substantially least accurate.

(According to tests by Vinod K. Stokes in 1993-4.)

Where can you obtain this kind of information ?

Not from Published Benchmarks.

Baleful Effect June 11, 1996

7

Published Benchmarks
tend to be preoccupied with

speed

to the near exclusion of everything else.

Consequently, the Computer analog of Gresham’s Law goes ···

“ The

 Fast

 drives out the

Slow

,
 even if the

Fast

 is Wrong.”

Wrong ?

Some controversial mathematical conventions are embedded in
computers, in hardware and/or in programming languages, and
persist only because little commercial incentive exists to expend
the considerable effort required to resolve controversy and attend
to details that could not affect the speed of current benchmarks.

Example: Why do systems disagree about 35035.0D0 / 15.0 - 7007.0 / 3.0 ?

Example: Why do systems disagree about whether 0.0

0.0

 = 1.0 or ERROR ?

Nit-Picky Example:

 What should be done with the sign of

±

 0.0

 ?

(This example was chosen because a smaller error than the difference between +0 and
-0 is hard to imagine; and yet the computing industry appears unable to correct such
mistakes, and bigger mistakes too, after they become entrenched. Thus are the sins of
the fathers visited upon succeeding generations, all in the name of “ Compatibility.”)

Baleful Effect June 11, 1996

8

Where does the sign of

±

 0.0

 matter ?

Complex Arithmetic

Example:

Define

 complex analytic functions

 , and

 .

Plot

 the values taken by

F

(

z

) as

z

 runs along eleven rays

z

 =

r

·i ,

z

 =

r

·e

4i·

π

/10

,

z

 =

r

·e

3i·

π

/10

,

z

 =

r

·e

2i·

π

/10

,

z

 =

r

·e

i·

π

/10

,

z

 =

r

and their Complex Conjugates, taking positive

r

 from near 0 to near +

∞

 .

The expected picture

, called “ Borda’s Mouthpiece,” shows eleven streamlines
of an ideal fluid flowing into a channel under such high pressure that the fluid’s
surface tears free from the inside of the channel.

But a streamline goes astray

 when the complex functions SQRT(···) and
LOG(···) are implemented, as is customary in Fortran and in libraries currently
distributed with C++ compilers, in a way that disregards the sign of

±

 0.0

 and
consequently

violates identities

 like

SQRT(

CONJ(

 Z

)) = CONJ(SQRT(Z)) and

 LOG(CONJ(Z)) = CONJ(LOG(Z))

whenever the COMPLEX variable Z takes negative real values.

Pictures of Borda’s Mouthpiece come next.

g z() z
2

z z
2

1+⋅+=

F z() 1 g z() g z()()log+ +=

Baleful Effect June 11, 1996

9

4 2 0 2 4 6 8

5

0

5

y(),I U

x(),I U

Borda's Mouthpiece, plotted without -0

4 2 0 2 4 6 8

5

0

5

Y(),I U

X(),I U

Borda's Mouthpiece, plotted correctly

This plot shows the streamlines of a flow of an Ideal Fluid under high pressure
escaping to the left through a channel with straight horizontal sides. Inside the
channel, the flow's boundary is free, not touching the channel walls. Without
-0 , the flow along the outside of the lower channel wall is misplotted across
the inner mouth of the channel and, though it does not show above, also as a
short segment in the upper wall at its inside end. W. Kahan

Baleful Effect June 11, 1996

10

Why such plots malfunction, and a very simple way to correct them, were
explained long ago in my paper

“ Branch Cuts for Complex Elementary Functions, or Much Ado
About Nothing's Sign Bit,” ch. 7 in The State of the Art in
Numerical Analysis (1987) ed. by M. Powell and A. Iserles for
Oxford University Press.

A controversial proposal to incorporate that correction, among other things, in
a Complex Arithmetic Extension to the programming language C has been put
before ANSI X3J11 , custodian of the C language standard, by Jim Thomas of
Taligent and myself. It is controversial because it purports to help programmers
cope with physically important discontinuities by suspending a logical proposition,

“ x = y ” implies “ f(x) = f(y) ” ,
at certain kinds of discontinuities. However, regardless of that proposal’s merits,
it is barely worth discussing because ...

Little incentive exists to incur the costs of corrections
(even if principally to documentation) that will not
be rewarded by improved performance in current
benchmarks and a consequent commercial advantage.

If benchmarks did include the graph-plotting example above,
they could not enforce its correctness anyway.

Why not ?

Benchmarks have to be capable of running successfully on all commercially
significant computers. But older computers, which do not conform to IEEE
Standard 754, lack hardware support for - 0.0 , and are therefore intrinsically
incapable of plotting Borda’s Mouthpiece correctly from the simplest program that
would suffice on conforming computers. On nonconforming computers,

“successful” could not mean “correct.”

Baleful Effect June 11, 1996

11

Every Benchmark passes through a sequence of steps:

Benchmark program, written in a standard language like Fortran or C , ...

is submitted to a computer’s Compiler, ...

which translates that program into the machine language program that ...

runs on the hardware under test, producing ...

results that are usually disregarded except for the time taken to produce them.

The “ Computer ” that a benchmark tests consists of hardware
running some versions of hardware-specific software, namely its

Operating System (e.g. Windows 95, or UNIX) and a
Compiler (e.g. Microsoft C v. 7.0, or GNU-Fortran),

any of which may spoil or obscure the hardware’s capabilities.

Advantageous features built into the hardware but inaccessible
through the compiler might as well be left out of the hardware.

Example: Inaccessible Floating-Point Accuracy and Range
that you may have paid for but cannot enjoy.

······
This needs some explanation · · ·

Baleful Effect June 11, 1996

12

Names of Floating-Point Formats:
Single-Precision float REAL*4
Double-Precision double REAL*8
Double-Extended long double REAL*10+
(Doubled-Double long double REAL*16)
(Quadruple-Precision long double REAL*16)

(Except for the IBM 3090, no current computer supports either of the last two formats fully in its
 hardware; at best they are simulated in software too slowly to run routinely, so we ignore them.)

Except for Cray X-MP etc., all computers mentioned so far fully support
Single- and Double-Precision floating-point arithmetic in hardware.

The following computer chips also support Double-Extended in hardware:

Intel’s 80x86+87, 486, Pentium, P6,
 and their clones by IBM, Cyrix, AMD and TI

 Intel’s 80960KB (found mainly in Embedded Systems like printers)

Motorola’s 68020+68881/2, 68040 ... fading.

 Motorola’s 88110 (very rare)

These chips are designed to evaluate every floating-point expression
in Double-Extended regardless of arithmetic operands’ formats.

If you purchased a Macintosh, or NeXT, or Sun III (all 680x0-based), or an
Intel-based PC or Cyrix/IBM/AMD/TI-based clone, you paid for the extra
precision and range of the hardware’s Double-Extended format.

Did you actually benefit from it?

Spans and Precisions of Floating-Point Formats :
 Format Min. Normal Max. Finite Rel. Prec’n Sig. Dec.

IEEE Single: 1.2 E-38 3.4 E38 5.96 E-8 6 - 9
IEEE Double: 2.2 E-308 1.8 E308 1.11 E-16 15 - 17

IEEE Extended: 3.4 E-4932 1.2 E4932 5.42 E-20 18 - 21
(Doubled-Double: 2.2 E-308 1.8 E308 ≈ 1.0 E-32 ≈ 32)

 (Quadruple: 3.4 E-4932 1.2 E4932 9.63 E-35 33 - 36)

(IBM hex. REAL*4: 5.4 E-79 7.2 E75 9.5 E-7 ≈ 6)

(IBM hex. REAL*8: 5.4 E-79 7.2 E75 2.2 E-16 ≈ 15)

(CRAY X-MP etc. REAL*8: ≈ 1 E-2466 ≈ 1 E2466 ≈ 7 E-15 ≈ 14)

Baleful Effect June 11, 1996

13

This third Double-Extended format resembles the unmentionable outcasts of
India (formerly Untouchables, now called “Harijan”) and of
Japan (formerly called “Etta,” now called “Buraku-Min”) ;

it is preordained for dirty work.

Its 11 extra bits of precision and 4 extra bits of exponent range are intended
rarely to be seen by most computer users,

but instead to help typical applications programmers look better by rendering their
ordinary double or REAL*8 results more reliable than might be expected from

usually numerically naive programmers.

This Extended format is designed to be used, with negligible loss of speed, for
all but the simplest arithmetic with float and double operands. For example, it
should be used for scratch variables in loops that implement recurrences like

polynomial evaluation, scalar products, partial and continued fractions.

It often averts premature Over/Underflow or severe local cancellation that can
spoil simple algorithms.

Without an Extended format, ...

• some ostensibly straightforward double computations are prone to
 malfunction unless carried out in devious ways known only to experts;

• matrix computations upon vast arrays of double data degrade too
 rapidly as increasing dimensions engender worsened roundoff.

The idea of an Extended format has been amply vindicated by its use in Hewlett-
Packard’s financial calculators, which all perform all arithmetic and financial functions to
three more sig. decimals than they store or display. Doing so has helped to earn the HP-
12C a deserved reputation for dependability that has kept it prominent for over 11 years
in a market where other electronic products enjoy a lifetime shorter than a Mayfly’s.

Baleful Effect June 11, 1996

14

Among 680x0-based Macintosh, NeXT and Sun III, and Intel-based PCs , all of
which contain Double-Extended floating-point hardware,

ONLY the Macintosh’s compilers routinely supported Double-Extended
via the S.A.N.E. (Standard Apple Numerical Environment) ;

see Apple Numerics Manual, Second Edition (1988) Addison-Wesley, Mass.

Owners of other Double-Extended hardware were denied their just deserts by ...

Crippled Compilers:

No compilers for the old Sun III family, based upon Motorola’s 68020+68881/2,
ever supported its Double-Extended format, so that has atrophied. Current Sun
SPARC hardware supports only Single and Double.

No commercially significant Fortran compiler for Intel-based PCs supports
their Double-Extended format; and only Borland’s and Microsoft’s C / C++
compilers support it, the latter only grudgingly. Other C / C++ compilers ignore
“ long double ” or else treat it as if it were merely “ double.”

No benchmark programs exercise Double-Extended since it is unavailable on
many workstations, and since “ long double ” has no well-defined meaning.

Therefore, little incentive exists to incur the costs of
supporting Double-Extended fully since that effort will
not be rewarded by improved performance in current
benchmarks and a consequent commercial advantage.

And yet, despite a general lack of support, Double-Extended confers a detectable
advantage upon computers that have it in their hardware. This advantage would be
obvious to everybody if the computing community ran

Benchmarks to Test Range, and

Benchmarks to Test Accuracy.

Baleful Effect June 11, 1996

15

What kinds of calculations tax Range ?

1. Three-Term Recurrences
Pn+1(x) := an(x)·Pn(x) - bn(x)·Pn-1(x)

are used to compute Orthogonal Polynomials, Bessel Functions, Spherical
Harmonics, and many others of the transcendental functions of Mathematical
Physics. Their values usually transgress the ranges of DEC VAX and IBM hex.

arithmetics (10±38 and 10±79), often transgress the range 10±308 of IEEE 754

Double, almost never transgress the range 10±4930 of Extended. Programs that
would work well with Extended would sometimes crash with Double, and often
crash with DEC VAX or IBM hex. Double.

A program that crashes commercially significant machines
would not be acceptable to their custodians as a benchmark.

Crashes can be precluded by Scaling the recurrences, at the cost of defensive tests and
branches. Defensive code wastes time since it must wait for every test though it rarely
branches. Benchmarks that obliged a machine with narrower range to preclude crashes
that way would be even more objectionable to its custodian if competing machines with
wider range were allowed to omit defensive code and therefore run faster.

2. Every computer’s range is taxed by Quotients of Prolonged Products like

when N and M are huge and when the numerator and/or denominator are likely
to encounter premature OVER/UNDERFLOW even though the final value of
Q would be unexceptional if it could be computed. This situation arises in
certain otherwise attractive algorithms for calculating eigensystems, or
Hypergeometric series, for example.

The hardware of IBM hex. and of machines that conform to IEEE 754 can
easily compute Q accurately and quickly, and so can other machines with some
fiddling; but compiled programming languages lack the necessary locutions.
(See Ch. 2 of Floating-Point Computation P.H. Sterbenz (1974) Prentice-
Hall, N.J., for a brief description of how it was done in the 1960s on an IBM
7094.) Therefore computations like Q cannot figure in a benchmark for range.

Q
a1 b1+() a2 b2+() a3 b3+() …() aN bN+()⋅ ⋅ ⋅ ⋅
c1 d1+() c2 d2+() c3 d3+() …() cM dM+()⋅ ⋅ ⋅ ⋅

--=

Baleful Effect June 11, 1996

16

Qualifications for Benchmarks to Test Accuracy.

Some formidable political and technical obstacles must be overcome if accuracy is
to figure in benchmarks besides speed :

1. Compilers generally must support a reasonable consensus about the meanings

of different precision specifications if these are to figure in benchmarks.

No such consensus is in sight yet, so let us try to get along without it for a while.
In other words, by not mentioning “ Double-Extended ” nor “ REAL*10 ” nor
“ long double,” at least not for the time being, an accuracy benchmark can be
eligible to run on every commercially significant computer of interest to us.

2. A benchmark must be realistic enough to deserve serious attention.

 It must perform a task typical of tasks somebody may plausibly need performed
 repeatedly; and accuracy should be an important aspect of the task.

3. Benchmarks must avoid the computational counterpart of the ...

Stopped Clock Paradox: Why is a mechanical clock more accurate
stopped than running? A running clock is almost never exactly right,
whereas a stopped clock is exactly right twice a day.
 (But WHEN is it right? Alas, that was not the question.)

To avoid this, we must avoid results that an inferior computer might get exactly right although
superior computers get merely excellent approximations. For instance, if the perfect result were
0.5 , it might be obtained exactly by accident using only low-precision floating-point while
higher precision got something “ infinitely worse ” like 0.499999999999999 .

4. Input data should be composed from simple integers and fractions that will not

be mishandled by the compiler’s Decimal-Binary conversion, which might
otherwise alter the data before it reached the floating-point hardware under test.

Such alteration could cause the benchmark to disparage hardware that got the right answer for the
wrong question. Worse, tiny changes to data critically contrived to expose a weakness might
thwart that intent. For instance, a critical datum 94906267.0 treated as a REAL*4 or float
constant would be changed to an uninformative 94906264.0 if not rewritten as 94906267.0 D0
or, better, expressed as 6847*DBLE(13861) using only small integers we expect to use safely.

Baleful Effect June 11, 1996

17

Solving the Quadratic Equation

p·x2 - 2·q·x + r = 0 .

This illustrates the hazards that beset an accuracy benchmark.

The roots x1 and x2 will be computed using a “ stable ” numerical procedure:

Qdrtc(p , q , r , x1 , x2) :
s := SQRT(q·q - p·r) ;
If q > 0 then t := q + s

 else t := q - s ;
x1 := r/t ; x2 := t/p .

Data will NOT be chosen at random. In practice, coefficients p, q, r are often
correlated; and that is the kind of data that will be supplied exactly here:

For each chosen datum r >> 1 , set q := r - 1 and p := q - 1 .

Consequently the roots are known to be x1 = 1 and x2 = 1 + 2/p exactly.

These can be compared with the roots computed in floating-point by the procedure
Qdrtc above, and the worst errors detected will shed light upon the intrinsic
accuracy of the computer’s floating-point arithmetic.

A benchmark program Qtest, combining Qdrtc with a battery of fifteen
values r chosen maliciously to reveal the worst errors possible on various
computers, was prepared for them. Results are tabulated below.

(The battery of trial values r and the details of the program Qtest can be
found in my Lecture Notes on the Status of IEEE Standard 754 for Binary
Floating-Point Arithmetic, accessible by electronic mail from my home page:

http://www.cs.berkeley.edu/~wkahan/ieee754status/ieee754.ps .)

Baleful Effect June 11, 1996

18

Precision = how many sig. bits are stored in the named system's 8-byte format.
(Different systems trade off precision and range differently.)

Accuracy = fewest sig. bits delivered by Qdrtc over the whole test battery.
 (Evidently as many as half the sig. bits stored in computed roots can be wrong.)

The smaller computed root can fall short of 1.0 in the sig. bit whose position is
 tabulated last. (In the absence of roundoff, no root would fall below 1.0 .)

These findings cry out for Explanations: How can so simple a
program get worse accuracy on some computer systems than on
others that store the same number of significant bits or fewer?

Results from Qtest(Qdrtc) on 8-byte Floating-Point
Computer
Hardware

Software
System

Precision
sig. bits

Accuracy
sig. bits

How far < 1
sig. bit

ix86/87-
& Pentium-
based PCs

Fortran, C,
Turbo-Basic,
Turbo-Pascal 53 32 33.3

680x0 -based
Sun III,

Macintosh
Fortran, C

DEC VAX D Fortran, C 56 28 29.3
ix86/87 &
Macintosh

MATLAB,
MathCAD

53 26.5 27.8SGI MIPS,
SPARC, HP,
 DEC VAX G

DEC Alpha

Fortran,
C ,

MATLAB

IBM /370 etc. Fortran, C 56 26.4 26.4
CRAY Y-MP Fortran, C 48 24 25.3

 PowerPC/Mac,
IBM RS/6000 Fortran, C 53

NaN from
√(< 0)

NaN from
√(< 0)

Baleful Effect June 11, 1996

19

Explanations:

Best accuracy, 32 sig. bits, is achieved on inexpensive ix86/87-based PCs and
680x0-based Macintoshes by software that evaluates each subexpression to 64
sig. bits by default in their Extended registers though it be rounded to 53 sig.
bits in Double when stored.

(These computer systems also accept, without premature Over/Underflows, a far wider range
of input data {µ·p, µ·q, µ·r} than do the others, though this robustness cannot be explored by
Qtest without crashing some other systems upon Over/Underflow .)

Why do MATLAB and MathCAD achieve no better accuracy on ix86/87 and
680x0 platforms with Extended registers than on the other machines without?

These programs are written mostly in C in a purportedly portable fashion with no
mention of long double, so they store almost every subexpression into double
scratch variables, thereby wasting time as well as the Extended registers'
superior accuracy and range.

Why do IBM’s /370 and 3090 etc. do worse than the DEC VAX D format,
though both store the same number 56 of sig. bits?

IBM’s notorious old Hexadecimal floating-point format is intrinsically as much
as three sig. bits less accurate than a Binary format of the same width.

Baleful Effect June 11, 1996

20

Explanations, continued:

Whence comes NaN (Not a Number) on RS/6000s and PowerPC/Macs ?.

It arises from the square root of a negative number q·q - p·r .

 However, tests performed upon input data would find that QQ := q·q and
 PR := p·r do satisfy QQ ≥ PR whenever Qtest’s q·q - p·r < 0 .

This paradox arises out of the Fused Multiply-Accumulate instruction possessed
by these machines. They can compute expressions like

±x ± y·z
in one operation with just one rounding error instead of two. This is faster and
usually more accurate than separately rounded multiply and add operations, but
sometimes less accurate, so it should not be used indiscriminately.

Is ±x = q·q rounded and ±y·z = p·r , or is ±x = -p·r rounded and ±y·z = q·q ?

The paradox can be avoided by inhibiting Multiply-Accumulate at compile time.

Alas, doing so generally would slow these machines; therefore, their compiler
was designed to render that inhibition inconvenient and unusual, thereby
achieving better speeds on benchmarks that lack locutions to enable or disable a
Multiply-Accumulate.

Accuracy benchmark Qtest could run successfully on these machines, getting
the same mediocre results as do MIPS, SPARC, HP, DEC VAX G and Alpha,
if run in their unusual and slower Multiply-Accumulate-inhibited mode.

Would that be considered a fair test ?

Fairness raises troublesome issues for a benchmark.
What if custodians of a computer family allege Unfairness ? Letting them tweak
a benchmark slightly to render it “ fair ” lets them overcompensate in devious
ways very difficult to expose. For example, replace Qdrtc by an ostensibly
algebraically equivalent procedure …

Baleful Effect June 11, 1996

21

PPCQdrtc(p , q , r , x1 , x2) :
ß := p·r ; ø := p·r - ß ; |
s := SQRT((q·q - ß) - ø) ; |
If q > 0 then t := q + s

 else t := q - s ;
x1 := r/t ; x2 := t/p .

For comparison, here is the original ...

Qdrtc(p , q , r , x1 , x2) :
s := SQRT(q·q - p·r) ; |
If q > 0 then t := q + s

 else t := q - s ;
x1 := r/t ; x2 := t/p .

Aside from running slightly longer to compute ø , which just vanishes for most
computer arithmetics, Qtest(PPCQdrtc) differs from Qtest(Qdrtc)
only by awarding the prize for accuracy to PowerPC and RS/6000, which get
53 correct sig. bits instead of NaN from PPCQdrtc .

Which of Qtest(PPCQdrtc) and Qtest(Qdrtc)
do you deem the fairer assessment of computers’ accuracies ?

Of course, Qdrtc could be replaced by a different yet ostensibly algebraically equivalent
procedure EQdtrc devised to deliver 53 correct sig. bits only on machines with Extended
registers (but without mentioning “ Extended ”) and to match Qdrtc on all other machines.

Dilemma: To insist that a benchmark exist in just one version, and that it run
 successfully (no NaNs !) on every computer, may cripple speed or
 accuracy or robustness on computers with advantageous features others lack.
But to permit local variations may permit skulduggery that invalidates comparison.

As it is now, Qtest(Qdrtc) tells us something I think worth knowing
regardless of whether it is admitted to the ranks of industry-approved benchmarks.

Baleful Effect June 11, 1996

22

Solving quadratic equations is not generally regarded as so
IMPORTANT

a computation that anyone would pay big bucks for a better
way. As a benchmark it would not likely be taken seriously.

What computations are both important and technically
challenging enough that they could earn real money if

accomplished significantly better?

1. Solving big systems of linear equations: A·x = b .

2. Computing eigenvalues/vectors: X-1·A·X = diagonal.

Despite phenomenal improvements in numerical methods over
the past three or four decades, we still lack software that will
always solve these problems as accurately as their data deserve.

For instance, solving A·x = b can still run afoul of certain
pathologies:

Gargantuan dimension.
Unfortunate column ordering —> poor pivot choice.
Disparate scaling of rows —> poor pivot choice.
Systematically severe ill-condition (near singularity).

One way to ameliorate such pathologies is to follow Gaussian
elimination by Iterative Refinement, which is believed to cope
with them. But that is not the whole story:

Baleful Effect June 11, 1996

23

Roundoff Degrades an Idealized Cantilever

Prof. W. Kahan and Ms. Melody Y. Ivory
Elect. Eng. & Computer Science Dept. #1776

University of California
Berkeley CA 94720-1776

Abstract:
By far the majority of computers in use to-day are Intel-based PCs, and a big
fraction of the rest are old 680x0-based Apple Macintoshes. Owners of these
machines are mostly unaware that their floating-point arithmetic hardware is
capable of delivering routinely better results than can be expected from the more
prestigious and more expensive workstations preferred by much of the academic
Computer Science community. This work attempts to awaken an awareness of the
difference in arithmetics by comparing results for an idealized problem not entirely
unrepresentative of industrial strength computation. The problem is to compute the
deflection under load of a discretized approximation to a horizontally cantilevered
steel spar. Discretization generates N simultaneous linear equations that can be
solved in time proportional to N as it grows big, as it must to ensure physical
verisimilitude of the solution. The solution is programmed in MATLAB which,
like most computer languages nowadays, lacks any way to mention those features
that distinguish better arithmetics from others. None the less this program yields
results on PCs and old Macs correct to at least 52 sig. bits for all values N tried,
up to N = 18827 on a Pentium. However the other workstations yield roughly
52.3 - 4.67 log N correct sig. bits from the same program despite that it tries two
styles of Iterative Refinement; at N = 18827 only a half dozen bits are left. This
kind of experience raises troublesome questions about the coverage of popular
computer benchmarks, and about the prospects for a would-be universal language
like JAVA to deliver identical numerical results on all computers from one library
of numerical software.

The MATLAB program used to get the aforementioned results is available by
electronic mail from the authors: ivory@cs.berkeley.edu and wkahan@cs... .

Baleful Effect June 11, 1996

24

Roundoff Degrades an Idealized Cantilever

A uniform steel spar is clamped horizontal at one end and loaded with a mass at the
other. How far does the spar bend under load?

The calculation is discretized: For some integer N large enough (typically in the
thousands) we compute approximate deflections

x0 = 0 , x1, x2, x3, ..., xN-1, xN ≈ deflection at tip

at uniformly spaced stations along the spar. Discretization errors, the differences

between these approximations and true deflections, tend to 0 like 1/N2 . These
xj 's are the components of a column vector x that satisfies a system A·x = b of

linear equations in which column vector b represents the load (the mass at the end
plus the spar’s own weight) and the matrix A looks like this for N = 10 :

The usual way to solve such a system of equations is by Gaussian elimination,
which is tantamount to first factoring A = L·U into a lower-triangular L times an
upper-triangular U , and then solving L·(U·x) = b by one pass of forward
substitution and one pass of backward substitution. Since L and U each has only
three nonzero diagonals, the work goes fast; fewer than 30·N arithmetic
operations suffice. But this solution x is very sensitive to rounding errors; they

can get amplified by the condition number of A , which is of the order of N4 .

To assess the effect of roundoff we compare this computed solution x with another obtained very

accurately and very fast with the aid of a trick: There is another triangular factorization A = R·RT
in which R is an upper-triangle with three nonzero diagonals containing only small integers 1
and ±2 . Consequently the desired solution can be computed with about 4·N additions and a
multiplication. Such a simple trick is unavailable for realistic problems.

A

9 4– 1 o o o o o o o

4– 6 4– 1 o o o o o o

1 4– 6 4– 1 o o o o o

o 1 4– 6 4– 1 o o o o

o o 1 4– 6 4– 1 o o o

o o o 1 4– 6 4– 1 o o

o o o o 1 4– 6 4– 1 o

o o o o o 1 4– 6 4– 1

o o o o o o 1 4– 5 2–

o o o o o o o 1 2– 1

=

Baleful Effect June 11, 1996

25

The loss of accuracy to roundoff during Gaussian elimination poses a Dilemma:
Discretization error —> 0 like 1/N2 , so for realistic results we want N big.

Roundoff is amplified by N4 , so for accurate results we want N small.

For realistic problems (aircraft wings, crash-testing car bodies, ...), typically
N > 10000 . With REAL*8 arithmetic carrying the usual 53 sig. bits, about 16
sig. dec., we must expect to lose almost all accuracy to roundoff occasionally.

Iterative Refinement mollifies the dilemma:
Compute a residual r := A·x - b for x . Solve A·∆x = r for a correction ∆x
using the same program (and triangular factors L and U) as “solved” A·x = b
for an x contaminated by roundoff. Update x := x - ∆x to refine its accuracy.

Actually, this Iterative Refinement as performed on the prestigious work-stations
(IBM RS/6000, DEC Alpha, Convex, H-P, Sun SPARC, SGI-MIPS, ...) does
not necessarily refine the accuracy of x much though its residual r may get much
smaller, making x look much better to someone who does not know better.

Only on Intel-based PCs and 680x0-based Macintoshes (not Power-Macs) can
Iterative Refinement always improve the accuracy of x substantially provided
the program is not prevented by a feckless compiler from using the floating-point
hardware as it was designed to be used:

Accumulate residual r := A·x - b in the computer’s REAL*10 registers.
They carry 11 more bits of precision than REAL*8’s 53 sig. bits. Using them
improves accuracy by at least about 11 sig bits whenever more than that were lost.

To get comparable or better results on the prestigious workstations, somebody would have to
program simulated (SLOW) extra-precise computation of the residual, or invent other tricks.

e.g.: Accuracies from a MATLAB program (WITH NO MENTION of REAL*10)

N = 18827 PCs & 680x0 Macs Others Condition no. > 257

Unrefined Residual 156 ulps. ≈156 ulps. Why N = 18827 ?
Because for bigger N

MATLAB’s Stack
Overflowed on a

Pentium with
 64 MB RAM .

Refined Residual 0·41 ulps. ≈0·7 ulps.

Unrefined Accuracy 6 sig. bits ≈6 sig. bits

Refined Accuracy 53 sig. bits ≈5 sig. bits

Baleful Effect June 11, 1996

26

The foregoing tabulated results are misleading because they compare results from
the same MATLAB program run on different computers, which is exactly how
current benchmarks are expected to assess different computers’ comparative merits.
But this refinement program would probably not exist if the only computers on
which it had to run were prestigious workstations that lack fast extended-precision;
on those computers, iterative refinement is best performed in a different way. The
difference is subtle and yet important, if only because it raises questions about a
popular notion, promulgated especially by JAVA enthusiasts, that software ought
to work identically on every computer.

Every iterative refinement program repeats the three steps
{ r := A·x - b ; solve A·∆x = r for ∆x ; update x := x - ∆x ; }

until something stops it The programs most in use nowadays, like _GERFS in
LAPACK, employ an r-based stopping criterion:

Stop when the residual r no longer attenuates, or when
it becomes acceptably small, whichever occurs first.

Usually the first x , if produced by a good Gaussian elimination program, has an

acceptably small residual r , often smaller than if x had been obtained from A-1b
calculated exactly and then rounded off to full REAL*8 precision! Therefore, that
criterion usually inhibits the solve and update operations entirely.

What if r is initially unacceptably big? This can occur, no matter whether A is
intrinsically ill conditioned, because of some other rare pathology like gargantuan
dimension N or disparate scaling. Such cases hardly ever require more than one
iteration to satisfy the foregoing criterion. That iteration always attenuates x 's
inaccuracy too, but only on PCs and Macs that accumulate r extra–precisely.

On workstations that do not accumulate r extra-precisely, updating x often
degrades it a little and almost never improves it much unless inaccuracy in x is
caused initially by one of those rare pathologies other than intrinsic ill-condition.

Thus, the r-based stopping criterion serves these workstations well by stopping
them as soon as they have achieved a goal appropriate for them, namely ...

Locate an approximate solution x whose computed
residual r := A·x - b will not much exceed the roundoff
that may accrue while it is being computed.

Such an approximate x may still be very inaccurate; this happens just when A is
intrinsically “ill-conditioned,” which is what we say to blame inaccuracy upon the
data instead of our own numerical (in)expertise.

Baleful Effect June 11, 1996

27

Reconsider now the results tabulated earlier for the cantilever with N = 18827 . A
smaller N would do as well; for all of them, x is accurate to 52 or 53 sig. bits
after refinement on a PC or 680x0-based Mac. How do these machines achieve
accuracy to the last bit or two in the face of condition numbers so huge that the
survival of any sig. bits at all surprises us? Not by employing an r-based stopping
criterion; it would too often terminate iteration prematurely.

The stopping criterion employed to get those results is x-based:
Stop when decrement ∆x no longer attenuates, or when
it becomes acceptably small, whichever occurs first.

To get those results, “acceptably small” here was set to zero, which seems rather tiny but shows
what the program can do. At N = 18827 the cost of those 53 sig. bits was 10 iterations of
Iterative Refinement; at lesser dimensions N the cost was roughly 1/(1 - 0.091 log N)

iterations, which suggests that dimensions N beyond 55000 (with condition numbers > 263)
lie beyond the program’s reach.

This x-based stopping criterion that so enhances the accuracy of results from
PCs and 680x0-based Macs must not be employed on other workstations
lest it degrade the accuracy of their results and, worse, waste time.

Different strokes for different folks.
. .

How relevant is this idealized cantilever problem to more general elastostatic problems whose
coefficient matrices A generally do not have entries consisting entirely of small integers? Small
integers make for better accuracy from a simpler program, but they are not essential. What is
essential is that we preserve important correlations among the many coefficient entries, which
are determined from relatively few physically meaningful parameters, despite roundoff incurred
during the generation of those entries. Such a correlation is evident in the example explored here;
all but the first two row-sums of A vanish, as do row–sums for a non–uniform cantilever whose
matrix A has varying rows of non-integer coefficients. We must force the same constraint,
among others, upon the rounding errors in A , and then they will do us little harm.

But the rounding errors incurred later during Gaussian elimination cannot be so constrained.
Though tiny, they become dangerous when amplified by big condition numbers. Thus we are
compelled either to attenuate them by employing inverse iteration with extra-precise residuals, or
to devise other tricks that do not incur such dangerous errors.

Baleful Effect June 11, 1996

28

If you do not know how much Accuracy you have, what good is it?
Like an expected inheritance that has yet to “mature,” you can’t bank on it.

Iterative refinement programs like _GERFS that employ the r-based stopping
criterion can also provide, at modest extra cost, an almost–always–over–estimate
of the error in x . They do so by first computing a majorizer R that dominates

r := A·x - b plus its contamination by roundoff. Then they estimate ||A-1R||∞

without ever computing A-1 to obtain the desired bound upon error in x . This
estimate costs little more than a few steps of Iterative Refinement.

Unfortunately, it is not infallible, though serious failures (gross under–estimates
of the error in x) must be very rare since the only known instances are deftly
contrived examples with innocent–looking but singular matrices A . Worse, this
error bound tends to be grossly pessimistic when A is very ill-conditioned and/or
its dimension N is extremely big. The pessimism often amounts to several orders
of magnitude for reasons not yet fully understood.

In short, versions of Iterative Refinement working on prestigious workstations can
provide error bounds but they are too often far too pessimistic, and they can fail.

Iterative Refinement programs that employ the x-based stopping criterion can also
provide, at no extra cost, an almost–always–over–estimate of the error in x .
They do so by keeping track of ||∆x|| which, if convergence is not too slow, gives
a fair (rarely much too pessimistic) indication of the error in x . This is not an
infallible indication; it fails utterly whenever the computed residual

r := (A·x - b plus roundoff)
happens to vanish. Iterative Refinement produces residuals that vanish surprisingly
often, sometimes because x is exactly right.

(The INEXACT flag mandated by IEEE Standard 754 for Binary Floating–Point Arithmetic
would, if MATLAB granted us access to that flag, help us discriminate between solutions x
that are exactly right and those, perhaps arbitrarily wrong, whose residuals vanish by accident.)

In short, Iterative Refinement appropriate for PCs and 680x0-based Macs comes
with a cost-free indication, usable if hardly infallible, of its superior accuracy.

The other workstations have nothing like it.

The following figures exhibit some evidence to support the foregoing claims.

Baleful Effect June 11, 1996

29

ACCURACY
of a Cantilever’s Deflection after Iterative Refinement

by a MATLAB 4.2 program run on workstations

Iterative Refinement of residuals r (employing the r-based stopping criterion),
as does LAPACK program _GERFS, always reduces the residual r below an ulp
or two, but rarely improves the accuracy of the solution x much, and often
degrades it a little, on workstations that do not accumulate residuals to extra
precision. And the error-bound on x inferred from r is too pessimistic. But on
those workstations it is difficult to do better.

Initial Error
Refined ...
ErrorBound
Iterations*5

10
2

10
3

10
4

0

10

20

30

40

50

Dimension N of matrix A

C
or

re
ct

 S
ig

ni
fic

an
t

B
its

 in

X

Refine Residual REAL*8 Residual HP-PA RISC & IBM RS/6000

2

Baleful Effect June 11, 1996

30

ACCURACY
of a Cantilever’s Deflection after Iterative Refinement

by a MATLAB 4.2 program run on workstations

Iterative Refinement of solutions x (employing the x-based stopping criterion)
is no more accurate than refinement of r for the Cantilever problem (and rarely
more accurate for other problems) on workstations that do not accumulate
residuals to extra precision. And the error-bound on x inferred from ∆x is still too
pessimistic for this problem (and too optimistic for others). Worse, refining x
usually takes more iterations than refining r , though not for cases shown here.
Therefore this kind of Iterative Refinement does not suit those workstations.

Initial Error
Refined ...
ErrorBound
Iterations*5

10
2

10
3

10
4

0

10

20

30

40

50

Dimension N of matrix A

C
or

re
ct

 S
ig

ni
fic

an
t

B
its

 in

X

Refine Error REAL*8 Residual HP-PA RISC & IBM RS/6000

2

Baleful Effect June 11, 1996

31

ACCURACY
of a Cantilever’s Deflection after Iterative Refinement
by a MATLAB 4.2 program run on PCs and old Macs

Iterative Refinement of residuals r (employing the r-based stopping criterion),
as does LAPACK program _GERFS, always reduces the residual r below an ulp
or two, and also improves the accuracy of the solution x if not stopped too soon
(as occurred above at N = 64 because the initial r was below 1 ulp) on PCs
and Macs that accumulate residuals to extra precision. But the error-bound on x
inferred from r is still too pessimistic. On these computers we can do better.

Initial Error
Refined ...
ErrorBound
Iterations*5

10
2

10
3

10
4

0

10

20

30

40

50

Dimension N of matrix A

C
or

re
ct

 S
ig

ni
fic

an
t

B
its

 in

X

Refine Residual REAL*10 Residual 68040-Mac & '86/Pentium PC

2

Baleful Effect June 11, 1996

32

ACCURACY
of a Cantilever’s Deflection after Iterative Refinement
by a MATLAB 4.2 program run on PCs and old Macs

Iterative Refinement of solutions x (employing the x-based stopping criterion)
far surpasses the accuracy of refinement of r for ill–conditioned Cantilever
problems (and also for other problems) on PCs and Macs that accumulate
residuals to extra precision. And the error-bound on x inferred from ∆x is
satisfactory for this problem (and almost always for others). Of course, the
required number of iterations rises sharply as A approaches singularity. Still, this
kind of Iterative Refinement is the right kind for those popular computers.

Initial Error
Refined ...
ErrorBound
Iterations*5

10
2

10
3

10
4

0

10

20

30

40

50

Dimension N of matrix A

C
or

re
ct

 S
ig

ni
fic

an
t

B
its

 in

X

Refine Error REAL*10 Residual 68040-Mac & '86/Pentium PC

2

4

6

10

Baleful Effect June 11, 1996

33

Would the Cantilever problem make a good benchmark?

Perhaps not. Since different families of computers are best
served by different versions of Iterative Refinement with
different capabilities, like rather different kinds of error over–
estimates, comparisons would become confounded.

A good bench mark has to be a single program that does
something worth–while on every computer even if it does better
on some of them.

I have devised such a program: RefinEig.

Baleful Effect June 11, 1996

34

RefinEig -- towards a better benchmark for accuracy:

For any square matrix B the MATLAB statement

[Q, V] = eig(B)

computes an eigenvector matrix Q and a diagonal matrix V of eigenvalues.

Ideally, V = Q-1·B·Q is diagonal.

Numerical accuracy deteriorates as B approaches a set of measure zero, the
algebraic variety of Defective matrices B , on which V cannot be diagonal.

No single algorithm can compute Q and V as accurately as deserved by every
datum B , if a theorem proved recently by Ming Gu at Berkeley can be taken at
face value.

Therefore eig(...) must be imperfect;
and it is, as examples will demonstrate.

Baleful Effect June 11, 1996

35

Examples: Werner Frank’s NxN matrices, exemplified here for N = 5 :

F’ is obtained by transposing, and P by reversing rows and columns of F .

F , F’ , P and P’ have the same eigenvalues, all positive in reciprocal pairs.
If ƒ is an eigenvalue, so is 1/ƒ , and then √ƒ - 1/√ƒ is a zero of the Nth Hermite polynomial.

The smaller eigenvalues are the more ill-conditioned (i.e. sensitive
to perturbation), exponentially more so for bigger N , the same for
all four of F , F’ , P and P’ . Consequently eig(...) computes
none of their “ significant ” bits correctly when N > 17 .

However, for 7 < N < 17 , eig(...) computes those smaller eigenvalues
several sig. bits more accurately for F’ than for the other matrices, thus
demonstrating that

eig(...)’s accuracy depends in part
upon mathematically irrelevant accidents.

Remedy:
[Q, V] = RefinEig(Q, V, B)

is my MATLAB-language program designed to try to improve the accuracy of
[Q, V] = eig(B)

in cases when it has been degraded by some accident.

Sometimes the improvement is spectacular.

F

5 4 3 2 1

4 4 3 2 1

o 3 3 2 1

o o 2 2 1

o o o 1 1

= F ′

5 4 o o o

4 4 3 o o

3 3 3 2 o

2 2 2 2 1

1 1 1 1 1

= P

1 1 o o o

1 2 2 o o

1 2 3 3 o

1 2 3 4 4

1 2 3 4 5

=

Baleful Effect June 11, 1996

36

How to invoke RefinEig from within MATLAB :

[Q, V] = eig(B) ; % ... Initial approximations Q, V .
[Q, V] = RefinEig(Q,V,B) ; % ... Iterate until “convergence.”

Convergence is cubic (extremely fast) if it occurs at all,
so one iteration usually does about as well as can be done.

How RefinEig works:
Ideally Q-1·B·Q = V would be diagonal, but because of roundoff we find

∆C = Q-1·B·Q - V ,
when computed, to be nonzero and nondiagonal. We shall replace the approximate
eigensystem [Q, V] by the exact eigensystem [Q + Q·∆Z, V+∆V] wherein,
ideally, ∆V is a diagonal correction and ∆Z is an eigenvector corrector,
normalized by diag(∆Z) = O . They have to satisfy the equation

∆V = ∆C + V·∆Z - ∆Z·V - ∆Z·∆V + ∆C·∆Z .
To solve it for ∆V and ∆Z , we first rewrite it in a form that suggests an iteration :

∆V = diag(∆C + ∆C·∆Z) = diag(∆C) + O(∆...)2 ;
 U := the NxN matrix full of 1 s ;
 E := U·V - V·U + U·∆V - ∆V + I ; ... presumably entirely nonzero

∆Z = (∆C - ∆V + ∆C·∆Z)./E = (∆C - ∆V)./E + O(∆...)2 .
 (The division (...)./E is to be performed elementwise.)

Initializing ∆Z to O and running through these equations in turn would yield first-
order approximations to ∆V and ∆Z with a fatal defect; they degenerate in case
some eigenvalues of B are too closely paired though otherwise well separated,
which is the most common situation for which eig(...) is inaccurate.

RefinEig’s innovation is a better initialization of ∆Z inspired by a half-century
old formula of Jahn and Magnier discussed in Bodewig’s Matrix Calculus
(1959). This ∆Z would be exactly right if ∆C were a permuted diagonal sum of
1x1 and 2x2 matrices, and is correct to first order otherwise.

RefinEig computes residuals like R = B·Q - Q·V , needed for ∆C = Q-1·R ,
in a slightly peculiar way. Instead of the MATLAB expression B*Q - Q*V ,
R = [B, Q]*[Q; -V] is computed in one matrix multiplication for a reason
that will become evident momentarily.

Baleful Effect June 11, 1996

37

RefinEig as an Accuracy Benchmark

MATLAB scripts were prepared to assess the accuracies to which first eig(...)
and then RefinEig(...) can compute the smallest few eigenvalues of W.
Frank’s matrices F , F’ , P and P’ for dimensions N from 8 to 24 .
Since the accuracy of eig(...) is sometimes affected by equilibration or balancing, it was
run both with and without; see MATLAB’s documentation for eig(..., ‘nobalance’) .

 Since MATLAB runs on practically every commercially significant computer that
conforms to IEEE Standard 754, and MATLAB provides no way to mention its
floating-point format (all its variables use the 8-byte double format), and ...

since RefinEig performs a valuable function (as the following results will
confirm) regardless of the floating-point formats available, and ...

since the input data consists of arrays of easily converted small integers, and ...

since the desired eigenvalues are not vulnerable to the Stopped Clock Paradox,

RefinEig possesses the four qualifications enunciated above
for an acceptable Accuracy Benchmark.

Let us view its results:

These results were obtained off my 68040-based Macintosh Quadra 950 , and
differ negligibly from results off my 386/387-based PC. The results for other
computers, such as the MIPS, SPARC, H-P PA, PowerPC/Mac and DEC Alpha,
were simulated by setting the Mac’s and PC’s Precision Control to emulate the
other computers’ arithmetics. The emulation is imperfect, but close enough.

Baleful Effect June 11, 1996

38

Legend: - - - - - eig on 680x0-Mac or Intel-PC
______ RefinEig on 680x0-Mac or Intel-PC
. eig on others
· - · - · - · RefinEig on others.

8 10 12 14 16 18 20 22
0

5

10

15

20

25

30

35

40

45

50

Correct sig. bits obtained from Frank's matrix F

Dimension N

8 10 12 14 16 18 20 22
0

5

10

15

20

25

30

35

40

45

50

Correct sig. bits obtained from Frank's matrix F , nobalance

Dimension N

Baleful Effect June 11, 1996

39

Legend: - - - - - eig on 680x0-Mac or Intel-PC
______ RefinEig on 680x0-Mac or Intel-PC
. eig on others
· - · - · - · RefinEig on others.

8 10 12 14 16 18 20 22
0

5

10

15

20

25

30

35

40

45

50

Correct sig. bits obtained from Frank's matrix P'

Dimension N

8 10 12 14 16 18 20 22
0

5

10

15

20

25

30

35

40

45

50

Correct sig. bits obtained from Frank's matrix P' , nobalance

Dimension N

Baleful Effect June 11, 1996

40

Legend: - - - - - eig on 680x0-Mac or Intel-PC
______ RefinEig on 680x0-Mac or Intel-PC
. eig on others
· - · - · - · RefinEig on others.

8 10 12 14 16 18 20 22
0

5

10

15

20

25

30

35

40

45

50

Correct sig. bits obtained from Frank's matrix P

Dimension N

8 10 12 14 16 18 20 22
0

5

10

15

20

25

30

35

40

45

50

Correct sig. bits obtained from Frank's matrix P , nobalance

Dimension N

Baleful Effect June 11, 1996

41

Legend: - - - - - eig on 680x0-Mac or Intel-PC
______ RefinEig on 680x0-Mac or Intel-PC
. eig on others
· - · - · - · RefinEig on others

8 10 12 14 16 18 20 22
0

5

10

15

20

25

30

35

40

45

50

Correct sig. bits obtained from Frank's matrix F'

Dimension N

8 10 12 14 16 18 20 22
0

5

10

15

20

25

30

35

40

45

50

Correct sig. bits obtained from Frank's matrix F' , nobalance

Dimension N

Baleful Effect June 11, 1996

42

How does MATLAB benefit from an Extended format
which Qdrtc showed us MATLAB eschews ?

MATLAB ‘s matrix multiplication operation is programmed carefully, differently
for every different computer, in order to reach

the highest possible speed.

Every element of a matrix product is a

Scalar Product = a1·b1 + a2·b2 + a3·b3 + ... + aN·bN .

By keeping products aj·bj and their sums in fast registers to maximize speed,

MATLAB computes them to the precision of the registers; on computers with
Extended precision, that is 64 sig. bits even though the operands aj and bj carry

only 53 sig. bits.

RefinEig computes its residuals like R = B·Q - Q·V as matrix products

which, after massive cancellation, come out almost as accurate as if evaluated in
64 sig. bit arithmetic though they are stored to only 53 sig. bits.

Thus, on computers that have it,
Extended precision can enhance RefinEig’s accuracy,

typically by 11 sig. bits,
without ever being mentioned.

R B Q
Q

V–
⋅=

Baleful Effect June 11, 1996

43

Summary of Observations so far:

1. The Non-Symmetric Eigenproblem has
no fast foolproof solution.

Occasionally trial-and-error is inescapable.

2. RefinEig usually improves accuracy
regardless of the underlying arithmetic.

RefinEig never hurts much, even if it cannot help much. (F’)
Sometimes it recovers accuracy lost to (im)balancing. (F , P’)
Sometimes it improves accuracy spectacularly. (P)

3. Computers with Double-Extended registers
always gain accuracy through RefinEig.

If more than 11 sig. bits would be lost, those registers recover at least 10 .
They sometimes recover spectacularly more. (F’)

4. This accuracy benchmark reveals something interesting,
 about the different accuracies inherent in different computers,
 impossible to glean from benchmarks dedicated solely to

 speed.

Incidentally, the accuracy achieved by RefinEig on my Mac Quadra and on
my PC is achieved in less than half the time Mathematica and Maple V consume
to achieve the same accuracy from their multi-precision arithmetic software.

Baleful Effect June 11, 1996

44

The Threat: Atrophy and Stagnation

For lack of benchmarks that assess accuracy or other desirable attributes
other than speed,

Apple’s S.A.N.E never received the accolade it deserved from the marketplace.

Consequently, Apple’s management cut its losses, dispersed much of Apple’s
numerical expertise, and abandoned the Double-Extended format when they
chose to move from the 680x0 to the faster Power-PC-based “ Power Mac ”
(which goes faster for reasons other than its omission of an Extended format).

For lack of benchmarks that would reward their diligence, compiler writers have
not supported novel capabilities of IEEE 754, so atrophy threatens them:

Fast flexible handling of exceptions like Division-by-Zero and
Gradual Underflow.

Directed roundings, necessary for good Interval Arithmetic.

Extended precision, capable of evolving into arbitrarily high precision.
Extended range.

More generally, for lack of ways to accommodate innovations, current benchmarks
tend to stifle innovations regardless of their merits.

Baleful Effect June 11, 1996

45

Computer Languages and Compilers hold center stage.

Mediaeval thinkers held to a superstition that
Thought is impossible without Language.

That is why “dumb” changed in meaning from “speechless” to “stupid.”

With the advent of computers, “Thought” and “Language” have changed their
meanings, and now there is some truth to the old superstition:

In so far as programming languages constrain utterance,
they also constrain what a programmer may contemplate productively.

Few compiler writers address challenges to mathematical, scientific and
engineering computation, and these few are preoccupied with keeping their
handiwork abreast of rapidly changing hardware in a bitterly competitive
marketplace where no architecture enjoys more than a few months of ascendancy.

They have to run as fast as they can just to stay in the same place.

Consequently, computer languages have not been evolving towards scientifically
desirable goals, swayed as they are by over-reliance upon standards committees’
aesthetic fads, on the one hand, and industrial demands for compatibility with past
practice on the other. For instance, a case could be made for ...

The Baleful Effect of
C++
upon

Applied Mathematics,
Physics and Chemistry.

Baleful Effect June 11, 1996

46

The challenges facing the Scientific Community:

Although Computer Science ought to be a branch of Applied Mathematics
distinguished solely by its preoccupation with the cost of computation, we cannot
rely upon the mathematical probity of computer professionals among whom few
harbor hospitality towards mathematical thought. We have educated them badly:

Some think Mathematics is a Religion
whose rules they have been taught not to break for fear of moral condemnation.

e.g., Division by Zero, Discontinuity .
Although violating some rules is perilous, others are intended to be broken;

the trick is to tell which are which.

Some think Mathematics has at most Aesthetic value.
If you believe Beauty is the criterion by which Mathematics should be judged,

please recall that Beauty lies in the Eye of the Beholder ;
in the eyes of a bug, a rose is mere fodder.

Mathematics is a miraculous reward for penetrating thought.
To render that kind of thought ever more economical is the computer’s most
worthwhile promise. We had best not entrust it entirely to people antipathetic to
mathematical thought or motivated too much by mere pecuniary rewards.

The Scientific Community has to help promulgate
Appropriate Benchmarks

and other schemes that will reward diligence and encourage useful innovation while
discouraging unnecessary and anarchic diversity that fragments the marketplace.

This problem is difficult technically and politically.

