## Square Root Without Division

The objective is to compute $Y:=\sqrt{ } X$ for a given positive $X$ without using division operations. All schemes for doing so exploit approximations $r$ to $R:=1 / Y=1 / \sqrt{ }$. Such approximations can be improved arbitrarily, limited only by roundoff, via the Reciproot Iteration:

Given a not too bad approximation $r \approx 1 / \sqrt{ } X$, a better approximation is $\overline{\mathrm{r}}:=\mathrm{r}+\left(1-\mathrm{Xr}^{2}\right) \mathrm{r} / 2$.
"Not too bad" means $0<r \sqrt{ } \mathrm{X}<\sqrt{ } 3$, and then $\overline{\mathrm{r}}$ has almost twice as many correct sig. bits as r has; $\overline{\mathrm{r}} \sqrt{ } \mathrm{X}-1=-(\mathrm{r} \sqrt{ } \mathrm{X}-1)^{2}(\mathrm{r} \sqrt{ } \mathrm{X}+2) / 2$. Each quadratically convergent Reciproot iteration costs two add/subtractions and three or four multiplications, depending upon how multiplication by $1 / 2$ is implemented. Repeated iteration until R has been approximated adequately yields an adequate approximation to $\sqrt{ } \mathrm{X}=\mathrm{RX}$ too at the cost of another multiplication. Combining this multiplication with the last iteration for $\overline{\mathrm{r}}$ to improve $\mathrm{y}:=\mathrm{rX}$ to $\overline{\mathrm{y}}:=\overline{\mathrm{r}} \mathrm{X}=\mathrm{y}+\left(\mathrm{X}-\mathrm{y}^{2}\right) \mathrm{r} / 2$ saves a multiplication and, if $r$ is accurate enough, provides a final $\bar{y} \approx \sqrt{ } X$ almost correctly rounded.

Quadratically convergent Reciproot iteration costs more per iteration than a linearly convergent iteration that uses one fixed approximate $r \approx 1 / \sqrt{ } X$ to improve each of a sequence of unrelated approximations $y \approx \sqrt{ } X$ to $\bar{y}:=y+\left(X-y^{2}\right) r / 2$ at the cost of two add/subtractions and two or three multiplications per iteration. Provided $r$ is close enough to $1 / \sqrt{ } \mathrm{X}$ and y is close enough to $\sqrt{ } X$, the new relative error $\bar{y} / \sqrt{ } X-1=-(y / \sqrt{ } X-1)((y / \sqrt{ } X-1)+(y / \sqrt{ } X+1)(r \sqrt{ } X-1)) / 2$ will be smaller than the old; each repeated iteration will gain about as many correct sig. bits for $\overline{\mathrm{y}}$ as $r$ has. This linearly convergent iteration makes sense when the ultimate accuracy desired is not much better than has already been achieved in $y$.

A first approximation $r \approx 1 / \sqrt{ } X$ is constructed via a small table-look-up. Except for special cases like $X=\infty, X=0$ and subnormal $X$, IEEE 754 formatted $X=2^{k}(1+\cdot f)$ is stored in a floating-point word whose fixed-point interpretation is $Z=(k+B)+\cdot f$, where $0 \leq \cdot f<1$ and $B$ is the exponent bias, an integer like k . A fixed-point constant $\mathrm{C}+\cdot \mathrm{g}$ slightly less than $3 \mathrm{~B} / 2$ can be so chosen, with integer C and fraction $\cdot \mathrm{g}$ lined up around the " binary point" just like Z , that a shift and subtract produce the fixed-point word $S:=\mathrm{C}+\cdot \mathrm{g}-\mathrm{Z} / 2$ whose floating-point interpretation is the desired first approximation r good to at least three sig. bits. For instance, when $\mathrm{B}=127$, set $\mathrm{C}+\cdot \mathrm{g}:=190.451$ to keep the relative error in r within $\pm 0.05$.

For better accuracy, some bits of $\cdot \mathrm{g}$ should be taken from a table indexed by a few bits of Z including the last bit of $\mathrm{k}+\mathrm{B}$ and the leading few bits of $\cdot \mathrm{f}$. Every additional bit of index more than doubles the memory bits needed by the table and contributes about one additional sig. bit to r , whose accuracy will be multiplied by subsequent Reciproot and other iterations. The optimal values for $\cdot \mathrm{g}$ depend somewhat upon the way in which r will figure in subsequent iterations. Tricky details, including how to get $\sqrt{ } \mathrm{X}$ correctly rounded at the end, must be left to another occasion.

```
function e = rcprtplt(g, N) % ... written for MATLAB
% To estimate 1/sqrt((1+f)* (^^j) for j = 0 or 1 and 0<= f< < , try
% the approximation r = (3/2 + g - j/2 - f/2)/2 for some 0<g<= 1/2 .
% Rcprtplt(g) plots r 's relative error as a function of g at 2^N points.
% ( By default, N = 8 .) A good value for g is 0.451. . ((C) W. Kahan)
if (g<= 0 | g > 0.5 ) , g, error('Keep 0<g <= 0.5 .'), end
if nargin < 2 , N = 8 ; end
N = round(N) ; % ... Make sure N is an integer.
n = 2^(N-1) ; f = [0: n]'/n ; x = 1+f ; x = [x(1:n); 2*x] ;
r1 = 0.5*( 1 + g - 0.5*f ) ;
r0 = r1(1:n) + 0.25 ;
r = [r0; r1] ; % ... r approximates 1/sqrt(x)
e = r.*sqrt(x) - 1 ; % ... 1 <= x = (1 + f)* *^j < 4
plot(x, e, x, 0) ;
title('Relative error r*sqrt(X) - 1') ;
xlabel('X') ;
```



## Reciproot Iterations of Higher Order:

For an iteration of order $k \geq 2$ let $q_{k}(z)$ be the polynomial in $z$ obtained from the first $k$ terms of the Taylor series

$$
(1-z)^{-1 / 2}=1+z / 2+3 z^{2} / 8+5 z^{3} / 16+35 z^{4} / 128+63 z^{5} / 256+231 z^{6} / 1024+429 z^{7} / 2048+\ldots
$$

so that $\mathrm{q}_{\mathrm{k}}(\mathrm{z})=(1-\mathrm{z})^{-1 / 2} \pm \mathrm{O}\left(|\mathrm{z}|^{\mathrm{k}}\right)$. Then the iteration that replaces $\mathrm{r} \approx 1 / \sqrt{ } \mathrm{X}$ by

$$
\overline{\mathrm{r}}:=\mathrm{r} \cdot \mathrm{q}_{\mathrm{k}}\left(1-\mathrm{Xr}^{2}\right)=1 / \sqrt{ } \mathrm{X} \pm \mathrm{O}\left(\left|1-\mathrm{Xr}^{2}\right|^{\mathrm{k}}\right) / \sqrt{ } \mathrm{X}
$$

is an iteration of order $k$. Implemented in floating-point, each such iteration costs $k+2$ multiplications and k add/subtractions. This implies that the iteration's efficiency is ultimately best when the order k minimizes
( time for $(\mathrm{k}+2)$ multiplications and k add/subtractions $) / \log (\mathrm{k})$, which occurs when k is 2,3 or 4 , depending upon the relative costs of multiplication and addition/subtraction. For example, one iteration with $k=9$ replaces relative error $1-r \sqrt{ } \mathrm{X}$ by $1-\overline{\mathrm{r}} \sqrt{ } \mathrm{X} \approx \pm \mathrm{O}\left(|1-\mathrm{r} \sqrt{ } \mathrm{X}|^{9}\right)$ at the cost of eleven multiplications and nine add/subtracts; but two iterations with $\mathrm{k}=3$ make a roughly similar reduction in the relative error (if it's small enough ) at the lower cost of ten multiplications and six add/subtractions. However, M. Keynes said "ultimately we are all dead"; so the optimal order k may be determined by other considerations when the relative error in $r$ is not very tiny. Anyway, order $k>4$ seems implausible.

## Further Reading

Articles about computing, rounding and testing square roots will appear in the Proceedings of the 14th IEEE Symposium on Computer Arithmetic to be held in Adelaide, Australia, 14-16 April 1999. Until then many of these articles can be found posted at http://www.ecs.umass.edu/ece/arith14/program.html

