

Reciprt February 23, 1999

Prof. W. Kahan Page 1

Square Root Without Division

The objective is to compute Y :=

√

X for a given positive X without using division operations.
All schemes for doing so exploit approximations r to R := 1/Y = 1/

√

X . Such approximations
can be improved arbitrarily, limited only by roundoff, via the

Reciproot Iteration

 :

Given a not too bad approximation r

≈

 1/

√

X ,

a better approximation is r := r + (1 – Xr

2

)r

/

2 .

“ Not too bad ” means 0 < r

√

X <

√

3 , and then r has almost twice as many correct sig. bits as r

has; r

√

X – 1 = –(r

√

X – 1)

2

(r

√

X + 2)

/

2 . Each quadratically convergent Reciproot iteration costs
two add/subtractions and three or four multiplications, depending upon how multiplication by
1/2 is implemented. Repeated iteration until R has been approximated adequately yields an
adequate approximation to

√

X = RX too at the cost of another multiplication. Combining this

multiplication with the last iteration for r to improve y := rX to y := rX = y + (X – y

2

)r

/

2 saves
a multiplication and, if r is accurate enough, provides a final y

≈

√

X almost correctly rounded.

Quadratically convergent Reciproot iteration costs more per iteration than a linearly convergent
iteration that uses one fixed approximate r

≈

 1/

√

X to improve each of a sequence of unrelated

approximations y

≈

√

X to y := y + (X – y

2

)r/2 at the cost of two add/subtractions and two or
three multiplications per iteration. Provided r is close enough to 1/

√

X and y is close enough to

√

X , the new relative error y

/

√

X – 1 = –(y

/

√

X – 1)

(

(y

/

√

X – 1) + (y

/

√

X + 1)(r

√

X – 1)

)/

2 will
be smaller than the old; each repeated iteration will gain about as many correct sig. bits for y as
r has. This linearly convergent iteration makes sense when the ultimate accuracy desired is not
much better than has already been achieved in y .

A first approximation r

≈

 1/

√

X is constructed via a small table-look-up. Except for special cases

like X =

∞

 , X = 0 and subnormal X , IEEE 754 formatted X = 2

k

(1 + ·f) is stored in a
floating-point word whose fixed-point interpretation is Z = (k+B) + ·f , where 0

≤

 ·f < 1 and B
is the exponent bias, an integer like k . A fixed-point constant C+·g slightly less than 3B/2 can
be so chosen, with integer C and fraction ·g lined up around the “ binary point ” just like Z ,
that a shift and subtract produce the fixed-point word S := C+·g – Z/2 whose floating-point
interpretation is the desired first approximation r good to at least three sig. bits. For instance,
when B = 127 , set C+·g := 190.451 to keep the relative error in r within

±

0.05 .

For better accuracy, some bits of ·g should be taken from a table indexed by a few bits of Z
including the last bit of k+B and the leading few bits of ·f . Every additional bit of index more
than doubles the memory bits needed by the table and contributes about one additional sig. bit to
r , whose accuracy will be multiplied by subsequent Reciproot and other iterations. The optimal
values for ·g depend somewhat upon the way in which r will figure in subsequent iterations.
Tricky details, including how to get

√

X correctly rounded at the end, must be left to another
occasion.

This document was created with FrameMaker 4 0 4

Reciprt February 23, 1999

Prof. W. Kahan Page 2

function e = rcprtplt(g, N) % ... written for MATLAB
% To estimate 1/sqrt((1+f)*2^j) for j = 0 or 1 and 0 <= f < 1 , try
% the approximation r = (3/2 + g - j/2 - f/2)/2 for some 0 < g <= 1/2 .
% Rcprtplt(g) plots r ‘s relative error as a function of g at 2^N points.
% (By default, N = 8 .) A good value for g is 0.451 . ((C) W. Kahan)
if (g <= 0 | g > 0.5) , g, error('Keep 0 < g <= 0.5 .'), end
if nargin < 2 , N = 8 ; end
N = round(N) ; % ... Make sure N is an integer.
n = 2^(N-1) ; f = [0: n]'/n ; x = 1+f ; x = [x(1:n); 2*x] ;
r1 = 0.5*(1 + g - 0.5*f) ;
r0 = r1(1:n) + 0.25 ;
r = [r0; r1] ; % ... r approximates 1/sqrt(x)
e = r.*sqrt(x) - 1 ; % ... 1 <= x = (1 + f)*2^j < 4
plot(x, e, x, 0) ;
title('Relative error r*sqrt(X) - 1') ;
xlabel('X') ;

1 1.5 2 2.5 3 3.5 4
-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05
Relative error r*sqrt(X) - 1

X

Reciprt February 23, 1999

Prof. W. Kahan Page 3

Reciproot Iterations of Higher Order:

For an iteration of order k

≥

 2 let q

k

(z) be the polynomial in z obtained from the first k terms
of the Taylor series

 (1 – z)

–1/2

 = 1 + z/2 + 3z

2

/8 + 5z

3

/16 + 35z

4

/128 + 63z

5

/256 + 231z

6

/1024 + 429z

7

/2048 + …

so that q

k

(z) = (1 – z)

–1/2

±

O

(|z|

k

) . Then the iteration that replaces r

≈

 1

/

√

X by

r := r·q

k

(1 – Xr

2

) = 1

/

√

X

±

O

(|1 – Xr

2

|

k

)

/

√

X
is an iteration of order k . Implemented in floating-point, each such iteration costs k+2
multiplications and k add/subtractions. This implies that the iteration’s efficiency is

ultimately

best when the order k minimizes

(

 time for (k+2) multiplications and k add/subtractions

)

/

log(k) ,
which occurs when k is 2, 3 or 4 , depending upon the relative costs of multiplication and
addition/subtraction. For example, one iteration with k = 9 replaces relative error 1 – r

√

X by

1 – r

√

X

≈

±

O(|1 – r

√

X|

9

) at the cost of eleven multiplications and nine add/subtracts; but two
iterations with k = 3 make a roughly similar reduction in the relative error (if it’s small enough)
at the lower cost of ten multiplications and six add/subtractions. However, M. Keynes said
“

ultimately

 we are all dead”; so the optimal order k may be determined by other considerations
when the relative error in r is not very tiny. Anyway, order k > 4 seems implausible.

Further Reading

Articles about computing, rounding and testing square roots will appear in the Proceedings of
the 14th IEEE Symposium on Computer Arithmetic to be held in Adelaide, Australia, 14-16
April 1999. Until then many of these articles can be found posted at

http://www.ecs.umass.edu/ece/arith14/program.html

