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The Baleful Effect of Computer Benchmarks upon
Applied Mathematics,  Physics  and  Chemistry

Abstract:

 

An unhealthy preoccupation with  Speed,  as if it were synonymous with  
Throughput,  has distracted the computing industry and its marketplace from other 
important qualities that computer hardware and software should possess too  ---

Correctness,    Accuracy,    Dependability,    Ease of Use,    Flexibility,   ···

Worse,  technical and political limitations peculiar to current benchmarking 
practices discourage innovations and accommodations of features necessary as 
well as desirable for robust and reliable technical computation.  Particularly 
exasperating are computer languages that lack locutions to access advantageous 
features in hardware that we consequently cannot use though we have paid for 
them.  That lack prevents benchmarks from demonstrating the features' 
advantages,  thus affording language implementors scant incentive to 
accommodate those features in their compilers.  It is a vicious circle that the 
scientific and engineering community must help the computing industry break.
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What are  Benchmarks ?

 

Suites of   C   and   Fortran  programs,  in the custody of industry-acknowledged 
authorities,  available  ( for a fee )  to test the speeds of computers.

 

Whom are  Benchmarks  supposed to serve,  and how ?

 

Two constituencies:

1.   Designers  and Vendors \ /    of  Computer Hardware   and  Software,
2.   Purchasers  and  Users / \              especially of  Compilers.

Two presumptions:

1.  Benchmarks  are representative samples of typical workloads.
2.   Other things being equal  ( though they hardly ever are ),
      computer systems are rated according to their speeds on benchmarks.

Designers of computer hardware and software  “ tune ”  their designs to maximize

 

speed on benchmarks.

 

Purchasers compare speeds before they buy,  presumably,  the faster design.

 

What is wrong with current benchmarks ?

 

Their presumptions that  ...

 

( Compare the  RISC  philosophy.)

 

1.   “ Higher Speed  implies  Higher Throughput.”
2.   “ What does not appear in benchmarks does not matter much.”

 

These are over-simplifications,  not quite correct.
The belief that they are quite correct causes harm.
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How do you choose which computer to buy?

Compare quantifiable features like  ...

 

Price

Speed

Memory sizes: RAM
Disk(s)

Peripherals: Graphics Display
Multi-Media  Capabilities
Instrumentation  and  Signal Processing
Comfortable Keyboard and Mouse

Available Software:   ...  ( a long list ) ...

Hardware Reliability  and  Maintenance

 

Do no other features matter ?   What about details like  ...

 

Accuracy and Range of Floating-Point Arithmetic ... Hardware
                                                                         ...   Library

Correct Handling of Floating-Point Exceptions and Special Cases

 

( Adaptability and Extensibility :   Has the future been considered? )

( Ease of Use :   How much arbitrariness must be memorized? )

 

?

 

( Only  Floating-Point  features lie within my competency,  so I shall not explore the others here.)
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Practically all commercially significant  North American  
computer hardware largely conforms to

 

IEEE Standard  754
  for  Binary Floating-Point Arithmetic.

 

The principal exceptions, --
Cray  X-MP, Y-MP, 

 

C90

 

, 

 

J90

 

,          IBM  /370,  3090,           DEC  VAX,   --
are mostly passing rapidly from the scene though still commercially significant.

 

Among conforming computers are these:

 

...  all well-known.

 

IBM PC’s  and clones based upon
Intel  386 & 387, 486, Pentium or  P6  processors
  or  clones  thereof  by  Cyrix,  IBM,  AMD,  TI

Apple Macintosh  based upon  Motorola  68020 + 68881/2  or  68040
···

IBM  RS/6000  family,  and  Power PC - based  descendants.
Apple Power Macintosh,  based upon  Power PC  chips too.

Sun Microsystems,  formerly based upon  M 68020+68881/2,
  currently based upon  SPARC  chips.

Silicon Graphics,  now based upon  MIPS  chips.

DEC  Alpha,  based upon  DEC 21064  and  21164  chips.
Cray  T3D,  based upon  DEC 21064  too.

Hewlett-Packard,  based upon  PA-RISC  chips.

 

But  floating-point arithmetics  differ despite  IEEE 754.

Which computers have better arithmetics ?
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Among   IBM,  Intel,  Apple,  Motorola,  Sun,  SGI,   DEC,  Cray,  H-P,   ...

 

Floating-Point Hardware  is  intrinsically and substantially

 

more accurate on some of those computers than on others.

 

The faster software libraries of
Elementary Transcendental Functions
( exp,  log,  cos,  sin,  tan,  arctan, ... )

   are substantially

 

more accurate on some of those computers than on others.

 

For example,  while this slide is being prepared,

Transcendental Functions  on  Intel Pentium and P6,  Cyrix ‘87,  and on
   Motorola 68040  are generally  3 dec.  more accurate than on the rest.

Next come  IBM RS/6000  and the  Power PCs,  and the  Sun SPARCs,
and the public-domain library distributed with  4.3 BSD UNIX.

The library that comes with  H-P  workstations  is substantially least accurate.

 

( According to tests by  Vinod K. Stokes  in  1993-4.)

 

Where can  you  obtain this kind of information ?

Not from  Published  Benchmarks.
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Published Benchmarks
tend to be  preoccupied  with

 

speed

 

to the near exclusion of everything else.

 

Consequently,  the  Computer  analog of  Gresham’s Law  goes  ···

 

“ The 

 

 Fast

 

  drives out the  

 

Slow

 

,
  even if the  

 

Fast

 

  is  Wrong.”

 

Wrong ?

 

Some controversial mathematical conventions are embedded in 
computers,  in hardware and/or in programming languages,  and 
persist only because little commercial incentive exists to expend 
the considerable effort required to resolve controversy and attend 
to details that could not affect the speed of current benchmarks.

 

Example:     Why do systems disagree about    35035.0D0 / 15.0  -  7007.0 / 3.0   ?

Example:     Why do systems disagree about whether   0.0

 

0.0

 

  =  1.0  or  ERROR ?

 

Nit-Picky Example:

 

       What should be done with the sign of   

 

±

 

 0.0

 

   ?

 

( This example was chosen because a smaller error than the difference between  +0  and  
-0  is hard to imagine;  and yet the computing industry appears unable to correct such  
mistakes,  and bigger mistakes too,  after they become entrenched.  Thus are the sins of 
the fathers visited upon succeeding generations,  all in the name of  “ Compatibility.”)
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Where does the sign of    

 

±

 

 0.0

 

    matter ?

 

Complex Arithmetic

 

Example:   

 

Define 

 

 complex analytic functions

     ,    and

    .

 

Plot

 

  the values taken by  

 

F

 

(

 

z

 

)   as   

 

z

 

   runs along  eleven  rays

 

z

 

 = 

 

r

 

·i ,   

 

z

 

 = 

 

r

 

·e

 

4i·

 

π

 

/10

 

,   

 

z

 

 = 

 

r

 

·e

 

3i·

 

π

 

/10

 

,   

 

z

 

 = 

 

r

 

·e

 

2i·

 

π

 

/10

 

,   

 

z

 

 = 

 

r

 

·e

 

i·

 

π

 

/10

 

,   

 

z

 

 = 

 

r

 

and their  Complex Conjugates,  taking positive   

 

r

 

   from near  0  to near  +

 

∞

 

 .

 

The expected picture

 

,  called  “ Borda’s Mouthpiece,”  shows eleven streamlines 
of an ideal fluid flowing into a channel under such high pressure that the fluid’s 
surface tears free from the inside of the channel.

 

But a streamline goes astray 

 

 when the complex functions  SQRT(···)  and  
LOG(···)  are implemented,  as is customary in  Fortran  and in libraries currently 
distributed with  C++  compilers,  in a way that disregards the sign of   

 

±

 

 0.0

 

  and 
consequently  

 

violates  identities

 

   like

SQRT( 

 

CONJ(

 

 Z 

 

) )   =   CONJ( SQRT( Z ) )      and

 LOG( CONJ( Z ) )   =   CONJ( LOG( Z ) )

whenever the  COMPLEX  variable  Z  takes negative real values.

Pictures of  Borda’s Mouthpiece  come next.

g z( ) z
2

z z
2

1+⋅+=

F z( ) 1 g z( ) g z( )( )log+ +=
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Borda's Mouthpiece,  plotted without  -0
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Borda's Mouthpiece,   plotted correctly

This plot shows the streamlines of a flow of an  Ideal Fluid  under high pressure 
escaping to the left through a channel with straight horizontal sides.  Inside the 
channel,  the flow's boundary is free,  not touching the channel walls.  Without 
-0 ,   the flow along the outside of the lower channel wall is misplotted across 
the inner  mouth of the channel and,  though it does not show above,  also as a 
short segment in the upper wall at its inside end.                              W. Kahan
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Why such plots malfunction,  and a very simple way to correct them,  were 
explained long ago in my paper

“ Branch Cuts for Complex Elementary Functions,  or  Much Ado 
About Nothing's Sign Bit,”   ch. 7 in   The State of the Art in 
Numerical Analysis   ( 1987 )  ed. by  M. Powell and A. Iserles  for  
Oxford University Press.

A  controversial  proposal  to incorporate that correction,  among other things,  in 
a  Complex Arithmetic Extension  to the programming language  C  has been put 
before  ANSI X3J11 ,  custodian of the  C  language standard,  by  Jim Thomas  of  
Taligent   and myself.  It is controversial because it purports to help programmers 
cope with physically important discontinuities by suspending a logical proposition,

“  x = y  ”   implies    “  f(x) = f(y)  ”  ,
at certain kinds of discontinuities.   However,  regardless of that proposal’s merits,  
it is barely worth discussing because  ...

Little incentive exists to incur the costs of corrections  
( even if principally to documentation )  that will  not 
be rewarded by improved performance in current 
benchmarks and a consequent commercial advantage.

If benchmarks did include the graph-plotting example above,
they could  not enforce its correctness anyway.

Why not ?

Benchmarks have to be capable of running  successfully  on  all  commercially 
significant computers.  But older computers,  which do not conform to  IEEE 
Standard 754,   lack hardware support for   - 0.0 ,   and are therefore intrinsically 
incapable of plotting  Borda’s Mouthpiece  correctly from the simplest program that 
would suffice on conforming computers.  On nonconforming computers,

“successful”   could not mean   “correct.”
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Every  Benchmark  passes through a sequence of steps:

Benchmark program,  written in a standard language like  Fortran  or  C ,  ...

is submitted to a computer’s  Compiler,  ...

which translates that program into the machine language program that  ...

runs on the hardware under test,  producing  ...

results that are usually disregarded except for the time taken to produce them.

The  “ Computer ”  that a benchmark tests consists of hardware 
running some versions of hardware-specific software,  namely its

Operating System    ( e.g.  Windows 95,  or  UNIX )  and a
Compiler   ( e.g.  Microsoft  C  v. 7.0,  or  GNU-Fortran ),

any of which may spoil or obscure the hardware’s capabilities.

Advantageous features built into the hardware but inaccessible 
through the compiler might as well be left out of the hardware.

Example:  Inaccessible  Floating-Point Accuracy  and  Range
that you may have paid for but cannot enjoy.

······
This needs some explanation  · · ·
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Names  of  Floating-Point  Formats:
Single-Precision    float REAL*4
Double-Precision    double REAL*8
Double-Extended    long double REAL*10+
( Doubled-Double      long double REAL*16 )
( Quadruple-Precision      long double REAL*16 )

( Except for the  IBM 3090,  no current computer supports either of the last two formats fully in its
 hardware;  at best they are simulated in software too slowly to run routinely,  so we ignore them.)

Except for  Cray X-MP  etc.,  all computers mentioned so far fully support
Single-  and  Double-Precision  floating-point arithmetic in  hardware.

The following computer chips also support  Double-Extended  in  hardware:

Intel’s  80x86+87,  486,  Pentium,  P6,
 and their clones by  IBM,  Cyrix,  AMD  and  TI

     Intel’s  80960KB            ( found mainly in  Embedded Systems  like printers )

Motorola’s  68020+68881/2,  68040          ... fading.

       Motorola’s  88110         ( very rare )

These chips are designed to evaluate  every  floating-point expression 
in  Double-Extended  regardless of arithmetic operands’ formats.

If you purchased a  Macintosh,  or  NeXT,  or  Sun III    ( all  680x0-based ),  or an  
Intel-based  PC  or  Cyrix/IBM/AMD/TI-based clone,  you paid for the extra 
precision and range of the hardware’s  Double-Extended  format.

Did you actually benefit from it?

Spans  and  Precisions  of   Floating-Point Formats :
 Format  Min. Normal  Max. Finite  Rel. Prec’n Sig. Dec.

IEEE Single: 1.2 E-38 3.4 E38 5.96 E-8 6 - 9
IEEE Double: 2.2 E-308 1.8 E308 1.11 E-16 15 - 17

IEEE Extended:  3.4 E-4932 1.2 E4932  5.42 E-20 18 - 21
( Doubled-Double: 2.2 E-308 1.8 E308 ≈  1.0 E-32 ≈  32   )

 ( Quadruple: 3.4 E-4932 1.2 E4932 9.63 E-35    33 - 36  )

( IBM hex. REAL*4: 5.4 E-79 7.2 E75 9.5 E-7 ≈  6 )

( IBM hex. REAL*8: 5.4 E-79 7.2 E75 2.2 E-16 ≈  15 )

( CRAY X-MP etc. REAL*8: ≈  1 E-2466 ≈  1 E2466 ≈  7 E-15 ≈  14  )
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This third  Double-Extended  format resembles the unmentionable outcasts of
India   ( formerly  Untouchables,  now called  “Harijan” )  and of
Japan   ( formerly called  “Etta,”   now called  “Buraku-Min” ) ;

it is preordained for dirty work.

Its  11  extra bits of precision and  4  extra bits of exponent range are intended
rarely   to be seen by most computer users,

but instead to help typical applications programmers look better by rendering their 
ordinary  double  or  REAL*8  results more reliable than might be expected from

usually   numerically naive programmers.

This  Extended  format is designed to be used,  with negligible loss of speed,  for 
all but the simplest arithmetic with  float  and  double  operands.  For example,  it 
should be used for scratch variables in loops that implement recurrences like

polynomial evaluation,     scalar products,     partial and continued fractions.

It often averts premature  Over/Underflow  or severe local cancellation that can 
spoil simple algorithms.

Without an  Extended  format,  ...

•  some ostensibly straightforward  double  computations are prone to
   malfunction unless carried out in devious ways known only to experts;

•  matrix computations upon vast arrays of  double  data degrade too
    rapidly as increasing dimensions engender worsened roundoff.

The idea of an  Extended  format has been amply vindicated by its use in  Hewlett-
Packard’s  financial calculators,  which all perform all arithmetic and financial functions to 
three more sig. decimals than they store or display.  Doing so has helped to earn the  HP-
12C  a deserved reputation for dependability that has kept it prominent for over  11  years  
in a market where other electronic products enjoy a lifetime shorter than a  Mayfly’s.
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Among  680x0-based  Macintosh,  NeXT  and  Sun III,  and Intel-based  PCs ,  all of 
which contain  Double-Extended  floating-point hardware,

ONLY  the  Macintosh’s  compilers routinely supported  Double-Extended
via the  S.A.N.E.  ( Standard Apple Numerical Environment ) ;

see   Apple Numerics Manual, Second Edition   (1988)  Addison-Wesley,  Mass.

Owners of other  Double-Extended  hardware were denied their just deserts by  ...

Crippled Compilers:

No compilers for the old  Sun III  family,  based upon  Motorola’s  68020+68881/2,  
ever supported its  Double-Extended  format,  so that has atrophied.   Current  Sun 
SPARC  hardware supports only  Single and Double.

No commercially significant  Fortran  compiler  for  Intel-based  PCs  supports 
their  Double-Extended  format;  and only  Borland’s  and  Microsoft’s  C / C++  
compilers support it,  the latter only grudgingly.  Other  C / C++  compilers ignore  
“ long double ”   or else treat it as if it were merely  “ double.”

No benchmark programs exercise  Double-Extended  since it is unavailable on 
many workstations,  and since  “ long double ”  has no well-defined meaning.

Therefore,  little incentive exists to incur the costs of 
supporting  Double-Extended  fully since that effort will 
not be rewarded by improved performance in current 
benchmarks and a consequent commercial advantage.

And yet,  despite a general lack of support,  Double-Extended  confers a detectable 
advantage upon computers that have it in their hardware.  This advantage would be 
obvious to everybody if the computing community ran

Benchmarks to Test Range,  and

Benchmarks to Test Accuracy.
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What kinds of calculations tax  Range ?

1.   Three-Term Recurrences
Pn+1(x)  :=   an(x)·Pn(x)  -  bn(x)·Pn-1(x)

are used to compute  Orthogonal Polynomials,  Bessel Functions,  Spherical 
Harmonics,   and many others of the transcendental functions of  Mathematical 
Physics.  Their values usually transgress the ranges of   DEC  VAX   and  IBM hex. 

arithmetics  ( 10±38  and  10±79 ),  often transgress the range  10±308  of  IEEE 754 

Double,  almost never transgress the range  10±4930  of  Extended.  Programs that 
would work well with  Extended  would sometimes  crash with  Double,   and often 
crash with  DEC  VAX  or  IBM hex. Double.

A program that crashes commercially significant machines 
would not be acceptable to their custodians as a benchmark.

Crashes can be precluded by  Scaling  the recurrences,  at the cost of defensive tests and 
branches.  Defensive code wastes time since it must wait for every test though it rarely 
branches.  Benchmarks that obliged a machine with narrower range to preclude crashes 
that way would be even more objectionable to its custodian if competing machines with 
wider range were allowed to omit defensive code and therefore run faster.

2.   Every computer’s range is taxed by  Quotients of  Prolonged Products  like

  

when  N  and  M  are huge and when the numerator and/or denominator are likely 
to encounter premature  OVER/UNDERFLOW  even though the final value of  
Q   would be unexceptional if it could be computed.  This situation arises in 
certain otherwise attractive algorithms for calculating eigensystems,  or  
Hypergeometric  series,  for example.

The hardware of  IBM hex.  and of machines that conform to  IEEE 754  can 
easily compute  Q  accurately and quickly,  and so can other machines with some 
fiddling;   but compiled programming languages lack the necessary locutions.   
( See  Ch. 2  of  Floating-Point Computation   P.H. Sterbenz (1974) Prentice-
Hall,  N.J.,  for a brief description of how it was done in the  1960s  on an  IBM 
7094.)  Therefore computations like  Q  cannot figure in a benchmark for range.

Q
a1 b1+( ) a2 b2+( ) a3 b3+( ) …( ) aN bN+( )⋅ ⋅ ⋅ ⋅
c1 d1+( ) c2 d2+( ) c3 d3+( ) …( ) cM dM+( )⋅ ⋅ ⋅ ⋅

----------------------------------------------------------------------------------------------------------------------------------=
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Qualifications for Benchmarks to Test Accuracy.

Some formidable political and technical obstacles must be overcome if accuracy is 
to figure in benchmarks besides speed :

1.  Compilers generally must support a reasonable consensus about the meanings 

of different precision specifications if these are to figure in benchmarks.

No such  consensus is in sight yet,  so let us try to get along without it for a while.  
In other words,  by not mentioning  “ Double-Extended ”  nor  “ REAL*10 ”  nor  
“ long double,”  at least not for the time being,  an accuracy benchmark can be 
eligible to run on every commercially significant computer of interest to us.

2.  A benchmark must be realistic enough to deserve serious attention.

     It must perform a task typical of tasks somebody may plausibly need performed
         repeatedly;  and accuracy should be an important aspect of the task.

3.  Benchmarks must avoid the computational counterpart of the ...

Stopped Clock Paradox:  Why is a mechanical clock more accurate 
stopped than running?         A running clock is almost never exactly right,  
whereas a stopped clock is exactly right twice a day.
  ( But  WHEN  is it right?  Alas,  that was not the question.)

To avoid this,  we must avoid results that an inferior computer might get exactly right although 
superior computers get merely excellent approximations.  For instance,  if the perfect result were   
0.5 ,  it might be obtained  exactly  by accident using only low-precision floating-point while 
higher precision got something  “ infinitely worse ”  like   0.499999999999999 .

4.  Input data should be composed from simple integers and fractions that will not 

be mishandled by the compiler’s  Decimal-Binary  conversion,  which might 
otherwise alter the data before it reached the floating-point hardware under test.

Such alteration could cause the benchmark to disparage hardware that got the right answer for the 
wrong question.  Worse,  tiny changes to data critically contrived to expose a weakness might 
thwart that intent.  For instance,  a critical datum  94906267.0  treated as a  REAL*4  or  float  
constant would be changed to an uninformative  94906264.0  if not rewritten as  94906267.0 D0  
or,  better,  expressed as  6847*DBLE( 13861 )  using only small integers we expect to use safely.
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Solving the  Quadratic Equation

p·x2  -  2·q·x  +  r   =   0   .

This illustrates the hazards that beset an accuracy benchmark.

The roots  x1  and  x2  will be computed using a  “ stable ”  numerical procedure:

Qdrtc( p ,  q ,  r ,   x1 ,  x2 ) :
s := SQRT( q·q - p·r ) ;
If  q > 0  then  t := q + s

   else  t := q - s ;
x1 := r/t  ;    x2 :=  t/p .

Data will  NOT  be chosen at random.  In practice,  coefficients  p, q, r  are often 
correlated;  and that is the kind of data that will be supplied  exactly  here:

For each chosen datum    r >> 1 ,   set     q := r - 1   and   p :=  q - 1 .

Consequently the roots are known to be    x1 = 1   and   x2  =  1 +  2/p    exactly.  

These can be compared with the roots computed in floating-point by the procedure 
Qdrtc  above,  and the worst errors detected will shed light upon the intrinsic 
accuracy of the computer’s floating-point arithmetic.

A benchmark program  Qtest,  combining  Qdrtc  with a battery of fifteen 
values   r   chosen maliciously to reveal the worst  errors possible on various 
computers,  was prepared for them.  Results are tabulated below.

( The battery of trial values   r   and the details of the program  Qtest  can be 
found in my  Lecture Notes on the Status of  IEEE Standard 754  for  Binary 
Floating-Point Arithmetic,  accessible by electronic mail from my home page:

http://www.cs.berkeley.edu/~wkahan/ieee754status/ieee754.ps   .)
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Precision  =  how many sig. bits are stored in the named system's  8-byte  format.
( Different systems trade off precision and range differently.)

Accuracy  =   fewest sig. bits delivered by  Qdrtc  over the whole test battery.
 ( Evidently as many as half the sig. bits stored in computed roots can be wrong.)

The smaller computed root can fall short of  1.0  in the sig. bit whose position is
 tabulated last.  ( In the absence of roundoff,  no root would fall below  1.0  .)

These findings cry out for  Explanations:   How can so simple a 
program get worse accuracy on some computer systems than on 
others that store the same number of significant bits or fewer?

Results from  Qtest( Qdrtc )  on  8-byte Floating-Point
Computer 
Hardware

Software    
System

Precision     
sig. bits

Accuracy     
sig. bits

How  far  <  1   
sig. bit

ix86/87-             
&  Pentium- 
based  PCs

Fortran,  C,      
Turbo-Basic,  
Turbo-Pascal 53 32 33.3

680x0 -based      
Sun III,            

Macintosh
Fortran,  C

DEC VAX D Fortran,  C 56 28 29.3
ix86/87    &    
Macintosh

MATLAB, 
MathCAD

53 26.5 27.8SGI MIPS, 
SPARC,  HP,
  DEC VAX G

DEC Alpha

Fortran,               
C ,                   

MATLAB

IBM /370  etc. Fortran,  C 56 26.4 26.4
CRAY Y-MP Fortran,  C 48 24 25.3

 PowerPC/Mac,
IBM RS/6000 Fortran,  C 53

NaN  from
√( < 0 )

NaN  from
√( < 0 )
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Explanations:

Best accuracy,  32 sig. bits,  is achieved on inexpensive  ix86/87-based PCs  and  
680x0-based Macintoshes  by software that evaluates each subexpression to  64 
sig. bits by default in their  Extended  registers though it be rounded to  53 sig. 
bits  in  Double  when stored.

( These computer systems also accept,  without premature  Over/Underflows,  a far wider range 
of input data  {µ·p,  µ·q,  µ·r}  than do the others,  though this robustness cannot be explored by  
Qtest  without crashing some other systems upon  Over/Underflow .)

Why do  MATLAB  and  MathCAD  achieve no better accuracy on  ix86/87  and  
680x0  platforms with  Extended  registers than on the other machines without?

These programs are written mostly in  C  in a purportedly portable fashion with no 
mention of  long double,  so they store almost every subexpression into  double  
scratch variables,  thereby wasting time as well as the  Extended  registers' 
superior accuracy and range.

Why do  IBM’s  /370  and  3090  etc.  do worse than the  DEC VAX  D  format,   
though both store the same number  56  of sig. bits?

IBM’s  notorious old  Hexadecimal  floating-point format is intrinsically as much 
as three sig. bits less accurate than a  Binary  format of the same width.
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Explanations,  continued:

Whence comes  NaN  (Not a Number)  on   RS/6000s  and  PowerPC/Macs ?.

It arises from the square root of a negative number   q·q - p·r .

   However,  tests performed upon input data would find that   QQ := q·q   and
   PR := p·r    do satisfy   QQ ≥ PR   whenever   Qtest’s   q·q - p·r  < 0 .

This paradox arises out of the  Fused Multiply-Accumulate  instruction possessed 
by these machines.  They can compute expressions like

±x  ±  y·z
in one operation with just one rounding error instead of two.  This is faster and 
usually more accurate than separately rounded multiply and add operations,  but 
sometimes less accurate,  so it should not be used indiscriminately.

Is   ±x = q·q rounded  and  ±y·z = p·r ,   or  is  ±x = -p·r rounded  and  ±y·z = q·q  ?

The paradox can be avoided by inhibiting  Multiply-Accumulate  at compile time.

Alas,  doing so generally would slow these machines;  therefore,  their compiler 
was designed to render that inhibition  inconvenient  and  unusual,  thereby 
achieving better speeds on benchmarks that lack locutions to enable or disable a  
Multiply-Accumulate.

Accuracy benchmark  Qtest  could run successfully on these machines,   getting 
the same mediocre results as do  MIPS,  SPARC,  HP,  DEC VAX G  and  Alpha, 
if run in their unusual and slower  Multiply-Accumulate-inhibited mode.

Would that be considered a  fair test ?

Fairness  raises troublesome issues for a benchmark.
What if custodians of a computer family allege  Unfairness ?  Letting them tweak 
a benchmark slightly to render it  “ fair ”  lets them overcompensate in devious 
ways very difficult to expose.  For example,  replace  Qdrtc  by an ostensibly 
algebraically equivalent procedure  …
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PPCQdrtc( p ,  q ,  r ,   x1 ,  x2 ) :
ß := p·r ;  ø := p·r - ß ;             |
s := SQRT( (q·q - ß) - ø ) ;           |
If  q > 0  then  t := q + s

   else  t := q - s ;
x1 := r/t  ;    x2 :=  t/p .

For comparison,  here is the original ...

Qdrtc( p ,  q ,  r ,   x1 ,  x2 ) :
s := SQRT( q·q - p·r ) ;               |
If  q > 0  then  t := q + s

   else  t := q - s ;
x1 := r/t  ;    x2 :=  t/p .

Aside from running slightly longer to compute   ø ,  which just vanishes for most 
computer arithmetics,   Qtest(PPCQdrtc)  differs from  Qtest( Qdrtc )  
only by awarding the prize for accuracy to  PowerPC  and  RS/6000,  which get  
53  correct sig. bits instead of  NaN  from  PPCQdrtc .

Which of  Qtest( PPCQdrtc )  and  Qtest( Qdrtc )
do you deem the fairer assessment of computers’ accuracies ?

Of course,  Qdrtc  could be replaced by a different yet ostensibly algebraically equivalent 
procedure  EQdtrc  devised to deliver  53  correct sig. bits only on machines with  Extended  
registers  ( but without mentioning  “ Extended ” )  and to match  Qdrtc  on all other machines.

Dilemma:  To insist that a benchmark exist in just one version,  and that it run
      successfully  ( no NaNs ! )  on  every  computer,  may cripple speed or
      accuracy or robustness on computers with advantageous features others lack.
But to permit local variations may permit skulduggery that invalidates comparison.

As it is now,  Qtest( Qdrtc )  tells us something I think worth knowing 
regardless of whether it is admitted to the ranks of industry-approved benchmarks.
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Solving quadratic equations is not generally regarded as so
IMPORTANT

a computation that anyone would pay big bucks for a better 
way.  As a benchmark it would not likely be taken seriously.

What computations are both important and technically 
challenging enough that they could earn real money if 

accomplished significantly better?

1.  Solving big systems of linear equations:   A·x = b .

2.  Computing eigenvalues/vectors:    X-1·A·X = diagonal.

Despite phenomenal improvements in numerical methods over 
the past three or four decades,  we still lack software that will 
always solve these problems as accurately as their data deserve.

For instance,  solving  A·x = b  can still run afoul of certain 
pathologies:

Gargantuan dimension.
Unfortunate column ordering —>  poor pivot choice.
Disparate scaling of rows  —>  poor pivot choice.
Systematically severe ill-condition  (near singularity).

One way to ameliorate such pathologies is to follow  Gaussian  
elimination by  Iterative Refinement,  which is believed to cope 
with them.  But that is not the whole story:  ....
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Roundoff  Degrades  an  Idealized  Cantilever

Prof. W. Kahan  and  Ms. Melody Y. Ivory
Elect. Eng. & Computer Science Dept. #1776

University of California
Berkeley  CA  94720-1776

Abstract:
By far the majority of computers in use to-day are  Intel-based  PCs,  and a big 
fraction of the rest are old  680x0-based  Apple Macintoshes.  Owners of these 
machines are mostly unaware that their floating-point arithmetic hardware is 
capable of delivering routinely better results than can be expected from the more 
prestigious and more expensive workstations preferred by much of the academic  
Computer Science  community.  This work attempts to awaken an awareness of the 
difference in arithmetics by comparing results for an idealized problem not entirely 
unrepresentative of industrial strength computation.  The problem is to compute the 
deflection under load of a discretized approximation to a horizontally cantilevered 
steel spar.  Discretization generates  N  simultaneous linear equations that can be 
solved in time proportional to  N  as it grows big,  as it must to ensure physical 
verisimilitude of the solution.  The solution is programmed in  MATLAB  which,  
like most computer languages nowadays,  lacks any way to mention those features 
that distinguish better arithmetics from others.  None the less this program yields 
results on  PCs  and old  Macs  correct to at least  52  sig. bits for all values  N  tried,  
up to  N = 18827  on a  Pentium.  However the other workstations yield roughly  
52.3 - 4.67 log N  correct sig. bits from the same program despite that it tries two 
styles of  Iterative Refinement;  at  N = 18827  only a half dozen bits are left.  This 
kind of experience raises troublesome questions about the coverage of popular 
computer benchmarks,  and about the prospects for a would-be universal language 
like  JAVA  to deliver identical numerical results on all computers from one library 
of numerical software.

The  MATLAB  program used to get the aforementioned results is available by 
electronic mail from the authors:  ivory@cs.berkeley.edu  and  wkahan@cs... .
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Roundoff  Degrades  an  Idealized  Cantilever

A uniform steel spar is clamped horizontal at one end and loaded with a mass at the 
other.  How far does the spar bend under load?

The calculation is  discretized:  For some integer  N  large enough  ( typically in the 
thousands )  we compute approximate deflections

x0 = 0 ,   x1,  x2,  x3,  ...,  xN-1,   xN ≈ deflection at tip

at  uniformly spaced stations along the spar.  Discretization errors,  the differences 

between these approximations and true deflections,  tend to  0  like 1/N2 .  These  
xj 's  are the components of a column vector  x  that satisfies a system  A·x = b  of 

linear equations in which column vector  b  represents the load  ( the mass at the end 
plus the spar’s own weight )  and the matrix  A  looks like this for  N = 10 :

The usual way to solve such a system of equations is by  Gaussian  elimination,  
which is tantamount to first factoring  A = L·U  into a lower-triangular  L  times an 
upper-triangular  U ,  and then solving  L·(U·x) = b  by one pass of forward 
substitution and one pass of backward substitution.  Since  L  and  U  each has only 
three nonzero diagonals,  the work goes fast;  fewer than  30·N  arithmetic 
operations suffice.  But this solution  x  is very sensitive to rounding errors;  they 

can get amplified by the  condition number  of  A ,  which is of the order of  N4 .

To assess the effect of roundoff we compare this computed solution  x  with another obtained very 

accurately and very fast with the aid of a trick:  There is another triangular factorization  A = R·RT  
in which  R  is an upper-triangle with three nonzero diagonals containing only small integers  1  
and  ±2 .  Consequently the desired solution can be computed with about  4·N  additions and a 
multiplication.  Such a simple trick is unavailable for realistic problems.

A

9 4– 1 o o o o o o o

4– 6 4– 1 o o o o o o

1 4– 6 4– 1 o o o o o

o 1 4– 6 4– 1 o o o o

o o 1 4– 6 4– 1 o o o

o o o 1 4– 6 4– 1 o o

o o o o 1 4– 6 4– 1 o

o o o o o 1 4– 6 4– 1

o o o o o o 1 4– 5 2–

o o o o o o o 1 2– 1

=
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The loss of accuracy to roundoff during  Gaussian  elimination poses a  Dilemma:
Discretization error  —> 0  like  1/N2 ,  so for realistic results we want  N  big.

Roundoff is amplified by  N4 ,  so for accurate results we want  N  small.

For realistic problems  ( aircraft wings,  crash-testing car bodies, ...),   typically  
N > 10000 .  With  REAL*8  arithmetic carrying the usual  53  sig. bits,  about  16 
sig. dec.,  we must expect to lose almost all accuracy to roundoff occasionally.

Iterative Refinement  mollifies the dilemma:
Compute a  residual  r := A·x - b  for  x .  Solve  A·∆x = r  for a correction  ∆x  
using the same program  ( and triangular factors  L  and  U )  as  “solved”  A·x = b  
for an  x  contaminated by roundoff.  Update  x := x - ∆x  to refine its accuracy.

Actually,  this  Iterative Refinement  as performed on the prestigious work-stations  
( IBM RS/6000,  DEC Alpha,  Convex,  H-P,  Sun SPARC,  SGI-MIPS,  ... )  does 
not necessarily refine the accuracy of  x  much though its residual  r  may get much 
smaller,  making  x  look much better to someone who does not know better.

Only on  Intel-based  PCs  and  680x0-based  Macintoshes  ( not  Power-Macs )  can  
Iterative Refinement  always  improve the accuracy of  x  substantially  provided  
the program is not prevented by a feckless compiler from using the floating-point 
hardware as it was designed to be used:

Accumulate residual  r := A·x - b  in the computer’s  REAL*10  registers.
They carry  11  more bits of precision than  REAL*8’s  53  sig. bits.  Using them 
improves accuracy by at least about  11  sig bits whenever more than that were lost.

To get comparable or better results on the prestigious workstations,  somebody would have to 
program simulated  ( SLOW )  extra-precise computation of the residual,  or invent other tricks.

e.g.:  Accuracies from a  MATLAB  program ( WITH NO MENTION  of  REAL*10 )

N = 18827 PCs & 680x0 Macs Others Condition no. > 257

Unrefined Residual 156 ulps. ≈156 ulps. Why N = 18827 ?
Because for bigger  N

MATLAB’s  Stack
Overflowed on a

Pentium  with
 64 MB RAM .

Refined Residual 0·41 ulps. ≈0·7 ulps.

Unrefined Accuracy 6 sig. bits ≈6 sig. bits

Refined Accuracy 53 sig. bits ≈5 sig. bits
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The foregoing tabulated results are misleading because they compare results from 
the  same  MATLAB  program run on  different  computers,  which is exactly how 
current benchmarks are expected to assess different computers’ comparative merits.  
But this refinement program would probably not exist if the only computers on 
which it had to run were prestigious workstations that lack fast extended-precision;  
on those computers,  iterative refinement is best performed in a different way.  The 
difference is subtle and yet important,  if only because it raises questions about a 
popular notion,  promulgated especially by  JAVA  enthusiasts,  that software ought 
to work identically on every computer.

Every iterative refinement program repeats the three steps
{   r := A·x - b ;     solve  A·∆x = r  for  ∆x  ;      update     x := x - ∆x  ; }

until something stops it  The programs most in use nowadays,  like  _GERFS  in  
LAPACK,  employ an  r-based  stopping criterion:

Stop  when the residual  r  no longer attenuates,   or when 
it becomes acceptably small,  whichever occurs first.

Usually the first  x ,  if produced by a good  Gaussian  elimination program,  has an 

acceptably small residual  r ,  often smaller than if  x  had been obtained from   A-1b  
calculated exactly and then rounded off to full  REAL*8  precision!  Therefore,  that 
criterion usually inhibits the  solve  and  update  operations entirely.

What if  r  is initially unacceptably big?  This can occur,  no matter whether  A  is 
intrinsically ill conditioned,  because of some other rare pathology like gargantuan 
dimension  N  or disparate scaling.  Such cases hardly ever require more than one 
iteration to satisfy the foregoing criterion.  That iteration always attenuates  x 's   
inaccuracy too,  but only on  PCs  and  Macs  that accumulate  r  extra–precisely.

On workstations that do not accumulate  r  extra-precisely,  updating  x  often 
degrades it a little and almost never improves it much unless inaccuracy in  x  is 
caused initially by one of those rare pathologies other than intrinsic ill-condition.

Thus,  the  r-based  stopping criterion serves these workstations well by stopping 
them as soon as they have achieved a goal appropriate for them,  namely ...

Locate an approximate solution  x  whose  computed  
residual  r := A·x - b  will not much exceed the roundoff 
that may accrue while it is being computed.

Such an approximate  x  may still be very inaccurate;  this happens just when  A  is 
intrinsically  “ill-conditioned,”  which is what we say to blame inaccuracy upon the 
data instead of our own numerical  (in)expertise.
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Reconsider now the results tabulated earlier for the cantilever with  N = 18827 .  A 
smaller  N  would do as well;  for all of them,  x  is accurate to  52  or  53  sig. bits 
after refinement on a  PC  or  680x0-based Mac.  How do these machines achieve 
accuracy to the last bit or two in the face of condition numbers so huge that the 
survival of any sig. bits at all surprises us?  Not by employing an  r-based  stopping 
criterion;  it would too often terminate iteration prematurely.

The stopping criterion employed to get those results is  x-based:
Stop  when decrement  ∆x  no longer attenuates,  or when 
it becomes acceptably small,  whichever occurs first.

To get those results,  “acceptably small”  here was set to zero,  which seems rather tiny but shows 
what the program can do.  At  N = 18827  the cost of those  53  sig. bits was  10  iterations of  
Iterative Refinement;  at lesser dimensions  N  the cost was roughly   1/( 1  -  0.091 log N )  

iterations,  which suggests that dimensions  N  beyond  55000  ( with condition numbers  > 263 )  
lie beyond the program’s reach.

This  x-based  stopping criterion that so enhances the accuracy of results from  
PCs  and  680x0-based Macs  must not be employed on other workstations 
lest it degrade the accuracy of their results and,  worse,  waste time.

Different strokes for different folks.
. . . . . . . . . . . . . . . . . . . . .

How relevant is this  idealized  cantilever problem to more general elastostatic problems whose 
coefficient matrices  A  generally do not have entries consisting entirely of small integers?  Small 
integers make for better accuracy from a simpler program,  but they are not essential.  What is 
essential is that we preserve important  correlations  among the many coefficient entries,  which 
are determined from relatively few physically meaningful parameters,  despite roundoff incurred 
during the generation of those entries.  Such a correlation is evident in the example explored here;  
all but the first two row-sums of  A  vanish,  as do row–sums for a non–uniform cantilever whose 
matrix  A  has varying rows of non-integer coefficients.  We must force the same constraint,  
among others,  upon the rounding errors in  A ,  and then they will do us little harm.

But the rounding errors incurred later during  Gaussian  elimination cannot be so constrained.  
Though tiny,  they become dangerous when amplified by big condition numbers.  Thus we are 
compelled either to attenuate them by employing inverse iteration with extra-precise residuals,  or 
to devise other tricks that do not incur such dangerous errors.
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If you do not know how much  Accuracy  you have,  what good is it?
Like an expected inheritance that has yet to  “mature,”  you can’t bank on it.

Iterative refinement programs like  _GERFS  that employ the  r-based  stopping 
criterion can also provide,  at modest extra cost,  an  almost–always–over–estimate  
of the error in  x .  They do so by first computing a majorizer  R  that dominates  

r := A·x - b  plus its contamination by roundoff.  Then they estimate  ||A-1R||∞  

without ever computing  A-1   to obtain the desired bound upon error in  x .  This 
estimate costs little more than a few steps of  Iterative Refinement.

Unfortunately,  it is not infallible,  though serious failures  ( gross under–estimates 
of the error in  x )  must be very rare since the only known instances are deftly 
contrived examples with innocent–looking but singular matrices  A .  Worse,  this 
error bound tends to be grossly pessimistic when  A  is very ill-conditioned and/or 
its dimension  N  is extremely big.  The pessimism often amounts to several orders 
of magnitude for reasons not yet fully understood.

In short,  versions of  Iterative Refinement  working on prestigious workstations can 
provide error bounds but they are too often far too pessimistic,  and they can fail.

Iterative Refinement  programs that employ the  x-based  stopping criterion can also 
provide,  at no extra cost,  an  almost–always–over–estimate  of the error in  x .  
They do so by keeping track of  ||∆x||  which,  if convergence is not too slow,  gives 
a fair  ( rarely much too pessimistic )  indication of the error in  x .  This is not an 
infallible indication;  it fails utterly whenever the computed residual

r := (A·x - b  plus roundoff )
happens to vanish.  Iterative Refinement  produces residuals that vanish surprisingly 
often,  sometimes because  x  is exactly right.

( The  INEXACT  flag mandated by  IEEE Standard 754 for Binary Floating–Point Arithmetic  
would,  if  MATLAB  granted us access to that flag,  help us discriminate between solutions  x  
that are exactly right and those,  perhaps arbitrarily wrong,  whose residuals vanish by accident.)

In short,  Iterative Refinement  appropriate for  PCs  and  680x0-based Macs  comes 
with a cost-free indication,  usable if hardly infallible,  of its superior accuracy.

The other workstations have nothing like it.

The following figures exhibit some evidence to support the foregoing claims.
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ACCURACY
of a  Cantilever’s Deflection  after  Iterative Refinement

by a  MATLAB 4.2  program run on workstations

Iterative Refinement  of residuals  r  ( employing the  r-based  stopping criterion ),   
as does  LAPACK  program  _GERFS,  always reduces the residual  r  below an ulp 
or two,  but rarely improves the accuracy of the solution  x  much,  and often 
degrades it a little,  on workstations that do not accumulate residuals to extra 
precision.  And the error-bound on  x  inferred from  r  is too pessimistic.  But on 
those workstations it is difficult to do better.
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ACCURACY
of a  Cantilever’s Deflection  after  Iterative Refinement

by a  MATLAB 4.2  program run on workstations

Iterative Refinement  of solutions  x  ( employing the  x-based  stopping criterion )  
is no more accurate than refinement of  r  for the  Cantilever  problem  ( and rarely 
more accurate for other problems )  on workstations that do not accumulate 
residuals to extra precision.  And the error-bound on  x  inferred from  ∆x  is still too 
pessimistic for this problem  ( and too optimistic for others ).  Worse,  refining  x  
usually takes more iterations than refining  r ,  though not for cases shown here.  
Therefore this kind of  Iterative Refinement  does not suit those workstations.
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ACCURACY
of a  Cantilever’s Deflection  after  Iterative Refinement
by a  MATLAB 4.2  program run on  PCs  and old  Macs

Iterative Refinement  of residuals  r  ( employing the  r-based  stopping criterion ),   
as does  LAPACK  program  _GERFS,  always reduces the residual  r  below an ulp 
or two,  and also improves the accuracy of the solution  x  if not stopped too soon  
( as occurred above at  N = 64  because the initial  r  was below  1 ulp )  on  PCs  
and  Macs  that accumulate residuals to extra precision.  But the error-bound on  x  
inferred from  r  is still too pessimistic.  On these computers we can do better.
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ACCURACY
of a  Cantilever’s Deflection  after  Iterative Refinement
by a  MATLAB 4.2  program run on  PCs  and old  Macs

Iterative Refinement  of solutions  x  ( employing the  x-based  stopping criterion )  
far surpasses the accuracy of refinement of  r  for ill–conditioned  Cantilever  
problems  ( and also for other problems )  on  PCs  and  Macs  that accumulate 
residuals to extra precision.  And the error-bound on  x  inferred from  ∆x  is 
satisfactory for this problem  ( and almost always for others ).  Of course,  the 
required number of iterations rises sharply as  A  approaches singularity.  Still,   this 
kind of  Iterative Refinement  is the right kind for those popular computers.
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Would the  Cantilever  problem make a good benchmark?

Perhaps not.  Since different families of computers are best 
served by different versions of  Iterative Refinement  with 
different capabilities,  like rather different kinds of error over–
estimates,  comparisons would become confounded.

A good bench mark has to be a single program that does 
something worth–while on every computer even if it does better 
on some of them.

I have devised such a program:  RefinEig.
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RefinEig  --  towards a better benchmark for accuracy:

For any square matrix  B   the  MATLAB  statement

[Q, V] = eig( B )

computes an eigenvector matrix  Q  and a diagonal matrix  V  of eigenvalues.

Ideally,      V  =   Q-1·B·Q     is diagonal.

Numerical accuracy deteriorates as  B   approaches a set of measure zero,  the 
algebraic variety of  Defective  matrices  B ,  on which  V  cannot be diagonal.

No  single  algorithm can compute  Q  and  V  as accurately as deserved by   every  
datum  B ,  if a theorem proved recently by  Ming Gu  at  Berkeley  can be taken at 
face value.

Therefore   eig(...)  must be imperfect;
and it is,  as examples will demonstrate.
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Examples:   Werner Frank’s  NxN  matrices,  exemplified here for  N = 5 :

F’  is obtained by transposing,  and  P  by reversing rows and columns of  F .

F ,  F’ ,  P  and  P’   have the same eigenvalues,  all positive in reciprocal pairs.
If  ƒ  is an eigenvalue,  so is  1/ƒ ,  and then   √ƒ - 1/√ƒ   is a zero of the  Nth  Hermite  polynomial.

The smaller eigenvalues are the more  ill-conditioned  ( i.e.  sensitive 
to perturbation ),  exponentially more so for bigger  N ,  the same for 
all four of  F ,  F’ ,  P  and  P’ .  Consequently  eig(...)  computes 
none of their  “ significant ”  bits correctly when   N > 17 .

However,  for   7 < N < 17 ,     eig(...)  computes those smaller eigenvalues 
several sig. bits more accurately for  F’   than for the other matrices,  thus 
demonstrating that

eig(...)’s   accuracy depends in part
upon mathematically irrelevant accidents.

Remedy:
[Q, V] = RefinEig(Q, V, B)

is my  MATLAB-language  program designed to try to improve the accuracy of
[Q, V] = eig( B )

in cases when it has been degraded by some accident.

Sometimes the improvement is spectacular.
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How to invoke   RefinEig   from within  MATLAB :

[Q, V] = eig( B ) ;  % ...  Initial approximations  Q,  V .
[Q, V] = RefinEig(Q,V,B) ; % ...  Iterate until  “convergence.”

Convergence is  cubic  ( extremely fast )  if it occurs at all,
so one iteration usually does about as well as can be done.

How  RefinEig  works:
Ideally  Q-1·B·Q = V  would be diagonal,  but because of roundoff we find

∆C  =  Q-1·B·Q - V ,
when computed,  to be nonzero and nondiagonal.  We shall replace the approximate 
eigensystem   [Q, V]   by the exact eigensystem   [ Q + Q·∆Z,   V+∆V ]   wherein,  
ideally,   ∆V  is a diagonal correction and  ∆Z  is an eigenvector corrector, 
normalized by   diag(∆Z) = O .  They have to satisfy the equation

∆V  =  ∆C  +  V·∆Z  - ∆Z·V   -   ∆Z·∆V + ∆C·∆Z  .
To solve it for  ∆V  and  ∆Z ,   we first rewrite it in a form that suggests an iteration :

∆V  =   diag(∆C + ∆C·∆Z)    =    diag(∆C)  +  O(∆...)2   ;
  U :=   the  NxN  matrix full of  1 s   ;
  E :=   U·V - V·U  +  U·∆V - ∆V  +  I   ;    ...  presumably entirely nonzero

∆Z  =   (∆C - ∆V + ∆C·∆Z)./E    =    (∆C - ∆V)./E  +  O(∆...)2   .
   ( The division   (...)./E    is to be performed elementwise.)

Initializing  ∆Z  to  O  and running through these equations in turn would yield first-
order approximations to  ∆V  and  ∆Z  with a fatal defect;  they degenerate in case 
some eigenvalues of  B  are too closely paired though otherwise well separated,  
which is the most common situation for which  eig(...)  is inaccurate.

RefinEig’s  innovation is a better initialization of  ∆Z  inspired by a half-century 
old formula of  Jahn  and  Magnier  discussed in  Bodewig’s  Matrix Calculus 
(1959).  This  ∆Z  would be exactly right if  ∆C  were a permuted diagonal sum of  
1x1  and  2x2  matrices,  and is correct to first order otherwise.

RefinEig  computes  residuals  like   R = B·Q - Q·V ,  needed for  ∆C = Q-1·R ,  
in a slightly peculiar way.  Instead of the  MATLAB  expression   B*Q - Q*V ,  
R = [B, Q]*[Q; -V]  is computed in one matrix multiplication for a reason 
that will become evident momentarily.
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RefinEig  as an  Accuracy Benchmark

MATLAB  scripts were prepared to assess the accuracies to which first  eig(...)  
and then  RefinEig(...)  can compute the smallest few eigenvalues of  W. 
Frank’s  matrices  F ,  F’ ,  P  and  P’  for dimensions  N  from  8  to  24 .
Since the accuracy of  eig(...)  is sometimes affected by  equilibration  or  balancing,  it was 
run both with and without;  see  MATLAB’s  documentation for   eig(..., ‘nobalance’) .

 Since  MATLAB  runs on practically  every  commercially significant computer that 
conforms to  IEEE Standard 754,   and  MATLAB  provides no way to mention its 
floating-point format  ( all its variables use the  8-byte  double  format ),  and ...

since  RefinEig  performs a valuable function  ( as the following results will 
confirm )  regardless of the floating-point formats available,  and ...

since the input data consists of arrays of easily converted small integers,  and ...

since the desired eigenvalues are not vulnerable to the  Stopped Clock Paradox,

RefinEig  possesses the four qualifications enunciated above
for an acceptable  Accuracy Benchmark.

Let us view its results:

These results were obtained off my  68040-based  Macintosh  Quadra 950 ,  and 
differ negligibly from results off my  386/387-based  PC.  The results for other 
computers,  such as the  MIPS,  SPARC,  H-P PA,  PowerPC/Mac  and  DEC Alpha,  
were simulated by setting the  Mac’s  and  PC’s  Precision Control  to emulate the 
other computers’ arithmetics.  The emulation is imperfect,  but close enough.
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Legend: - - - - - eig             on  680x0-Mac  or  Intel-PC
______ RefinEig  on  680x0-Mac  or  Intel-PC
. . . . . . eig             on  others
· - · - · - · RefinEig  on  others.
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Legend: - - - - - eig             on  680x0-Mac  or  Intel-PC
______ RefinEig  on  680x0-Mac  or  Intel-PC
. . . . . . eig             on  others
· - · - · - · RefinEig  on  others.
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Legend: - - - - - eig             on  680x0-Mac  or  Intel-PC
______ RefinEig  on  680x0-Mac  or  Intel-PC
. . . . . . eig             on  others
· - · - · - · RefinEig  on  others.
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Legend: - - - - - eig             on  680x0-Mac  or  Intel-PC
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How does  MATLAB  benefit from an  Extended  format
which  Qdrtc  showed us  MATLAB  eschews ?

MATLAB ‘s  matrix multiplication  operation is programmed carefully,  differently 
for every different computer,  in order to reach

the highest possible speed.

Every element of a matrix product is a

Scalar Product   =   a1·b1 + a2·b2 + a3·b3 + ... + aN·bN   .

By keeping products   aj·bj  and their sums in fast registers to maximize speed,  

MATLAB  computes them to the precision of the registers;  on computers with  
Extended  precision,  that is  64  sig. bits even though the operands  aj  and  bj  carry 

only  53  sig. bits.

RefinEig  computes its residuals like   R  =  B·Q - Q·V   as matrix products

which,  after massive cancellation,  come out almost as accurate as if evaluated in  
64  sig. bit arithmetic though they are stored to only  53  sig. bits.

Thus,   on computers that have it,
Extended  precision can enhance  RefinEig’s  accuracy,

typically by  11  sig. bits,
without ever being mentioned.

R B Q
Q

V–
⋅=
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Summary of  Observations  so far:

1.  The Non-Symmetric Eigenproblem  has
no  fast foolproof solution.

Occasionally trial-and-error is inescapable.

2.  RefinEig  usually improves accuracy
regardless of the underlying arithmetic.

RefinEig  never hurts much,  even if it cannot help much.  ( F’ )
Sometimes it recovers accuracy lost to  (im)balancing.  ( F ,  P’ )
Sometimes it improves accuracy spectacularly.  ( P )

3.  Computers with  Double-Extended  registers
always  gain accuracy through  RefinEig.

If more than  11  sig. bits would be lost,  those registers recover at least  10 .
They sometimes recover spectacularly more.   ( F’ )

4.  This accuracy benchmark reveals something interesting,
      about the different accuracies inherent in different computers,
     impossible to glean from benchmarks dedicated solely to

 speed.

Incidentally,  the accuracy achieved by  RefinEig  on my  Mac Quadra  and on 
my  PC  is achieved in less than half the time  Mathematica  and  Maple V  consume 
to achieve the same accuracy from their multi-precision arithmetic software.
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The Threat:      Atrophy  and  Stagnation

For lack of benchmarks that assess accuracy or other desirable attributes
other than speed,

Apple’s  S.A.N.E  never received the accolade it deserved from the marketplace.

Consequently,  Apple’s  management cut its losses,  dispersed much of  Apple’s 
numerical expertise,  and abandoned the  Double-Extended  format when they 
chose to move from the  680x0  to the faster  Power-PC-based   “ Power Mac ”  
( which goes faster for reasons other than its omission of an  Extended  format).

For lack of benchmarks that would reward their diligence,  compiler writers have 
not supported novel capabilities of  IEEE 754,  so atrophy threatens them:

Fast flexible handling of exceptions like  Division-by-Zero  and
Gradual Underflow.

Directed roundings,  necessary for good  Interval Arithmetic.

Extended precision,  capable of evolving into arbitrarily high precision.
Extended range.

More generally,  for lack of ways to accommodate innovations,  current benchmarks 
tend to stifle innovations regardless of their merits.
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Computer Languages  and  Compilers  hold center stage.

Mediaeval thinkers held to a superstition that
Thought  is impossible without  Language.

That is why  “dumb”  changed in meaning from  “speechless”  to  “stupid.”

With the advent of computers,  “Thought”  and  “Language”  have changed their 
meanings,   and now there is some truth to the old superstition:

In so far as programming languages constrain utterance,
they also constrain what a programmer may contemplate productively. 

Few compiler writers address challenges to mathematical,  scientific and 
engineering computation,  and these few are preoccupied with keeping their 
handiwork abreast of rapidly changing hardware in a bitterly competitive 
marketplace where no architecture enjoys more than a few months of ascendancy.

They have to run as fast as they can just to stay in the same place.

Consequently,  computer languages have not been evolving towards scientifically 
desirable goals,  swayed as they are by over-reliance upon standards  committees’ 
aesthetic fads,  on the one hand,  and industrial demands for compatibility with past 
practice on the other.  For instance,  a case could be made for   ...

The Baleful Effect of
C++
upon

Applied Mathematics,
Physics and Chemistry.



Baleful Effect                                                                                              June 11, 1996

46

The challenges facing the  Scientific Community:

Although  Computer Science  ought to be a branch of  Applied Mathematics  
distinguished solely by its preoccupation with the cost of computation,  we cannot 
rely upon the mathematical probity of computer professionals among whom few 
harbor hospitality towards mathematical thought.   We have educated them badly:

Some think  Mathematics  is a  Religion
whose rules they have been taught not to break for fear of moral condemnation.

e.g.,    Division by Zero,     Discontinuity .
Although violating some rules is perilous,  others are intended to be broken;

the trick is to tell which are which.

Some think  Mathematics  has at most  Aesthetic  value.
If you believe  Beauty  is  the  criterion by which  Mathematics  should be judged,

please recall that    Beauty  lies in the  Eye  of the  Beholder ;
in the eyes of a bug,  a rose is mere fodder.

Mathematics is a miraculous reward for penetrating thought.
To render that kind of thought ever more economical is the computer’s most 
worthwhile promise.  We had best not entrust it entirely to people antipathetic to 
mathematical thought or motivated too much by mere pecuniary rewards.

The  Scientific Community  has to help promulgate
Appropriate  Benchmarks

and other schemes that will reward diligence and encourage useful innovation while 
discouraging unnecessary and anarchic diversity that fragments the marketplace.

This problem is difficult technically and politically.


