Communication-Avoiding Algorithms
for Linear Algebra and Beyond

Jim Demmel
Math & EECS Departments
UC Berkeley



Why avoid communication? (1/3)

Algorithms have two costs (measured in time or energy):
1. Arithmetic (FLOPS)
2. Communication: moving data between

— levels of a memory hierarchy (sequential case)
— processors over a network (parallel case).

i1




Why avoid communication? (2/3)

* Running time of an algorithm is sum of 3 terms:
— #flops * time_per flop
— # words moved / bandwidth

" communication
— # messages * latency



Why avoid communication? (2/3)

* Running time of an algorithm is sum of 3 terms:
— #flops * time_per flop
— # words moved / bandwidth

" communication
— # messages * latency

* Time_per_flop << 1/ bandwidth << latency



Why avoid communication? (2/3)

* Running time of an algorithm is sum of 3 terms:
— #flops * time_per flop
— # words moved / bandwidth

" communication
— # messages * latency

* Time_per_flop << 1/ bandwidth << latency
e Gaps growing exponentially with time [FOSC]

Annual improvements

Time_per_flop Bandwidth Latency
Network 26% 15%
DRAM 23% 5%

59%




Why avoid communication? (2/3)

* Running time of an algorithm is sum of 3 terms:
— #flops * time_per flop
— # words moved / bandwidth

" communication
— # messages * latency

* Time_per_flop << 1/ bandwidth << latency
e Gaps growing exponentially with time [FOSC]

Annual improvements
Time_per_flop Bandwidth Latency
Network 26% 15%
59%
DRAM 23% 5%

 Avoid communication to save time



Why Minimize Communication? (3/3)

10000
1000
(7, ]
]
=
L 100 -
o
[-» m now (45nm)
10 - I m 2018 (11nm in this case)
1N l
"0

<<\z X ,o ,o q? o"' c.,
Qg'% 00 0(\ . Q\Q oo(‘ ("*

2 Source: John Shalf, LBL



Picojoules

Why Minimize Communication? (3/3)

10000

1000 Off-chip
100 -

® now (45nm)

10 - ® 2018 (11nm in this case)
1 —
X & L L & & L
QY & & & &F & L
SO & & & O &
& & N & &
S I S S
o @ Source: John Shalf, LBL



Why Minimize Communication? (3/3)

Minimize communication to save energy

10000
1000 Off-chip
7]
L.
3
L 100 -
o
=
% ® now (45nm)
10 - ® 2018 (11nm in this case)
1 -
X ¢ R LK & L
F ¥ & & &
L P & & O &S
© & & N & &
NS o
o @ Source: John Shalf, LBL



Alternative Cost Model for Algorithms?



Alternative Cost Model for Algorithms?

Total distance moved by beads on an abacus




Goals

* Redesign algorithms to avoid communication
e Between all memory hierarchy levels
e [1 < L2 <> DRAM <= network, etc
e Attain lower bounds if possible
e Current algorithms often far from lower bounds
e Large speedups and energy savings possible



Sample Speedups

Up to 12x faster for 2.5D matmul on 64K core IBM BG/P

Up to 3x faster for tensor contractions on 2K core Cray XE/6

Up to 6.2x faster for All-Pairs-Shortest-Path on 24K core Cray CEG

Up to 2.1x faster for 2.5D LU on 64K core IBM BG/P

Up to 11.8x faster for direct N-body on 32K core IBM BG/P

Up to 13x faster for Tall Skinny QR on Tesla C2050 Fermi NVIDIA GPU
Up to 6.7x faster for symeig(band A) on 10 core Intel Westmere

Up to 2x faster for 2.5D Strassen on 38K core Cray XT4

Up to 4.2x faster for MiniGMG benchmark bottom solver,
using CA-BiCGStab (2.5x for overall solve)

— 2.5x / 1.5x for combustion simulation code



President Obama cites Communication-Avoiding Algorithms in
the FY 2012 Department of Energy Budget Request to Congress:

“New Algorithm Improves Performance and Accuracy on Extreme-Scale
Computing Systems. On modern computer architectures, communication
between processors takes longer than the performance of a floating
point arithmetic operation by a given processor. ASCR researchers have
developed a new method, derived from commonly used linear algebra
methods, to minimize communications between processors and the
memory hierarchy, by reformulating the communication patterns
specified within the algorithm. This method has been implemented in the
TRILINOS framework, a highly-regarded suite of software, which provides
functionality for researchers around the world to solve large scale,
complex multi-physics problems.”

FY 2010 Congressional Budget, Volume 4, FY2010 Accomplishments, Advanced Scientific Computing
Research (ASCR), pages 65-67.



President Obama cites Communication-Avoiding Algorithms in
the FY 2012 Department of Energy Budget Request to Congress:

“New Algorithm Improves Performance and Accuracy on Extreme-Scale
Computing Systems. On modern computer architectures, communication
between processors takes longer than the performance of a floating
point arithmetic operation by a given processor. ASCR researchers have
developed a new method, derived from commonly used linear algebra
methods, to minimize communications between processors and the
memory hierarchy, by reformulating the communication patterns
specified within the algorithm. This method has been implemented in the
TRILINOS framewollk, a highly-regarded suite of software, which provides
functionality for redearchers around the world to solve large scale,

complex multi-physjcs problems.”

FY 2010 Congressional Blidget, Volume 4, FY2010 Accomplishments, Advanced Scientific Computing

CA-GMRES (Hoemmen, Mohiyuddin, Yelick, JD)
“Tall-Skinny” QR (Grigori, Hoemmen, Langou, JD)

Research (ASCR), pages 65-67.



Outline

Survey state of the art of CA (Comm-Avoiding) algorithms
— Review previous Matmul algorithms

— CA O(n3) 2.5D Matmul

— TSQR: Tall-Skinny QR

— CA Strassen Matmul

Beyond linear algebra

— Lower bound proof for linear algebra

— Extending lower bounds to “any algorithm with arrays”

— Progress toward optimal algorithms

CA-Krylov methods
Conclusions



Outline

Survey state of the art of CA (Comm-Avoiding) algorithms
— Review previous Matmul algorithms

— CA O(n3) 2.5D Matmul

— TSQR: Tall-Skinny QR

— CA Strassen Matmul

Beyond linear algebra

— Lower bound proof for linear algebra

— Extending lower bounds to “any algorithm with arrays”

— Progress toward optimal algorithms

CA-Krylov methods
Conclusions



Summary of CA Linear Algebra

* “Direct” Linear Algebra



Summary of CA Linear Algebra

* “Direct” Linear Algebra

* Lower bounds on communication for linear algebra
problems like Ax=b, least squares, Ax = Ax, SVD, etc



Summary of CA Linear Algebra

* “Direct” Linear Algebra

* Lower bounds on communication for linear algebra
problems like Ax=b, least squares, Ax = Ax, SVD, etc

* Mostly not attained by algorithms in standard libraries



Summary of CA Linear Algebra

* “Direct” Linear Algebra

* Lower bounds on communication for linear algebra
problems like Ax=b, least squares, Ax = Ax, SVD, etc

* Mostly not attained by algorithms in standard libraries

* New algorithms that attain these lower bounds

* Being added to libraries: Sca/LAPACK, PLASMA,
MAGMA

* Large speed-ups possible



Summary of CA Linear Algebra

* “Direct” Linear Algebra

* Lower bounds on communication for linear algebra
problems like Ax=b, least squares, Ax = Ax, SVD, etc

* Mostly not attained by algorithms in standard libraries

* New algorithms that attain these lower bounds

* Being added to libraries: Sca/LAPACK, PLASMA,
MAGMA

* Large speed-ups possible

* Autotuning to find optimal implementation



Summary of CA Linear Algebra

* “Direct” Linear Algebra

* Lower bounds on communication for linear algebra
problems like Ax=b, least squares, Ax = Ax, SVD, etc

* Mostly not attained by algorithms in standard libraries

* New algorithms that attain these lower bounds

* Being added to libraries: Sca/LAPACK, PLASMA,
MAGMA

* Large speed-ups possible
* Autotuning to find optimal implementation

* Ditto for “Iterative” Linear Algebra



Lower bound for all “n3-like” linear algebra
e Let M = “fast” memory size (per processor)

#words_moved (per processor) = Q(#flops (per processor) / M/2)



Lower bound for all “n3-like” linear algebra
e Let M = “fast” memory size (per processor)

#words_moved (per processor) = Q(#flops (per processor) / M/2)

 Parallel case: assume either load or memory balanced



Lower bound for all “n3-like” linear algebra
e Let M = “fast” memory size (per processor)

#words_moved (per processor) = Q(#flops (per processor) / M/2)

 Parallel case: assume either load or memory balanced

 Holds for
— Matmul



Lower bound for all “n3-like” linear algebra
e Let M = “fast” memory size (per processor)

#words_moved (per processor) = Q(#flops (per processor) / M/2)

 Parallel case: assume either load or memory balanced

 Holds for
— Matmul, BLAS, LU, QR, eig, SVD, tensor contractions, ...

— Some whole programs (sequences of these operations,
no matter how individual ops are interleaved, eg AX)

— Dense and sparse matrices (where #flops << n3)
— Sequential and parallel algorithms
— Some graph-theoretic algorithms (eg Floyd-Warshall)



Lower bound for all “n3-like” linear algebra
e Let M = “fast” memory size (per processor)

#words_moved (per processor) = Q(#flops (per processor) / M/2)

#fmessages_sent 2 #twords_moved / largest_message_size

 Parallel case: assume either load or memory balanced

 Holds for
— Matmul, BLAS, LU, QR, eig, SVD, tensor contractions, ...

— Some whole programs (sequences of these operations,
no matter how individual ops are interleaved, eg AX)

— Dense and sparse matrices (where #flops << n3)
— Sequential and parallel algorithms
— Some graph-theoretic algorithms (eg Floyd-Warshall)



Lower bound for all “n3-like” linear algebra
e Let M = “fast” memory size (per processor)

#words_moved (per processor) = Q(#flops (per processor) / M/2)

#messages_sent (per processor) = Q(#flops (per processor) / M3/2)

 Parallel case: assume either load or memory balanced

 Holds for
— Matmul, BLAS, LU, QR, eig, SVD, tensor contractions, ...

— Some whole programs (sequences of these operations,
no matter how individual ops are interleaved, eg AX)

— Dense and sparse matrices (where #flops << n3)
— Sequential and parallel algorithms
— Some graph-theoretic algorithms (eg Floyd-Warshall)



Lower bound for all “n3-like” linear algebra
e Let M = “fast” memory size (per processor)

#words_moved (per processor) = Q(#flops (per processor) / M/2)

#messages_sent (per processor) = Q(#flops (per processor) / M3/2)

 Parallel case: assume either load or memory balanced

 Holds for
— Matmul, BLAS, LU, QR, eig, SVD, tensor contractions, ...

— Some whole programs (sequences of these operations,
no matter how individual ops are interleaved, eg AX)

SIAM SIAG/Linear Algebra Prize, 2012
Ballard, D., Holtz, Schwartz



Can we attain these lower bounds?

Do conventional dense algorithms as implemented
in LAPACK and ScaLAPACK attain these bounds?

— Often not
If not, are there other algorithms that do?

— Yes, for much of dense linear algebra, APSP

— New algorithms, with new numerical properties,
new ways to encode answers, new data structures

— Not just loop transformations (need those too!)

Only a few sparse algorithms so far
— Ex: Matmul of “random” sparse matrices
— Ex: Sparse Cholesky of matrices with “large” separators

Lots of work in progress



Outline

Survey state of the art of CA (Comm-Avoiding) algorithms
— Review previous Matmul algorithms

— CA O(n3) 2.5D Matmul

— TSQR: Tall-Skinny QR

— CA Strassen Matmul

Beyond linear algebra

— Lower bound proof for linear algebra

— Extending lower bounds to “any algorithm with arrays”

— Progress toward optimal algorithms

CA-Krylov methods
Conclusions



Naive Matrix Multiply

{implements C=C + A*B}
fori=1ton

forj=1ton

fork=1ton
C(i,j) = C(i,j) + A(i,k) * B(k,j)

I
o=
*

33



Naive Matrix Multiply

{implements C=C + A*B}
fori=1ton
{read row i of A into fast memory}
forj=1ton
{read C(i,j) into fast memory}
{read column j of B into fast memory}
fork=1ton
C(i,j) = C(i,j) + A(i,k) * B(k,j)
{write C(i,j) back to slow memory}

I
o=
*

34



Naive Matrix Multiply

{implements C=C + A*B}
P

fori=1ton
{read row i of A into fast memory} ... n?reads altogether
forj=1ton
{read C(i,j) into fast memory} ... N? reads altogether
{read column j of B into fast memory} ... n3reads altogether
fork=1ton
C(i,j) = C(i,j) + A(i,k) * B(k,j)
{write C(i,j) back to slow memory} ... % writes altogether
C(i.j) C(i.j) All)
O [] ]

I
o=
*

n3 + 3n? reads/writes altogether — dominates 2n3 arithmetic

35



Blocked (Tiled) Matrix Multiply

Consider A,B,C to be n/b-by-n/b matrices of b-by-b subblocks where
b is called the block size; assume 3 b-by-b blocks fit in fast memory

fori=1ton/b
forj=1ton/b

{read block C[i,j] into fast memory}

fork=1ton/b
{read block A[i,k] into fast memory}
{read block B[k,j] into fast memory}
C[i,jl = Cli,j] + Ali,k] * B[k,j] {do a matrix multiply on b-by-b blocks}

{write block Cl[i,j] back to slow memory}

Clij Cij | | ALK |
b-by-b _{—>0H ||, [ . |
block . Blk,]]

1|
+

36




Blocked (Tiled) Matrix Multiply

Consider A,B,C to be n/b-by-n/b matrices of b-by-b subblocks where
b is called the block size; assume 3 b-by-b blocks fit in fast memory

fori=1ton/b
forj=1ton/b

{read block C[i,j] into fast memory} ... b2 % (n/b)? = n? reads

fork=1ton/b
{read block A[i,k] into fast memory} ... b%x(n/b)3=n3/b reads
{read block B[k,j] into fast memory} ... b%x (n/b)3=n3/b reads
C[i,jl = Cli,j] + Ali,k] * B[k,j] {do a matrix multiply on b-by-b blocks}

{write block C[i,j] back to slow memory} ... b? x (n/b)? = n? writes

Clij Cij | | ALK
b-by-b _{—>0H ||, [ . |
block . Blk,]]

1|
+

2n3/b + 2n? reads/writes << 2n? arithmetic - Faster!




Does blocked matmul attain lower bound?

* Recall: if 3 b-by-b blocks fit in fast memory of
size M, then #reads/writes = 2n3/b + 2n?

* Make b as large as possible: 3b? <M, so
#ireads/writes > 31/2n3/M1/2 + 2n2

 Attains lower bound = Q (#flops / M¥/2)



Does blocked matmul attain lower bound?

Recall: if 3 b-by-b blocks fit in fast memory of
size M, then #reads/writes = 2n3/b + 2n?

Make b as large as possible: 3b% <M, so
#ireads/writes > 31/2n3/M1/2 + 2n2

Attains lower bound = Q (#flops / M1/2)

But what if we don’t know M?
Or if there are multiple levels of fast memory?

Can use “Cache Oblivious” algorithm (divide and
conquer)



SUMMA- n x n matmul on PY2x p1/2 grid

(nearly) optimal using minimum memory M=0(n?/P)

k j /B(kj)

E—
/f\\ * l - <— Brow
: “ VN (i)

rd

g T

A(i,k) 7

Acol

For k=0 to n/b-1 ... b = block size = #cols in A(i,k) = #rows in B(k,j)
for alli =1 to P12
owner of A(i,k) broadcasts it to processor row i
forallj=1to P12
owner of B(k,j) broadcasts it to processor column k
Receive A(i,k) into Acol
Receive B(k,j) into Brow

C_myproc = C_myproc + Acol * Brow
40




Summary of dense parallel algorithms
attaining communication lower bounds

Assume nxn matrices on P processors
*  Minimum Memory per processor = M = 0O(n?/ P)
 Recall lower bounds:
#words_moved = Q((n3/P) /M¥2) = Q(n2/ PY2)
#messages = Q((n3/P) /M32) = Q(PV2)



Summary of dense parallel algorithms
attaining communication lower bounds

Assume nxn matrices on P processors
*  Minimum Memory per processor = M = 0O(n?/ P)
 Recall lower bounds:
#words_moved = Q((n3/P) /M¥Y2) = Q(n2/ PV2)
#messages = Q((n3/P) /M32) = Q(PV2)
* Does ScalAPACK attain these bounds?
* For #words_moved: mostly, except nonsym. Eigenproblem
* For #messages: asymptotically worse, except Cholesky
 New algorithms attain all bounds, up to polylog(P) factors
* Cholesky, LU, QR, Sym. and Nonsym eigenproblems, SVD
 Needed to replace partial pivoting in LU
* Need randomization for Nonsym eigenproblem (so far)



Summary of dense parallel algorithms
attaining communication lower bounds

Assume nxn matrices on P processors
*  Minimum Memory per processor = M = 0O(n?/ P)
 Recall lower bounds:
#words_moved = Q((n3/P) /M¥Y2) = Q(n2/ PV2)
#messages = Q((n3/P) /M32) = Q(PV2)
* Does ScalAPACK attain these bounds?
* For #words_moved: mostly, except nonsym. Eigenproblem
* For #messages: asymptotically worse, except Cholesky
 New algorithms attain all bounds, up to polylog(P) factors
* Cholesky, LU, QR, Sym. and Nonsym eigenproblems, SVD
 Needed to replace partial pivoting in LU
* Need randomization for Nonsym eigenproblem (so far)

Can we do Better?



Can we do better?

 Aren’t we already optimal?

 Why assume M = O(n?/p), i.e. minimal?
— Lower bound still true if more memory
— Can we attain it?



Can we do better?

 Aren’t we already optimal?

* Why assume M = O(n?/p), i.e. minimal?
— Lower bound still true if more memory
— Can we attain it?

e Special case: “3D Matmul”
— Uses M = O(n2/p%/3)

— Dekel, Nassimi, Sahni [81], Bernsten [89],
Agarwal, Chandra, Snir [90], Johnson [93],
Agarwal, Balle, Gustavson, Joshi, Palkar [95]

 Not always p/3 times as much memory available...




Outline

Survey state of the art of CA (Comm-Avoiding) algorithms
— Review previous Matmul algorithms

— CA O(n3) 2.5D Matmul

— TSQR: Tall-Skinny QR

— CA Strassen Matmul

Beyond linear algebra

— Lower bound proof for linear algebra

— Extending lower bounds to “any algorithm with arrays”

— Progress toward optimal algorithms

CA-Krylov methods
Conclusions



2.5D Matrix Multiplication

* Assume can fit cn?/P data per processor, c > 1
* Processors form (P/c)¥2 x (P/c)¥2? x c grid

(P/c)*
s\

Q\c,\ _
\ % Example: P= 32, c=2
C




2.5D Matrix Multiplication

* Assume can fit cn?/P data per processor, c > 1

* Processors form (P/c)¥2 x (P/c)¥2? x c grid

J

=774

Initially P(i,j,0) owns A(i,j) and B(i,j)
each of size n(c/P)¥2 x n(c/P)*/?



2.5D Matrix Multiplication

* Assume can fit cn?/P data per processor, c > 1
* Processors form (P/c)¥2 x (P/c)¥2? x c grid

J

Initially P(i,j,0) owns A(i,j) and B(i,j)
each of size n(c/P)¥2 x n(c/P)*/?

(1) P(i,j,0) broadcasts A(i,j) and B(i,j) to P(i,j,k)
(2) Processors at level k perform 1/c-th of SUMMA, i.e. 1/c-th of Z_ A(i,m)*B(m,j)
(3) Sum-reduce partial sums Z . A(i,m)*B(m,j) along k-axis so P(i,j,0) owns C(i,j)



2.5D Matmul on BG/P, 16K nodes / 64K cores

Matrix multiplication on 16,384 nodes of BG/P

100 I I
[ 2.5D MM s
2D MM

80 [ 2.7X faster ]

60 — Using c=16 matrix copies

40 b

Percentage of machine peak

12X faster
ol - _-
o _

8192 131072



2.5D Matmul on BG/P, 16K nodes / 64K cores

c = 16 copies
Matrix multiplication on 16,384 nodes of BG/P

e 1.4 ¢ | | 1

Y X communication -
3 12F idle -
5 = 95% reduction in comm computation ==
N 1 - -
© N
E 08F 3
(@] L i
c N i
) 6 F ~
g %0 :
= 04 F 2.7x faster E
9 - i
= - .
§ 0.2 12x faster .
LIJ -

0
2, 2, ZN ZN
<979 879 76’7 737
0 .SO 'y eo £ es



2.5D Matmul on BG/P, 16K nodes / 64K cores

c =16 copies
Matrix multiplication on 16,384 nodes of BG/P

e 1.4 ¢ | | 1 ]
Y X communication -
> 12F idle :
5 = 95% reduction in comm computation ==
N 1 - -
© - N
E 08F -
(@] L i
c N i
GEJ 0.6 -
T o4 _ 2.7x faster _3
S :
: -
n :
0
/)\6’7 0\87 \73 \73
9{39 9{39 70)9 70)9
° % <0 TRy

%
Distinguished Paper Award, EuroPar’11 (Solomonik, D.)

SC’11 paper by Solomonik, Bhatele, D.



Perfect Strong Scaling —in Time and Energy



Perfect Strong Scaling —in Time and Energy

* Every time you add a processor, you should use its memory M too
 Start with minimal number of procs: PM = 3n?
* Increase P by a factor of c = total memory increases by a factor of c



Perfect Strong Scaling —in Time and Energy

Every time you add a processor, you should use its memory M too
Start with minimal number of procs: PM = 3n?

Increase P by a factor of ¢ =» total memory increases by a factor of c
Notation for timing model:

— V1, By, a; = secs per flop, per word_moved, per message of size m



Perfect Strong Scaling —in Time and Energy

Every time you add a processor, you should use its memory M too
Start with minimal number of procs: PM = 3n?

Increase P by a factor of ¢ =» total memory increases by a factor of c
Notation for timing model:

— V1, By, a; = secs per flop, per word_moved, per message of size m
T(cP) = n3/(cP) [ yr+ By/MY2 + ar/(mMY/2) ]



Perfect Strong Scaling —in Time and Energy

Every time you add a processor, you should use its memory M too
Start with minimal number of procs: PM = 3n?
Increase P by a factor of ¢ =» total memory increases by a factor of c
Notation for timing model:
— V1, By, a; = secs per flop, per word_moved, per message of size m
T(cP) = n3/(cP) [ yr+ By/MY2 + ar/(mMY/2) ]
=T(P)/c



Perfect Strong Scaling —in Time and Energy

Every time you add a processor, you should use its memory M too
Start with minimal number of procs: PM = 3n?

Increase P by a factor of ¢ =» total memory increases by a factor of c
Notation for timing model:

— V1, By, a; = secs per flop, per word_moved, per message of size m
T(cP) = n3/(cP) [ yr+ By/MY2 + ar/(mMY/2) ]

=T(P)/c

Notation for energy model:

— Ve, Be, a¢ = joules for same operations

— O = joules per word of memory used per sec

— & = joules per sec for leakage, etc.



Perfect Strong Scaling —in Time and Energy

Every time you add a processor, you should use its memory M too
Start with minimal number of procs: PM = 3n?

Increase P by a factor of ¢ =» total memory increases by a factor of c
Notation for timing model:

— V1, By, a; = secs per flop, per word_moved, per message of size m
T(cP) = n3/(cP) [ yr+ By/MY2 + ar/(mMY/2) ]

=T(P)/c

Notation for energy model:

— Ve, Be, a¢ = joules for same operations

— O = joules per word of memory used per sec

— & = joules per sec for leakage, etc.

E(cP) = cP { n3/(cP) [ v+ Be/MY2 + o/ (mMY/2) ] + §:MT(cP) + €. T(cP) }



Perfect Strong Scaling —in Time and Energy

Every time you add a processor, you should use its memory M too
Start with minimal number of procs: PM = 3n?
Increase P by a factor of ¢ =» total memory increases by a factor of c
Notation for timing model:
— V1, By, a; = secs per flop, per word_moved, per message of size m
T(cP) = n3/(cP) [ yr+ By/MY2 + ar/(mMY/2) ]
=T(P)/c
Notation for energy model:
— Ve, Be, a¢ = joules for same operations
— O = joules per word of memory used per sec
— & = joules per sec for leakage, etc.
E(cP) = cP { n3/(cP) [ v+ Be/MY2 + o/ (mMY/2) ] + §:MT(cP) + €. T(cP) }
= E(P)



Perfect Strong Scaling —in Time and Energy

Every time you add a processor, you should use its memory M too
Start with minimal number of procs: PM = 3n?
Increase P by a factor of ¢ =» total memory increases by a factor of c
Notation for timing model:
— V1, By, a; = secs per flop, per word_moved, per message of size m
T(cP) = n3/(cP) [ yr+ By/MY2 + ar/(mMY/2) ]
=T(P)/c
Notation for energy model:
— Ve, Be, a¢ = joules for same operations
— O = joules per word of memory used per sec
— & = joules per sec for leakage, etc.
E(cP) = cP { n3/(cP) [ v+ Be/MY2 + o/ (mMY/2) ] + §:MT(cP) + €. T(cP) }
= E(P)
Extends to N-body, Strassen, ...
Can prove lower bounds on needed network (eg 3D torus for matmul)



Outline

Survey state of the art of CA (Comm-Avoiding) algorithms
— Review previous Matmul algorithms

— CA O(n3) 2.5D Matmul

— TSQR: Tall-Skinny QR

— CA Strassen Matmul

Beyond linear algebra

— Lower bound proof for linear algebra

— Extending lower bounds to “any algorithm with arrays”

— Progress toward optimal algorithms

CA-Krylov methods
Conclusions



TSQR: QR of a Tall, Skinny matrix

N
J

=

=

=

=

-
w
N



TSQR: QR of a Tall, Skinny matrix

N

-

=

=

N

J

HE

4 N
Qo Rog

O*10 RlO
QZO RZO

Ko~3o R30 Y,

64



TSQR: QR of a Tall, Skinny matrix

N

-

=

=

=

=

N

J

4 N
Qo Rog

O*10 RlO
QZO RZO

Ko~3o R30 Y,

s N
Q0
QZO
_ Qp

65




TSQR: QR of a Tall, Skinny matrix

N

=

=

=

-

=

N

J

/’
QOO ROO

\

O*10 RlO

QZO RZO

e N

Ko~3o R30 Y,

C101 ROl

:

Qll Rll

|

s N
Q0
QZO
_ Qp




TSQR: QR of a Tall, Skinny matrix

N

~
Wo /Qoo Rag A /Qoo A
W, _ Qi Ryg _ Q,,
W, Q0 Ryo Qy
\W3 ) \Qso R30 _J \_ Qs %
e N
Roo
() (e
R2o Q1 Ry Q,, R11
N Rso J




TSQR: QR of a Tall, Skinny matrix

N

68

~
Wo /Qoo Rag A /Qoo A
W, _ Qi Ryg _ Q,,
W, Q0 Ryo Qy
\W3 ) \Qso R30 _J \_ Qs %
e N
Roo
() (e
R2o Q1 Ry Q,, R11
N Rso J




TSQR: QR of a Tall, Skinny matrix

N

69

-
Wo /Qoo Rag A /Qoo
W, _ Qi Ryg _ Q
W, Q0 Ryo Qy
\W3 ) \Qso R30 U Qyp
r B
Roo
Rig _ Qg1 Rys _ Qo , _Ro_'L_
Ryo {Qn Rll} ] [ Qll} (Rll
- Rso J

e N

ROO
Rl
RZ

o

o

R
. 30



TSQR: QR of a Tall, Skinny matrix

e N e N
Wo /Qoo Rag A /Qoo A Rao
W - W, _ Qi Ryg _ Q | Ry
W, Q0 Ryo Qy Ryo
(W3 ) ((QpRyp ) U Qs ) (Rso
r B
Roo

Rig _ Qg1 Rys _ Qo _Rﬂl_
Rzo O~11 R11 Qll R11

o] o

Output = { Qqy, Q0, Quor Qzr Qg Qy1, Qs Ry }

0




TSQR: An Architecture-Dependent Algorithm

Wy, | - Roo > R
01
Parallel: - wl - glo T R,
2 —> 20 — /
Wi | — Ry T Riz




TSQR: An Architecture-Dependent Algorithm

Wy, | - Roo > R
01
Parallel: - wl - glo T R,
2 —> 20 — /
Wi | — Ry T Riz

Sequential: -

SSS=
Qm
X




TSQR: An Architecture-Dependent Algorithm

Wy, | - Roo > R
01
Parallel: - wl - glo T R,
2 —> 20 — /
Wi | — Ry T Riz

Sequential: -

SSS=
Qm
X

Dual Core: -

SSS=
y
Hm
Qm



TSQR: An Architecture-Dependent Algorithm

Wy, | - Roo > R
01
Parallel: - wl - glo T R,
2 —> 20 — /
Wi | — Ry T Riz

Sequential: -

SSS=
Qm
X

Wo | — Roo — R

Dual Core:  w=| Wi | =™ Ry —>"00 73 o
W, > Ry 2Ry
W N~ %
L3 ~ Ry

Multicore / Multisocket / Multirack / Multisite / Out-of-core: ?



TSQR: An Architecture-Dependent Algorithm

Wy, | - Roo > R
01
Parallel: - wl - glo T R,
2 —> 20 — /
Wi | — Ry T Riz

Sequential: -

SSS=
Qm
X

Wo | — Roo — R

Dual Core:  w=| Wi | =™ Ry —>"00 73 o
W, > Ry 2Ry
W N~ %
L3 ~ Ry

Multicore / Multisocket / Multirack / Multisite / Out-of-core: ?

Can choose reduction tree dynamically



TSQR Performance Results

e Parallel Speedups
— Up to 8x on 8 core Intel Clovertown
— Up to 6.7x on 16 processor Pentium cluster
— Up to 4x on 32 processor IBM Blue Gene
— Up to 13x on NVidia GPU
— Up to 4x on 4 cities vs 1 city (Dongarra, Langou et al)
— Only 1.6x slower on Cloud than just accessing data twice
(Gleich and Benson)
* Sequential Speedup
— “Infinite” for out-of-core on PowerPC laptop

e SVD costs about the same
* Joint work with Grigori, Hoemmen, Langou, Anderson, Ballard, Keutzer, others



Outline

Survey state of the art of CA (Comm-Avoiding) algorithms
— Review previous Matmul algorithms

— CA O(n3) 2.5D Matmul

— TSQR: Tall-Skinny QR

— CA Strassen Matmul

Beyond linear algebra

— Lower bound proof for linear algebra

— Extending lower bounds to “any algorithm with arrays”

— Progress toward optimal algorithms

CA-Krylov methods
Conclusions



Communication Lower Bounds for
Strassen-like matmul algorithms



Communication Lower Bounds for
Strassen-like matmul algorithms

Classical
O(n3) matmul:

#words _moved =
Q (M(n/M*/2)3/P)




Communication Lower Bounds for
Strassen-like matmul algorithms

Classical Strassen’s
O(n3) matmul: O(n'8’) matmul:
#words _moved = #words _moved =
Q (M(n/MY2)3/P) | | Q (M(n/MY/2)7/P)




Communication Lower Bounds for
Strassen-like matmul algorithms

Classical Strassen’s Strassen-like
O(n3) matmul: O(n'87) matmul: O(n“) matmul:
#words _moved = #words _moved = #words _moved =
Q (M(n/M¥2)3/P) | | Q (M(n/MY2)'87/P) | | Q (M(n/M¥/2)2/P)




Communication Lower Bounds for
Strassen-like matmul algorithms

Classical Strassen’s Strassen-like
O(n3) matmul: O(n'87) matmul: O(n“) matmul:
#words _moved = #words _moved = #words _moved =
Q (M(n/M¥2)3/P) | | Q (M(n/MY2)'87/P) | | Q (M(n/M¥/2)2/P)

* Proof: graph expansion (different from classical matmu
— Strassen-like: DAG must be “regular” and connected

* Extends up to M = n? / p¥/®




Communication Lower Bounds for
Strassen-like matmul algorithms

Classical Strassen’s Strassen-like
O(n3) matmul: O(n'87) matmul: O(n“) matmul:
#words _moved = #words _moved = #words _moved =
Q (M(n/M¥2)3/P) | | Q (M(n/MY2)'87/P) | | Q (M(n/M¥/2)2/P)

* Proof: graph expansion (different from classical matmu
— Strassen-like: DAG must be “regular” and connected

e Extends up to M = n? / p2/w
* Best Paper Prize (SPAA’11), Ballard, D., Holtz, Schwartz,
also in JACM



Communication Lower Bounds for
Strassen-like matmul algorithms

Classical Strassen’s Strassen-like
O(n3) matmul: O(n'87) matmul: O(n“) matmul:
#words _moved = #words _moved = #words _moved =
Q (M(n/M¥2)3/P) | | Q (M(n/MY2)'87/P) | | Q (M(n/M¥/2)2/P)

Proof: graph expansion (different from classical matmu

— Strassen-like: DAG must be “regular” and connected
Extends up to M = n2 / p%/@

Best Paper Prize (SPAA’11), Ballard, D., Holtz, Schwartz,
also in JACM
Is the lower bound attainable?




50

w H
o o

Effective GFLOPS per node
N
o

10

Performance Benchmarking, Strong Scaling Plot
Franklin (Cray XT4) n = 94080

CAP'S —r—'
2.5D-Strassen —»— -

ﬁ'\,,-r - 2D-Strassen ---e---
Strassen-2D ---=u---

2.5D Classical
ScalLAPACK

Speedups: 24%-184%

(over previous Strassen-based algorithms)

P=49

P=343 P=2401



D
o

Performance Benchmarking, Strong Scaling Plot
Franklin (Cray XT4) n = 94080

w
o

Effective GFLOPS per node
N
o

10

I CAP'S ——
- 2.5D-Strassen —»—
' : \r . 2D-Strassen ---e---

Strassen-2D ---#---
2.5D Classical —8— 1
ScalAPACK ---&---
._...::-..,_.. ..................................................................................................................
e el absolute maximum for all classical algorithms
3 Cm. =
- Invited to appear as :
Research Highlight in CACM
i Sl R ]
R ©----=--- ©-----0-O-g._______ O-._ i N .
[>T S e~~e.,e___e\~_~e _______ 0--\--:-5-‘-\-:;:&
\:§"ﬁ
i Speedups: 24%-184% }
(over previous Strassen-based algorithms)
| L | L |
P=49 P=343 P=2401



Outline

Survey state of the art of CA (Comm-Avoiding) algorithms
— Review previous Matmul algorithms

— CA O(n3) 2.5D Matmul

— TSQR: Tall-Skinny QR

— CA Strassen Matmul

Beyond linear algebra

— Lower bound proof for linear algebra

— Extending lower bounds to “any algorithm with arrays”

— Progress toward optimal algorithms

CA-Krylov methods
Conclusions



Recall optimal sequential Matmul

* Naive code
for i=1:n, for j=1:n, for k=1:n,
C(i,j)+=A(i,k)*B(k,j)



Recall optimal sequential Matmul

* Naive code
for i=1:n, for j=1:n, for k=1:n,
C(i,j)+=A(i,k)*B(k,j)

 “Blocked” code
fori=1:n/b, forj=1:n/b, fork=1:n/b
Cli,j]+=A[i,k]*B[k,j] ... bxb matmul



Recall optimal sequential Matmul

Naive code
for i=1:n, for j=1:n, for k=1:n,
C(i,j)+=A(i,k)*B(k,j)

“Blocked” code
fori=1:n/b, forj=1:n/b, fork=1:n/b
Cli,j]+=A[i,k]*B[k,j] ... bxb matmul

Thm: Picking b = M/2 attains lower bound:
#words_moved = Q(n3/M*/2)
Where does 1/2 come from?



Where do lower and matching upper bounds on
communication come from? (1/3)

Originally for C = A*B by Irony/Tiskin/Toledo (2004)
* Proof idea

— Suppose we can upper bound #operations doable with
data in fast memory of size M, by #operations < G

— So to do F = #total _operations, need to fill fast memory
at least F/G times, and so #words_moved > MF/G

 Hard part: finding G



Where do lower and matching upper bounds on
communication come from? (1/3)

* Originally for C = A*B by Irony/Tiskin/Toledo (2004)
* Proof idea

— Suppose we can upper bound #operations doable with
data in fast memory of size M, by #operations < G

— So to do F = #total _operations, need to fill fast memory
at least F/G times, and so #words_moved > MF/G

 Hard part: finding G
* Harder part: Attaining lower bound

— Need to “block” all operations to perform ~G operations
on every chunk of M words of data



Proof of communication Ioweit bound (2/3)

“C face” T
/ / c3 [/
/ / /
c(1,1)
=| V]
A(1,3) 3/
= .
A12) |95 J
ik
=
A(2,1) A(1,1) & / 0‘2
LY
| < »‘@

“A face”

93



Proof of communication Ioweit bound (2/3)

“C face”

Cube representing
C(1,1) +=A(1,3)-B(3,1)

/ / c@3)
Yy s,

c(1,1) //
“l=| |/
A(1,3) 3/
= |/ .
A12) |95 J
"/ =
=|
A(2,1) A(1,1) & / oé'
LY
| < k‘@

“A face”

94



Proof of communication IoweE bound (2/3)

“C face”
Cube representing
C(1,1) += A(1,3)-B(3,1)
/ /S ce3) [/ /
/ / e
N
“l=| |
A(1,3) E/
= |V .
A12) |95 J
“/ =
~|
A(2,1) A(1,1) @ / c};’
LY
| < k‘@
“A face”

* If we have at most M “A squares”, M “B squares”, and M “C squares”,

how many cubes G can we have? 95



Proof of communication lower bound (3/3)

G = # cubes in black box with
side lengths x, y and z

= Volume of black box

= X-y-Z

=(xz - zy - yx)1/?

= (#Aos - #Bos - #Cos )1/2

<M 3/2



Proof of communication lower bound (3/3)
Ak

C projection

«X

..,.‘.‘."‘ ...."‘."‘ .:,~,.~" R ~ . (\
“—> . 'e(')oo /
(0\
X Q,Q

A projection

i <

(i,k) is in A projection if (i,j,k) in 3D set
(j,k) is in B projection if (i,j,k) in 3D set

G = # cubes in black box with
CUDES In BIaCK DOX WI (i,j) is in C projection if (i,j,k) in 3D set

side lengths x, y and z
= Volume of black box
= X-y-Z
=(xz-zy - yx)1/2
= (#Aos - #Bos - #Cos )1/2
<M 3/2

Thm (Loomis & Whitney, 1949)
G = # cubesin 3D set = Volume of 3D set
< (area(A projection) - area(B projection) -
area(C projection)) 1/2
<M 3/2



New theorem, applied to Matmul
(Christ, D., Knight, Scanlon, Yelick)

e fori=1:n, for j=1:n, for k=1:n, C(i,j) += A(i,k)*B(k,j)

 Record array indices in matrix A
i ]k

1 0 1)

A=[0 1 1| B

1

L 0



New theorem, applied to Matmul
(Christ, D., Knight, Scanlon, Yelick)

e fori=1:n, for j=1:n, for k=1:n, C(i,j) += A(i,k) *B(k,j)
 Record array indices in matrix A
ik
1 0 1) A
A=l0 1 1| B
1 1 0) C
* Solve LP for x = [xi,xj,xk]": max1'x s.t. Ax<1
—Result: x=[1/2, 1/2,1/2]",1"™x =3/2 = 5,45,




New theorem, applied to Matmul
(Christ, D., Knight, Scanlon, Yelick)

for i=1:n, for j=1:n, for k=1:n, C(i,j) += A(i,k)*B(k,j)

Record array indices in matrix A

i
&

1

J
0

1
1

k
1)

1

0

A
B
C

Solve LP for x = [xi,xj,xk]": max1'™x s.t. Ax<1
—Result: x=[1/2, 1/2,1/2]",1"™x =3/2 = 5,45,

Thm: #words moved = Q(n3/MSHeL1)= Q(n3/M1/2)
Attained by block sizes M, M* Mk = M1/2 \M21/2 \M1/2



New Thm applied to Direct N-Body

e fori=1:n, for j=1:n, F(i) += force( P(i) , P(j) )

 Record array indices in matrix A

i j
1 0) F

A= | 1 0| P
L0 1) P(j)




New Thm applied to Direct N-Body
for i=1:n, for j=1:n, F(i) += force( P(i) , P(j) )

Record array indices in matrix A

|
1

A = 1

\_0

J
0 )

0

1)

F
P(i)
P(j)

Solve LP for x = [xi,xj]": max1'™x s.t. Ax<1
—Result: x=[1,1], 1™x =2 =545,
Thm: #words_moved = Q(n%/M>H8-1)= Q(n2/M1)
Attained by block sizes M¥ MY = M M?!



N-Body Speedups on IBM-BG/P (Intrepid)
8K cores, 32K particles

K. Yelick, E. Georganas, M. Driscoll, P. Koanantakool, E. Solomonik

Execution Time vs. Replication Factor

g 0.25 T T T T J ! . J '

@D mm Communication (Reduce)

a Communication (Shift)

Q 0.2 - == Computation -
O

£

= 015 |- =
)

o

(b} - — =
£ 0.1

|_

-

S 0.05 | -
>

o R

x as & § § 1 § § § &=
L 0

c=1 c=1 c=2 c=4 c=8 c¢c=16 =32 c=64

(tree) (no-tree) Replication Factor

< >
11.8x speedup




Some Applications

» Gravity, Turbulence, Molecular Dynamics, Plasma
Simulation, ...



Some Applications

» Gravity, Turbulence, Molecular Dynamics, Plasma
Simulation, ...

« Electron-Beam Lithography Device Simulation



Some Applications

« Gravity, Turbulence, Molecular Dynamics, Plasma
Simulation, ...

» Electron-Beam Lithography Device Simulation
* Hair ...

— www.fxquide.com/featured/brave-new-hair/
— graphics.pixar.com/library/CurlyHairA/paper.pdf

04/C 106



New Thm applied to Random Code

e foril=1:n, fori2=1:n, ..., fori6=1:n

A1(i1,i3,i6) += func1(A2(i1,i2,i4),A3(i2,i3,i5),A4(i3,i4,i6))

A5(i2,i6) += func2(A6(i1,i4,i5),A3(i3,i4,i6))

* Record array indices
In matrix A

i1

i2

o =, O R = O

i3

o O R O

= O ¥ o = O

~ O O ~ O O




New Thm applied to Random Code

foril=1:n, fori2=1:n, ..., fori6=1:n
A1(i1,i3,i6) += func1(A2(i1,i2,i4),A3(i2,i3,i5),A4(i3,i4,i6))
A5(i2,i6) += func2(A6(il,i4,i5),A3(i3,i4,i6))

Record array indices 1R B W5
1 0 1 0 0 1 Al
In matrix A /1 e 1 o 0\ o
A= 0 1 1 0 1 0 A3
0 0 1 1 0 1 A3,A4
0 1 0 0 0 1 A5
\_! 0 0 1 1 0/ As

Solve LP for x = [x1,...,x6]": max1'™x s.t.Ax<1

— Result: x=1[2/7,3/7,1/7,2/7,3/7,4/7], 1'x = 15/7 = s,
Thm: #words_moved = Q(né/MSHer1)= Q(né/M8/7)
Attained by block sizes M%/7, M3/7 M7 M2/7 \3/7 \4/7



Approach to generalizing lower bounds



Approach to generalizing lower bounds

e Matmul
for i=1:n, for j=1:n, for k=1:n,
C(i,j)+=A(i,k)*B(k,j)



Approach to generalizing lower bounds

Matmul
for i=1:n, for j=1:n, for k=1:n,
C(i,j)+=A(i,k)*B(k,j)
=> for (i,j,k) in S = subset of 73
Access locations indexed by (i,j), (i,k), (k,j)



Approach to generalizing lower bounds

e Matmul
for i=1:n, for j=1:n, for k=1:n,
C(i,j)+=A(i,k)*B(k,j)
=> for (i,j,k) in S = subset of Z3
Access locations indexed by (i,j), (i,k), (k,j)
* General case
foril=1:n, fori2 =il:m, ... for ik =i3:i4
C(i1+2*i3-i7) = func(A(i2+3%*i4,i1,i2,i1+i2,...),B(pnt(3*i4)),...)
D(something else) = func(something else), ...



Approach to generalizing lower bounds

e Matmul
fori=1:n, for j=1:n, for k=1:n,
C(i,j)+=A(i,k)*B(k,j)
=> for (i,j,k) in S = subset of 73
Access locations indexed by (i,j), (i,k), (k,j)
* General case
foril=1:n, fori2 =il:m, ... for ik =i3:i4
C(i1+2*i3-i7) = func(A(i2+3*i4,i1,i2,i1+i2,...),B(pnt(3*i4)),...)
D(something else) = func(something else), ...
=> for (i1,i2,...,ik) in S = subset of Zk
Access locations indexed by group homomorphisms, eg
dc (i1,i2,...,ik) = (i1+2*i3-i7)
b, (i1,i2,...,ik) = (i2+3*i4,i1,i2,i1+i2,...), ...



Approach to generalizing lower bounds

e Matmul
fori=1:n, for j=1:n, for k=1:n,
C(i,j)+=A(i,k)*B(k,j)
=> for (i,j,k) in S = subset of 73
Access locations indexed by (i,j), (i,k), (k,j)
* General case
foril=1:n, fori2 =il:m, ... for ik =i3:i4
C(i1+2*i3-i7) = func(A(i2+3*i4,i1,i2,i1+i2,...),B(pnt(3*i4)),...)
D(something else) = func(something else), ...
=> for (i1,i2,...,ik) in S = subset of Zk
Access locations indexed by group homomorphisms, eg
dc (i1,i2,...,ik) = (i1+2*i3-i7)
b, (i1,i2,...,ik) = (i2+3*i4,i1,i2,i1+i2,...), ...

Goal: Communication lower bounds, optimal algorithms for any
program that looks like this



General Communication Bound

* Given subset of loop iterations, how much data do we need?



General Communication Bound

* Given subset of loop iterations, how much data do we need?

— Given subset S of Z¥, group homomorphisms ¢,, $,, ..., d,,
bound |S| in terms of |$,(S)|, |$,(S)], ..., |d,(S)]



General Communication Bound

* Given subset of loop iterations, how much data do we need?

— Given subset S of Z¥, group homomorphisms ¢,, $,, ..., d,,
bound |S| in terms of |$,(S)|, |$,(S)], ..., |d,(S)]

* Def: Hélder-Brascamp-Lieb LP (HBL-LP) for s,...,S.:
for all subgroups H<Z¥, rank(H) < 2; s;*rank(d;(H))



General Communication Bound

* Given subset of loop iterations, how much data do we need?

— Given subset S of Z¥, group homomorphisms ¢,, ¢,, ..., d
bound |S| in terms of |$,(S)|, |$,(S)], ..., |d,(S)]

* Def: Hélder-Brascamp-Lieb LP (HBL-LP) for s,...,S.:
for all subgroups H<Z¥, rank(H) < 2; s;*rank(d;(H))
* Thm (extension of Christ/Tao/Carbery/Bennett): Given s,,...,s .
S| <1, [d(S) |

m



General Communication Bound

Given subset of loop iterations, how much data do we need?

— Given subset S of Z¥, group homomorphisms ¢,, $,, ..., d,,
bound |S| in terms of |$,(S)|, |$,(S)], ..., |d,(S)]

Def: Holder-Brascamp-Lieb LP (HBL-LP) for s,,...,s,,:
for all subgroups H<Z¥, rank(H) < 2; s;*rank(d;(H))
Thm (extension of Christ/Tao/Carbery/Bennett): Given s,,...,s .
S| <1y 1S
Thm: Given a program with array refs given by ¢,, choose s; to
minimize s, = 2; s;subject to HBL-LP. Then

#twords_moved = Q (#titerations/Ms+ec-1)



s this bound attainable (1/2)?



s this bound attainable (1/2)?

e But first: Can we write it down?



s this bound attainable (1/2)?

e But first: Can we write it down?
 Thm: (bad news) HBL-LP reduces to Hilbert’s 10t problem over Q



s this bound attainable (1/2)?

e But first: Can we write it down?
 Thm: (bad news) HBL-LP reduces to Hilbert’s 10t problem over Q
— conjectured to be undecidable



s this bound attainable (1/2)?

But first: Can we write it down?
Thm: (bad news) HBL-LP reduces to Hilbert’s 10t problem over Q

— conjectured to be undecidable
Thm: (good news) Another LP with same solution is decidable (but
expensive):

Let L =(V1,V2,...) be countable list of all subspaces of Q"
i=0
repeat
i=i+1
until polytope determined by inequalities from (V1,...,Vi) is right one



s this bound attainable (1/2)?

e But first: Can we write it down?
 Thm: (bad news) HBL-LP reduces to Hilbert’s 10t problem over Q

— conjectured to be undecidable
 Thm: (good news) Another LP with same solution is decidable (but
expensive):

Let L =(V1,V2,...) be countable list of all subspaces of Q"
i=0
repeat
i=i+1
until polytope determined by inequalities from (V1,...,Vi) is right one

* Thm: (better news) Enough to use L = lattice of kernels of ¢,, §,, ..., d,,
— Similar to result of Valdimarsson in continuum case



s this bound attainable (1/2)?

e But first: Can we write it down?
 Thm: (bad news) HBL-LP reduces to Hilbert’s 10t problem over Q

— conjectured to be undecidable
 Thm: (good news) Another LP with same solution is decidable (but
expensive):

Let L =(V1,V2,...) be countable list of all subspaces of Q"
i=0
repeat
i=i+1
until polytope determined by inequalities from (V1,...,Vi) is right one

* Thm: (better news) Enough to use L = lattice of kernels of ¢,, §,, ..., d,,

— Similar to result of Valdimarsson in continuum case
— Corollary (Dedekind) If m=3, only need to consider 28 subspaces



s this bound attainable (2/2)?

Given bound, need to reorder loop iterations, or assign them to different
processors, to maximize |S| = # loop_iterations using data that fits in

memory: [§,(S)| + [§,(S)| + ... + [, (S)| <M
Assume best case: can execute iterations in any order
— Ex: matmul, because just summing

Thm: When all ¢, = {subset of indices}, dual of HBL-LP gives optimal tile
sizes:

HBL-LP: minimize 1™s s.t. s™*A 21" , A(k,j) = rank(d,(<i;>))
Dual-HBL-LP: maximize 1™*x s.t. A*x<1

Then for sequential algorithm, tile i by MX

Ex: Matmul:s=[1/2,1/2,1/2]"=x

Ex: N-body, “random code”

Extends to case where HBL-LP determined by independent groups
— Tiling code means tesselating Zk with polytopes



Ongoing Work

* Implement/improve algorithms to generate for lower
bounds, optimal algorithms



Ongoing Work

* Implement/improve algorithms to generate for lower
bounds, optimal algorithms

 Have yet to find a case where we cannot attain lower
bound — can we prove this?



Ongoing Work

Implement/improve algorithms to generate for lower
bounds, optimal algorithms

Have yet to find a case where we cannot attain lower
bound — can we prove this?

Hardest, practical case: Loop-carried dependencies

— Ex: C(i,j) = func (C(i,j), A(i,k), B(k,j), C(i-1,j) )

— Only some reorderings/tesselations correct

— How close can we get to “optimal”?



Ongoing Work

Implement/improve algorithms to generate for lower
bounds, optimal algorithms

Have yet to find a case where we cannot attain lower
bound — can we prove this?

Hardest, practical case: Loop-carried dependencies

— Ex: C(i,j) = func (C(i,j), A(i,k), B(k,j), C(i-1,j) )

— Only some reorderings/tesselations correct

— How close can we get to “optimal”?

Extend “perfect scaling” results for time and energy by
using extra memory

— “n.5D algorithms”



Ongoing Work

Implement/improve algorithms to generate for lower
bounds, optimal algorithms

Have yet to find a case where we cannot attain lower
bound — can we prove this?

Hardest, practical case: Loop-carried dependencies

— Ex: C(i,j) = func (C(i,j), A(i,k), B(k,j), C(i-1,j) )

— Only some reorderings/tesselations correct

— How close can we get to “optimal”?

Extend “perfect scaling” results for time and energy by
using extra memory

— “n.5D algorithms”

Incorporate into compilers



Outline

Survey state of the art of CA (Comm-Avoiding) algorithms
— Review previous Matmul algorithms

— CA O(n3) 2.5D Matmul

— TSQR: Tall-Skinny QR

— CA Strassen Matmul

Beyond linear algebra

— Lower bound proof for linear algebra

— Extending lower bounds to “any algorithm with arrays”

— Progress toward optimal algorithms

CA-Krylov methods
Conclusions



Avoiding Communication in lterative Linear Algebra

* k-steps of iterative solver for sparse Ax=b or Ax=AXx
— Does k SpMVs with A and starting vector
— Many such “Krylov Subspace Methods”
* Conjugate Gradients (CG), GMRES, Lanczos, Arnoldi, ...



Avoiding Communication in lterative Linear Algebra

* k-steps of iterative solver for sparse Ax=b or Ax=AXx
— Does k SpMVs with A and starting vector
— Many such “Krylov Subspace Methods”
* Conjugate Gradients (CG), GMRES, Lanczos, Arnoldi, ...
* Goal: minimize communication
— Assume matrix “well-partitioned”



Avoiding Communication in lterative Linear Algebra

* k-steps of iterative solver for sparse Ax=b or Ax=AXx
— Does k SpMVs with A and starting vector
— Many such “Krylov Subspace Methods”
* Conjugate Gradients (CG), GMRES, Lanczos, Arnoldi, ...

e Goal: minimize communication
— Assume matrix “well-partitioned”

— Serial implementation
e Conventional: O(k) moves of data from slow to fast memory
* New: O(1) moves of data — optimal



Avoiding Communication in lterative Linear Algebra

* k-steps of iterative solver for sparse Ax=b or Ax=AXx
— Does k SpMVs with A and starting vector
— Many such “Krylov Subspace Methods”
* Conjugate Gradients (CG), GMRES, Lanczos, Arnoldi, ...

* Goal: minimize communication
— Assume matrix “well-partitioned”
— Serial implementation
e Conventional: O(k) moves of data from slow to fast memory
* New: O(1) moves of data — optimal
— Parallel implementation on p processors

e Conventional: O(k log p) messages (k SpMV calls, dot prods)
* New: O(log p) messages - optimal



Avoiding Communication in lterative Linear Algebra

* k-steps of iterative solver for sparse Ax=b or Ax=AXx
— Does k SpMVs with A and starting vector
— Many such “Krylov Subspace Methods”
* Conjugate Gradients (CG), GMRES, Lanczos, Arnoldi, ...

e Goal: minimize communication
— Assume matrix “well-partitioned”

— Serial implementation
e Conventional: O(k) moves of data from slow to fast memory
* New: O(1) moves of data — optimal

— Parallel implementation on p processors
e Conventional: O(k log p) messages (k SpMV calls, dot prods)
* New: O(log p) messages - optimal
* Lots of speed up possible (modeled and measured)
— Price: some redundant computation
— Challenges: Poor partitioning, Preconditioning, Num. Stabilit§



Outline

Survey state of the art of CA (Comm-Avoiding) algorithms
— Review previous Matmul algorithms

— CA O(n3) 2.5D Matmul

— TSQR: Tall-Skinny QR

— CA Strassen Matmul

Beyond linear algebra

— Lower bound proof for linear algebra

— Extending lower bounds to “any algorithm with arrays”

— Progress toward optimal algorithms

CA-Krylov methods
Conclusions



For more details

* Bebop.cs.berkeley.edu
— 155 page survey in Acta Numerica

e CS267 — Berkeley’s Parallel Computing Course
— Live broadcast in Spring 2015

 www.cs.berkeley.edu/~demmel

* All slides, video available

— Prerecorded version broadcast in Spring 2014/5

e www.xsede.org
* Free supercomputer accounts to do homework
* Free autograding of homework




Collaborators and Supporters

James Demmel, Kathy Yelick, Michael Anderson, Grey Ballard, Erin Carson, Aditya
Devarakonda, Michael Driscoll, David Eliahu, Andrew Gearhart, Evangelos Georganas,

Nicholas Knight, Penporn Koanantakool, Ben Lipshitz, Oded Schwartz, Edgar Solomonik,
Omer Spillinger

Austin Benson, Maryam Dehnavi, Mark Hoemmen, Shoaib Kamil, Marghoob Mohiyuddin

Abhinav Bhatele, Aydin Buluc, Michael Christ, loana Dumitriu, Armando Fox, David
Gleich, Ming Gu, Jeff Hammond, Mike Heroux, Olga Holtz, Kurt Keutzer, Julien Langou,
Devin Matthews, Tom Scanlon, Michelle Strout, Sam Williams, Hua Xiang

Jack Dongarra, Dulceneia Becker, Ichitaro Yamazaki
Sivan Toledo, Alex Druinsky, Inon Peled

Laura Grigori, Sebastien Cayrols, Simplice Donfack, Mathias Jacquelin, Amal Khabou,
Sophie Moufawad, Mikolaj Szydlarski

Members of FASTMath, ParLab, ASPIRE, BEBOP, CACHE, EASI, MAGMA, PLASMA

Thanks to DOE, NSF, UC Discovery, INRIA, Intel, Microsoft, Mathworks, National
Instruments, NEC, Nokia, NVIDIA, Samsung, Oracle

bebop.cs.berkeley.edu



Summary

Time to redesign all linear algebra, n-body, ...

algorithms and software
(and compilers)



Summary

Time to redesign all linear algebra, n-body, ...

algorithms and software
(and compilers)

Don’t Communic...



EXTRA SLIDES



Communication Avoiding Kernels:
The Matrix Powers Kernel : [Ax, A%x, ..., A*X]

* Replace k iterations of y = A-x with [Ax, A%x, ..., A*x]

A3'X O 06 06 0 0 0 0 0 0 0 0 0 0 O 0 0 O O O O O O O O O O O 0 O 0o o
AZ'X O 06 06 0 0 0 0 0 0 0 0 0 0 O 0 0 O O O O O O O O O O O 0 O 0o o
Ax © 06 o 0 0 0 06 06 06 0 06 06 0 06 0 06 0 0 0 0 0 0 0 0 0 0 0 0 0 o o o
X o 06 06 06 0 0 0 06 06 0 0 O 06 0 0 0 O 0 O O O O O O O O O 0 O 0 o
12 3 4 .. .. 32

 Example: A tridiagonal, n=32, k=3
 Works for any “well-partitioned” A



Communication Avoiding Kernels:
The Matrix Powers Kernel : [Ax, A%x, ..., A*X]

* Replace k iterations of y = A-x with [Ax, A%x, ..., A*x]

A3'X O 06 06 0 0 0 0 0 0 0 0 0 0 O 0 0 O O O O O O O O O O O 0 O 0o o
AZ'X O 06 06 0 0 0 0 0 0 0 0 0 0 O 0 0 O O O O O O O O O O O 0 O 0o o
Ax © Q/I\Q o 06 6 0 0 0 0 0 06 0 0 0 0 O 0 0 O O O O O O 0o O O O o
X o o o 06 06 0 0 0 0 06 06 0 0 O 0 0 0 0 O O O O O 0o O O O O O o
12 3 4 .. .. 32

 Example: A tridiagonal, n=32, k=3



Communication Avoiding Kernels:
The Matrix Powers Kernel : [Ax, A%x, ..., A*X]

* Replace k iterations of y = A-x with [Ax, A%x, ..., A*x]

A3'X O 06 06 0 0 0 0 0 0 0 0 0 0 O 0 0 O O O O O O O O O O O 0 O 0o o
AZ'X O 06 06 0 0 0 0 0 0 0 0 0 0 O 0 0 O O O O O O O O O O O 0 O 0o o
Ax © 06 & ¢ 06 0 06 06 06 0 06 06 0 06 0 06 0 0 0 0 0 0 0 0 0 0 0 0 0 o o o
X O O 0 0 0 0 0 06 0 0 0 0 06 06 0 0 0 06 0 0 O O O O O 0o 0o 0 O 0o o
12 3 4 .. .. 32

 Example: A tridiagonal, n=32, k=3



Communication Avoiding Kernels:
The Matrix Powers Kernel : [Ax, A%x, ..., A*X]

* Replace k iterations of y = A-x with [Ax, A%x, ..., A*x]

A3'X O 06 06 0 0 0 0 0 0 0 0 0 0 0 0 0 O O O O O O O O O O O O O 0o o
AZ'X O 06 06 0 0 0 0 0 0 0 0 0 0 0 0 0 O O O O O O O O O O O 0 O 0o o
Ax © 06 & ¢ 06 0 06 06 06 0 06 06 0 06 0 06 0 0 0 0 0 0 0 0 0 0 0 0 0 o o o
X O O 0 0 0 0 0 06 0 0 0 0 06 06 0 0 0 06 0 0 O O O O O 0o 0o 0 O 0o o
12 3 4 .. .. 32

 Example: A tridiagonal, n=32, k=3



Communication Avoiding Kernels:
The Matrix Powers Kernel : [Ax, A%x, ..., A*X]

* Replace k iterations of y = A-x with [Ax, A%x, ..., A*x]

A3'X o 06 06 0 0 0 0 0 0 0 0 0 0 0 0 O O O O O O O O O O O O 0 O 0 o
AZ'X o 06 06 0 0 0 0 0 0 0 0 O O 06 O O O O O O O O O O O O O 0 O 0 o
Ax © 06 & 06 06 0 06 06 06 0 06 0 6 06 0 0 0 06 0 0 0 0 0 0 0 0 0 0 0 o o o
X O O 0 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0o 0 0 06 0 0 0o 0 0 0o o
12 3 4 .. .. 32

 Example: A tridiagonal, n=32, k=3



Communication Avoiding Kernels:
The Matrix Powers Kernel : [Ax, A%x, ..., A*X]

* Replace k iterations of y = A-x with [Ax, A%x, ..., A*x]

Ad.x o o o o o o © 0 0 0 0 0 0 0 0 0
AZ.x ¢ o o o o o © 0 0 0 0 0 0 0 0 0
Ax © 0 0 0 o o © 0 0.0 0 0 0 0 0 0
X 0 o 0 o 0 o © 060 0 0 0 0 0 0 0
1 2 3 4.. 32

 Example: A tridiagonal, n=32, k=3



Communication Avoiding Kernels:
The Matrix Powers Kernel : [Ax, A%x, ..., A*X]

* Replace k iterations of y = A-x with [Ax, A%x, ..., A*x]
e Sequential Algorithm

A3'X e nee, 0 06 06 0 0 0 0 0 0 0 0 0 0 O 0 O O O O O O O 0 O 0o o
AZ'X o 06 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O O O O O O O O O O O O O 0o o
Ax & & @ 0 0 0 0 .0 06 0 0 06 0 06 0 06 0 0 0 0 0 0 0 0 0 0 0 0 0 o o o
X 0 0 0 0 0 0 0 0.0 0 0 0o 0 0 0o 0 0 06 0 0 0o O 06 06 0 0o 0o 0o O 0o o
12 3 4. .. 32

 Example: A tridiagonal, n=32, k=3



Communication Avoiding Kernels:
The Matrix Powers Kernel : [Ax, A%x, ..., A*X]

* Replace k iterations of y = A-x with [Ax, A%x, ..., A*x]
* Sequential Algorithm

Step 1 Step 2
o o o o 6 06 o 0 06 0 0o 0 o6 0o 0o o o o
o 6 06 o 0 06 0 0o 0 o6 0o 0o o o o
o 6 6 06 0 6 6 0o 0 06 0 0o o o o
o 6 6 06 0 6 6 0o 0 06 0 0o o o o
12 3 4.. w32

 Example: A tridiagonal, n=32, k=3



Communication Avoiding Kernels:
The Matrix Powers Kernel : [Ax, A%x, ..., A*X]

* Replace k iterations of y = A-x with [Ax, A%x, ..., A*x]
* Sequential Algorithm

Step 1 Step 2
o o o O 6 0 o o0 o6 o6 0o 0o O 0o 0o o0 o o
O 6 6 6 0 6 0 0o 0 O 0 0o o0 o o
O 06 6 6 06 6 6 0o 0 06 0 0o o o o
e 06 0 0 0 06 06 0 0 06 0 0o 0o o o
12 3 4.. w32

 Example: A tridiagonal, n=32, k=3



Communication Avoiding Kernels:
The Matrix Powers Kernel : [Ax, A%x, ..., A*X]

* Replace k iterations of y = A-x with [Ax, A%x, ..., A*x]
* Sequential Algorithm

Step 1 Step 2
o o o o 06 6 o o 6 6 o 0o o o o o o o
o 06 6 06 0 6 6 0o 0 o6 0o o o0 o o
o 06 6 6 0 6 6 0o 0o 06 0o 0o o o o
e 06 6 06 0 6 6 0o 0o o6 0 0o 0o o o
12 3 4.. w32

 Example: A tridiagonal, n=32, k=3



Communication Avoiding Kernels:
The Matrix Powers Kernel : [Ax, A%x, ..., A*X]

* Replace k iterations of y = A-x with [Ax, A%x, ..., A*x]
* Parallel Algorithm

A3.x o oProocol o 0o 0 o o2 © 0 0 0 0 0 0 070 0 0 0 0 0 0 0
AZx © ¢ o o o o o © 0 0 0 0 0 0/0 0 0 0 0 0 0 0
Ax © 0 0 0 o o © 0 0 0 0/0 0 0 0 0 0 0 0
X o 0 o o o o 0 0 0 0l 0 0 0 0 0 0 0
1 2 3 4.. .. 32

 Example: A tridiagonal, n=32, k=3
* Each processor communicates once with neighbors



Communication Avoiding Kernels:
The Matrix Powers Kernel : [Ax, A%x, ..., A*X]

* Replace k iterations of y = A-x with [Ax, A%x, ..., A*x]

* Parallel Algorithm

Proc1 Proc 2

12 3 4. .. 32

 Example: A tridiagonal, n=32, k=3
e Each processor works on (overlapping) trapezoid



The Matrix Powers Kernel : [Ax, A%x, ..., A¥x] on a
general matrix (nearest k neighbors on a graph)

Simple block-row partitioning =»
(hyper)graph partitioning

Top-to-bottom processing =»
Traveling Salesman Problem

Same idea for general sparse matrices: k-wide neighboring region

157



Minimizing Communication of GMRES to solve Ax=b

* GMRES: find x in span{b,Ab,...,Akb} minimizing || Ax-b ||,

Standard GMRES Communication-avoiding GMRES
fori=1tok W =[v, Ay, Ay, ..., Ay ]
w=A"-v(i-1) .. SpMV [Q,R] = TSQR(W)
MGS(w, v(0),...,v(i-1)) ... "Tall Skinny QR”
update v(i), H build H from R
endfor solve LSQ problem with H

solve LSQ problem with H

Sequential case: #words moved decreases by a factor of k
Parallel case: #messages decreases by a factor of k

eOops — W from power method, precision lost! s



Matrix Powers Kernel + TSQR in GMRES

A A A R — Original GMRES ]
A S AAa CA-GMRES (Monomial basis) ||
NT o S e®e CA-GMRES (Newton basis)
A _— R
L A 1
s || : :
5 102}
9 :
o
©
g 107°F
= _
-
o
=
© 107 F
©
o
10_55‘ :
; 500 200 600 300 1000

lteration count
159



Speed ups of GMRES on 8-core Intel Clovertown

Requires Co-tuning Kernels

[MHDYO09]
Runtime per kernel, relative to CA-GMRES(k,t), for all test matrices,
using 8 threads and restart length 60

4.5 :
Matrix powers
P, | SR RURURRERURURGRRSRE: DHURRERRRURUSRERTIE JORRERRRURETRERRREY FESTREREoRRRReRe: Yo . kernel A
] TSQR
el VIR 1. | P USIRRUIRRRSUITRIS: SHRSUIIHOIRTRUIINS TRRETETIEoS ResTmmsTmen. 0 . Block Gram- i
21 = Schmidt
B G 3 0k § Small dense
B 0 B ,perations
-
EH Sparse matrix-
g‘ﬁ 2.3 W | cctor product
= Modified
- .
E% 2 0._. ........................................................... = - Gram_schmldt -
ST
Eg 15 - o B B B B B i
w&-
o <
1.0
OS ............................. -
0.0 :
pwtk bmw xenon cant 1d3pt cfd shipsec

. 160
Sparse matrix name



Compute 719 = b — Axp. Choose 1) arbitrary.
Set po =710, -1 =0nNx1-

For k=0.1..... until convergence, Do CA_BiCGStab

P = [pska Apska R Aspsk]
= [qsk—-1, AQsi—1, - . A%Qsi—1]

R = [rska Arskv ) Asrsk]

//Compute the 1 x (3s+ 3) Gram vector.

g=%)" [P, Q. R

//Compute the (3s+3) x (3s+ 3) Gram matrix

For j =0 to L%J—l, Do

B y ;] —
sk—+j <gq, bzk+J >

PT
G = QT [ P Q R } Qsk+j = Tsk4+5 — Osk+j [P Q R]bsk—i—_]
RT For€:0to s—274+1, Do

For { =0 to s, 01
T Coprs = Topy O‘S‘fﬂbekﬂ—l .
0 . , .
b, = [Bl (-, 0", 0T, ()qﬂ] //such that [P, Q, R]c' Copri = A'stsy
¢ T : ‘ Wepti = <C<A+j+1 Gqu+J+1>
SRS T el Geligya >

LTsk+j+1 = Tsk+j + Osk4jPsk+j + Wsk+j4sk+j
Pkt = Gy — Wakr [P, Q. Rlchy .
sk+j+1 sk+j sk+j5 4 ) sk+j+1
For /=0 to s—2j, Do

d Z — W E—{—l
sk+ji+1 = Cskj+1 Skﬂ sk+j+1
i- //such that [P, Q, R]d" kil = = A1
. . ‘ _ <9vd0k+ 11> o
A W v Poti = “Sg > X
) = (r;,r :
( A 0)/ Psk+j+1 = Tsk+j+1 + BS/G—I—jpSk—i-j BQki—i-]w‘k?‘f’] [P Q R]bsk—{—]
5. $j = Ti=iAp; o )
L= For /=0 to s—2j, Do
6. wj Asihs;)/(As;, As;)
J A Jo 205 bl —d + Barr b’y — BapsiwWsks DT
7. Tjp1 = Tj + a;p; + w;s; sk+j+1 = Ysk+j+1 <k+] sk+j ka:—I-j sk+jYsk+j
8. .j+1 =8; — ijlb'j //SUCh that [P Q, ] sk—}—j—}—l = A(pskz—i—j—}—l .
9. B “{J;;”;’ %2 EndDo
J'o ) ] /
10.  pjy1:=rjp1 + Bi(p; — w;Apj) EndDo
11. EndDo 161




p—t
o

Exact Residual (Z2-norm)

—t
OI

10

p—t
ol

—
o

P
L

-20

CA-BICGSTAB Convergence, s =32

1 1 1 1 1 1 1

Monomial
Newton
— Chebyshev

Naive

0 20 40 60 80 100 120 140

Iteration

160



CA-BICGETAB Convergence, s =32

10 T T T T T T T
With Residual Replacement (RR)
0 a la Van der Vorst and Ye
10 .
£
o
& .. :
=~ 10 Monomial
% Newton
3 — Chebyshev
7 - ——Monomial+RER
o 10 || —=—Newton+RR -
[3] —— Chebyshev+RR
[as .
b Natve
€3] : A
s | | T NawetER o
0 TN
-20
'10 | 1 |

0 20 40 &0 80 100 120 140 160
Tteration

Replacement Its. 74 (1) [7, 15, 24, 31, ..., [67,98] (2) 68 (1)
92,97, 103] (17)



Speedups for GMG w/CA-KSM Bottom Solve

+ Compared BICGSTAB vs. CA-BICGSTAB with (% T
s = 4 (monomial basis) ﬁ@ Seas _JI_I:—”;O‘

* Hopper at NERSC (Cray XE6), weak scaling: &%},i NG~ ié"\’b
Up to 4096 MPI processes (1 per chip, % &
24,576 cores total) \___ Dottom-solve  /

* Speedups for miniGMG benchmark (HPGMG benchmark predecessor)
—4.2x in bottom solve, 2.5x overall GMG solve

* Implemented as a solver option in BoxLib and CHOMBO AMR frameworks

* Speedups for two BoxLib applications:
—3D LMC (a low-mach number combustion code)
e 2.5x in bottom solve, 1.5x overall GMG solve
—3D Nyx (an N-body and gas dynamics code)
e 2x in bottom solve, 1.15x overall GMG solve



Summary of Iterative Linear Algebra

* New lower bounds, optimal algorithms,
big speedups in theory and practice

* Lots of other progress, open problems

— Many different algorithms reorganized

* More underway, more to be done
— Need to recognize stable variants more easily
— Preconditioning

* Hierarchically Semiseparable Matrices

— Autotuning and synthesis
» Different kinds of “sparse matrices”



Outline

Survey state of the art of CA (Comm-Avoiding) algorithms
— Review previous Matmul algorithms

— CA O(n3) 2.5D Matmul and LU

— TSQR: Tall-Skinny QR

— CA Strassen Matmul

Beyond linear algebra

— Extending lower bounds to any algorithm with arrays

— Communication-optimal N-body algorithm

CA-Krylov methods

Related Topics
— Write-Avoiding Algorithms
— Reproducilibity



Write-Avoiding Algorithms

 What if writes are more expensive than reads?
— Nonvolatile Memory (Flash, PCM, ...)
— Saving intermediates to disk in cloud (eg Spark)
— Extra coherency traffic in shared memory
* Can we design “write-avoiding (WA)” algorithms?
— Goal: find and attain better lower bound for writes

— Thm: For classical matmul, possible to do asymptotically
fewer writes than reads to given layer of memory hierarchy

— Thm: Cache-oblivious algorithms cannot be write-avoiding

— Thm: Strassen and FFT cannot be write-avoiding



Blocking
Sizes

L3: CO
L2: CO
L1: CO

@@= 3 VICTIMS.M
e=m| 3 VICTIMS.E
| [C_S FILLS.E

1K
2.3
4.2
6.9

—&—Misses on Ideal Cache | 2.512|3.024|4.048| 6

Blocking
Sizes

L3: 700
L2: MKL
L1l: MKL

Write L.B.

1000

100

10

1

0.1

@@= 3 VICTIMS.M 2

=== 3 VICTIMS.E | 0.4
ehe=| |C S FILLS.E | 25

— Write L.B.

1K
2
4.2

1000
100
10
1 /
0.1
128 | 256 | 512
19 | 21 | 1.8
04 | 0.8 | 16
24 | 28 | 3.8
2 2 2
128 | 256 | 512
2 1.9
0.9 1.9
3 4.1
2 2 2

2

2

2K 4K 8K | 16K | 32K
48 | 9.8 | 19.5 | 39.6 | 785
8.8 | 179 | 36.6 | 75.4 | 1475
14 | 28.1 | 56.5 |115.5|226.6
12 24 48 9 | 192
2 2 2 2 2

2K 4K 8K 16K | 32K

23 2.7 3 3.6 4.4
11.8 | 25.3 | 50.7 | 101.7 | 203.2
6.5 145 | 283 54 | 105.7 | 208.2

2 2 2 2 2

Measured L3-DRAM traffic on

Intel Nehalem Xeon-7560

Optimal #DRAM reads = O(n3/M1/2)
Optimal #DRAM writes = n?

Cache-Oblivious Matmul
#DRAM reads close to optimal
#DRAM writes much larger

Write-Avoiding Matmul
Total L3 misses close to optimal
Total DRAM writes much larger



Blocking
Sizes

L3: MKL
L2: MKL
Ll: MKL

@=3_VICTIMS.M
e=Cm»| 3 VICTIMS.E
|| C_S_FILLS.E
—&— Misses on Ideal Cache | 2.512 13.024|4.048| 6 12 24 48

1000

100

10

0.1
128 | 256 | 512 | 1K 2K 4K 8K | 16K | 32K

21 2 4.1 | 8.4 17 | 34.2 | 68.5 (137.2|274.4
08 | 1.3 | 27 | 53 | 10.7 | 21.6 | 43.5 | 86.5 |172.9
29 | 3.6 7 14 | 279 | 56 |112.3|224.1|447.8
9% | 192

—— Write L.B. 2 2 2 2 2 2 2 2 2
1000
Blocking
. 100
Sizes
L3: 700]| 10
L2: MKL L
L1l: MKL 1
0.1
128 | 256 | 512 | 1K 2K 4K 8K | 16K | 32K
|3 VICTIMS.M | 2 2 1.9 2 23 | 27 3 36 | 44
e==»|3 VICTIMS.E | 04 | 09 | 1.9 | 42 | 11.8 | 25.3 | 50.7 | 101.7 | 203.2
@he| [ C_S_FILLS.E | 2.5 3 41 | 65 | 145 | 283 | 54 |105.7|208.2

— Write L.B.

2 2 2 2 2 2 2 2 2

Measured L3-DRAM traffic on

Intel Nehalem Xeon-7560

Optimal #DRAM reads = O(n3/M1/2)
Optimal #DRAM writes = n?

Intel MKL Matmul
#DRAM reads >2x optimal
#DRAM writes much larger

Write-Avoiding Matmul
Total L3 misses close to optimal
Total DRAM writes much larger



Reproducibility

 Want bit-wise identical results from different runs
of the same program on the same machine,
possibly with different available resources
— Needed for testing, debugging, correctness.
— Requested by users (e.g. FEM, climate modeling, ...)

* Hard just for summation, since floating point

arithmetic is not associative because of roundoff
— (le-16+1)—-1 # le-16+(1-1)



Reproducible Floating Point Computation

* Get bit-wise identical answer when you type a.out again

* NA-Digest submission on 8 Sep 2010
— From Kai Diethelm, at GNS-MBH

— Sought reproducible parallel sparse linear equation solver,
demanded by customers (construction engineers), otherwise
they don’t believe results

— Willing to sacrifice 40% - 50% of performance for it
 Email to ~110 Berkeley CSE faculty, asking about it
— Most: “What?! How will | debug without reproducibility?”
— Few: “I know better, and do careful error analysis”
— S. Govindjee: needs it for fracture simulations
— S. Russell: needs it for nuclear blast detection



Intel MKL non-reproducibility

Vector size: 1e6. Data aligned to 16-byte boundaries. For each input vector:
e Dot products are computed using 1, 2, 3 or 4 threads

* Absolute error = maximum — minimum

* Relative error = Absolute error / maximum absolute value

0.15
0.025
0.02} Sign not
Otp reproducible
0.015} E o o a 1
005l 1 | 0.01}
‘ ‘ “ 0.005
0 .-I I|IIIII.I- 1 1 1 O
0 10 20 30 40 50 1
variation (ulps) relative error
Absolute Error for Random Vectors Relative Error for Orthogonal vecto

Same magnitude opposite signs

» Intel MKL 11.2 with CBWR: reproducible only for fixed number of threads
and using the same instruction set (SSE2/AVX)



Goals/Approaches for Reproducible Sum

* Goals
1. Same answer, independent of layout, #processors, order of summands
2. Good performance (scales well)
3. Portable (assume IEEE 754 only)
4. User can choose accuracy

* Approaches
— Guarantee fixed reduction tree (not 2. or 3.)
— Use (very) high precision to get exact answer (not 2.)
— Our approach (Nguyen, D.)
e Oversimplified:
1. Compute A = maximum absolute value (reproducible)
2. Round all summands to one ulpin A
3. Compute sum; rounding causes them to act like fixed point numbers
* Possible with one reduction operation



32 64 128 256 512 1024

# Processors

16

Performance results on 1024 proc Cray XC30
1.2x to 3.2x slowdown vs fastest code, for n=1M

T T _ T T T T T T T T T T T T _ T T T T T T

c NN_\\ = g of
O x gl ] g of
0 BS ” | wne

- OO0 P
352 € gl oo
QE=® - gcEZ 72 | 2z of
TeEaw W= — B o of
| <8<S T —— I
A0AN Ve g of
€ctt Z g of

K

(own} wnsep AQ pazifewJou) swi|

174



Reproducible Software and Hardware

e Software for Reproducible BLAS 1 available at
bebop.cs.berkeley.edu/reproblas
— BLAS2, 3 under development

* Used Chisel (hardware design language) to
design one new instruction that would make
reproducible summation as fast (and more
accurate) than standard summation

 Industrial interest



Blocked (Tiled) Matrix Multiply

Consider A,B,C to be n/b-by-n/b matrices of b-by-b subblocks where
b is called the block size; assume 3 b-by-b blocks fit in fast memory

fori=1ton/b
forj=1ton/b

{read block C(i,j) into fast memory}

fork=1ton/b
{read block A(i,k) into fast memory}
{read block B(k,j) into fast memory}
C(i,j) = C(i,j) + A(i,k) * B(k,j) {do a matrix multiply on blocks}

{write block C(i,j) back to slow memory}

Ci) cw) || AL
b-by-b __|—>H [ T S 0
block

1|

+
oy
~

176




Blocked (Tiled) Matrix Multiply

Consider A,B,C to be n/b-by-n/b matrices of b-by-b subblocks where
b is called the block size; assume 3 b-by-b blocks fit in fast memory

fori=1ton/b
forj=1ton/b

{read block C(i,j) into fast memory} ... b? x (n/b)? = n? reads

fork=1ton/b
{read block A(i,k) into fast memory} ... b%x (n/b)3=n3/b reads
{read block B(k,j) into fast memory} ... b%x (n/b)?=n3/b reads
C(i,j) = C(i,j) + A(i,k) * B(k,j) {do a matrix multiply on blocks}

{write block C(i,j) back to slow memory} ... b? x (n/b)? = n? writes

Ci) cw) || ALK
b-by-b //7I 5 A — 0 1
block . B(k.j)

1|
+

2n3/b + 2n? reads/writes << 2n3 arithmetic - Faster!

177
77




Recursive Matrix Multiplication (RMM) (1/2)

o C: C11 C12 =A.B= A11 A12-B11 B12
A21 A2 BZ1 BZZ

= {A11'B11+ A'Byy AyBypt A12'322J

Ayi'Byy+ Ay'Byy AyrByy+ AyyBo)

* True when each A, etc 1x1 or n/2 x n/2

func C = RMM (A, B, n)
ifn=1,C=A*B, else
{ C,44=RMM (A, , B4y, n/2) + RMM (A,, , B,;, n/2)
C,,=RMM (A, , B,,, n/2) + RMM (A,, , B,,, n/2)
C,,=RMM (A,,, B, n/2) + RMM (A,, , B,,, n/2)
C,,=RMM (A,,, B;,, n/2) + RMM (A,, , B,,, n/2) }
return

178



Recursive Matrix Multiplication (RMM) (2/2)

func C = RMM (A, B, n)
if n=1, C=A*B, else
{ C4=RMM (A,;,By,n/2) + RMM (A, , B,,, n/2)
C,,=RMM (A,, , B,,, n/2) + RMM (A,, , B,,, n/2)
C,,=RMM (A,,, B, n/2) + RMM (A,, , B,,, n/2)
C,,=RMM (A,,, B,,,n/2) + RMM (A,, , B,,, n/2) }
return

A(n) = # arithmetic operations in RMM( ., ., n)
=8-A(n/2) +4(n/2)? if n>1, else 1
=2n3 ... same operations as usual, in different order

W(n) = # words moved between fast, slow memory by RMM( ., ., n)
=8 - W(n/2) + 12(n/2)? if 3n2>M , else 3n?
=0(n3/MV2+n2) . same as blocked matmul

“Cache oblivious”, works for memory hierarchies, but not panacea
179



How hard is hand-tuning matmul, anyway?

90% -
3 ACML Matrix multiply on 2.3GHz
AMD Opteron (Budapest)
70%
5 60% -
Q
(s
"‘6 50% -
c
2 40%
5]
@  |-----maxovern=1,.,
L 30%
averageovern=l1,.768 W SeL_______L.-="
20% | —@—suppliedin binary form 18
—Q— uses Intel compiler, SSE intrinsics 8 16 19 6 12 13 .
10% -| —@—usesGNU compiler, SSE intrinsics given
- uses GNU compiler, no intrinsics A 21
0% —@— uses PGl compiler, no intrinsics
2 T

* Results of 22 student teams trying to tune matrix-multiply, in CS267 Spr09
» Students given “blocked” code to start with (7x faster than naive)
- Still hard to get close to vendor tuned performance (ACML) (another 6x)

* For more discussion, see www.cs.berkeley.edu/~volkov/cs267.sp09/hw1/results/

180



How hard is hand-tuning matmul, anyway?

80%

70%

60%

30%

Fraction of peak
i Y
®

20%

10%

0%

NO

© some intrinsics aligned
® nointrinsics
® all intrinsics unaligned

. /” ————— ~~\
7 . / o \\
3 : 3 al/to S
\ ee e Ibar/. \\
M ° ra’,ed Cg//y \\
S 1 COO' O !
> €g 10/

I I I I I I |

1024 2048 4096 8192 16384 32768 65536

Number of lines of code in matrix multiply

181



SUMMA- n x n matmul on PY2x p1/2 grid

(nearly) optimal using minimum memory M=0(n?/P)

k j /B(kj)
H k
/f\\ * l - <— Brow
i . \ \ o C(i,j)

pd
A(i,k) ol T
Acol

For k=0 to n/b-1 ... b = block size = #cols in A(i,k) = #rows in B(k,j)
for alli=1to P2

owner of A(i,k) broadcasts it to whole processor row (using binary tree)
forallj=1to P2

owner of B(k,j) broadcasts it to whole processor column (using bin. tree)
Receive A(i,k) into Acol
Receive B(k,j) into Brow
C_myproc = C_myproc + Acol * Brow
182




Can we do better?

Aren’t we already optimal?

Why assume M = O(n?/p), i.e. minimal?

— Lower bound still true if more memory

— Can we attain it?

Special case: “3D Matmul”

— Uses M = O(n%/p?/3)

— Dekel, Nassimi, Sahni [81], Bernsten [89],

Agarwal, Chandra, Snir [90], Johnson [93],
Agarwal, Balle, Gustavson, Joshi, Palkar [95]

— Processors arranged in p/3x p/3x p/3 grid

— Processor (i,j,k) performs C(i,j) = C(i,j) + A(i,k)*B(k,j),
where each submatrix is n/p/3x n/pl/3

Not always that much memory available...



Perfect Strong Scaling —in Time and Energy (2/2)

T(cP) = n3/(cP) [ v+ B/MY2 + a/(mM¥2) | =T(P)/c
E(cP) = cP { n3/(cP) [ yg+ Be/MY2 + ap/(mMY/2) ] + § . MT(cP) + £.T(cP) } = E(P)

Perfect scaling extends to N-body, Strassen, ...
We can use these models to answer many questions, including:

What is the minimum energy required for a computation?

Given a maximum allowed runtime T, what is the minimum energy E
needed to achieve it?

Given a maximum energy budget E , what is the minimum runtime T that
we can attain?

The ratio P = E/T gives us the average power required to run the algorithm.
Can we minimize the average power consumed?

Given an algorithm, problem size, number of processors and target energy
efficiency (GFLOPS/W), can we determine a set of architectural parameters
to describe a conforming computer architecture?



2.5Dvs 2D LU
With and Without Pivoting

LU on 16,384 nodes of BG/P (n=131,072)

100 1 | '
communication
i idle
80 - compute m— .
8 e0f :
L X
. [ ]
E 4 F 2X faster
= : I
20 F 2X faster -
ok
Yo, Mo %, &
70/1,0 /0/},0

. i, N i,
4 O 4 O

Thm: Perfect Strong Scaling impossible, because Latency*Bandwidth = Q(n?)



TSQR Performance Results

Parallel
— Intel Clovertown
— Up to 8x speedup (8 core, dual socket, 10M x 10)
— Pentium lll cluster, Dolphin Interconnect, MPICH
* Up to 6.7x speedup (16 procs, 100K x 200)
— BlueGene/L
* Up to 4x speedup (32 procs, 1M x 50)
— Tesla C 2050 / Fermi
 Upto13x (110,592 x 100)
— Grid —4x on 4 cities vs 1 city (Dongarra, Langou et al)
— Cloud — 1.6x slower than just accessing data twice (Gleich and Benson)
Sequential
— “Infinite speedup” for out-of-core on PowerPC laptop
* As little as 2x slowdown vs (predicted) infinite DRAM
* LAPACK with virtual memory never finished
SVD costs about the same
Joint work with Grigori, Hoemmen, Langou, Anderson, Ballard, Keutzer, others



Outline

e Survey state of the art of CA (Comm-Avoiding)
algorithms

— Review previous Matmul algorithms
— CA O(n3) 2.5D Matmul

— TSQR: Tall-Skinny QR

— CAO(n3) 2.5D LU

— CA Strassen Matmul

* Beyond linear algebra

— Extending lower bounds to any algorithm with arrays
— Communication-optimal N-body algorithm

* CA-Krylov methods



Back to LU: Using similar idea for TSLU as TSQR:

Use reduction tree, to do “Tournament Pivoting”
4
Cong ) - )
Wi PyLy-U, Choose b pivot rows of W, call them W’
Wb = W, [PylLyU, Choose b pivot rows of W, call them W,
W, | [ PyL3U; Choose b pivot rows of W, call them W’
W, P, L,U, Choose b pivot rows of W,, call them W/’
J - _/
s
W, .
W, | - P12'L12'U1a Choose b pivot rows, call them W’
w?’, P34-L34-U34J Choose b pivot rows, call them W5’
4
- S

Wi,
(W?)J Pi123a'L1234"U1234 Choose b pivot rows

» Go back to W and use these b pivot rows
 Move them to top, do LU without pivoting
« Extra work, but lower order term
« Thm: As numerically stable as Partial Pivoting on a larger matrix 188



Exascale Machine Parameters
Source: DOE Exascale Workshop

2720 = 1,000,000 nodes

1024 cores/node (a billion cores!)
100 GB/sec interconnect bandwidth
400 GB/sec DRAM bandwidth

1 microsec interconnect latency

50 nanosec memory latency

32 Petabytes of memory

1/2 GB total L1 on a node



log, (n?/p)
log, (memory_per_proc)

Exascale predicted speedups
for Gaussian Elimination:
2D CA-LU vs ScalLAPACK-LU

CALU/Scalapack speed up

w

279

2438

186 5

155 d

12.4

@
w

o
[

w



Ongoing Work

* |Lots more work on

— Algorithms:

« BLAS, LDLT, QR with pivoting, other pivoting schemes, eigenproblems, ...

* Sparse matrices, structured matrices

* All-pairs-shortest-path, ...

 Both 2D (c=1) and 2.5D (c>1)

e But only bandwidth may decrease with c>1, not latency (eg LU)
— Platformes:

* Multicore, cluster, GPU, cloud, heterogeneous, low-energy, ...
— Software:

* Integration into Sca/LAPACK, PLASMA, MAGMA,...

* |ntegration into applications
— CTF (with ANL): symmetric tensor contractions



Recall optimal sequential Matmul

Naive code
fori=1:n, for j=1:n, for k=1:n, C(i,j)+=A(i,k)*B(k,j)

“Blocked” code
foril =1:b:n, forjl =1:b:n, for kl =1:b:n
fori2 =0:b-1, forj2=0:b-1, for k2 =0:b-1"
i=il+i2, j=jl1+j2, k=kl+k2 - b xbmatmul
C(i,j)+=A(i,k)*B(k,j) _

Thm: Picking b = MY/2 attains lower bound:
#twords_moved = Q(n3/M*/2)
Where does 1/2 come from?



Communication Avoiding Parallel Strassen (CAPS)

BFS VS.

A-B

Runs all 7 multiplies in parallel Runs all 7 multiplies sequentially
Each on P/7 processors Each on all P processors
Needs 7/4 as much memory Needs 1/4 as much memory
CAPS
If EnoughMemory and P = 7 Best way to interleave
then BFS Step BFS and DFS iS d

else DFS step tuning parameter

end if




Variable Loop Bounds are More Complicated

 Redundancy in n-body calculation f(i,j), f(j,i)
* k-way n-body problems (“k-body”) has even more

600 ‘

I I I

m Allreduce
ldle

M Shifting

M Setup

m Computation

500 -

400 -

300 [ [

200 -

100

Execution Time Per Timestep (sec)

0
1 2 4 8 16 32 64 128 256

Replication Factor (c)

 Can achieve both
communication and 0
computation (symmetry °
exploiting) optimal

10
5 Penporn Koanantakool and K. Yelick



Approach to generalizing lower bounds

e Matmul
fori=1:n, for j=1:n, for k=1:n,
C(i,j)+=A(i,k)*B(k,j)
=> for (i,j,k) in S = subset of 73
Access locations indexed by (i,j), (i,k), (k,j)
* General case
foril=1:n, fori2 =il:m, ... for ik =i3:i4
C(i1+2*i3-i7) = func(A(i2+3%*i4,i1,i2,i1+i2,...),B(pnt(3*i4)),...)
D(something else) = func(something else), ...
=> for (i1,i2,...,ik) in S = subset of Zk
Access locations indexed by group homomorphisms, eg
b (i1,i2,...,iK) = (i1+2%*i3-i7)
b, (i1,i2,...,k) = (12+3%i4,i1,i2,i1+i2,...), ..
e Can we bound #loop _iterations (= |S])
given bounds on #points in its images, i.e. bounds on |, (S)], |d, (S)], ... ?



General Communication Bound

Given S subset of Z¥, group homomorphisms ¢,, ¢,, ...,
bound |S| in terms of [4(S)], [dy(S)], .., |bn(S)]

Def: H6lder-Brascamp-Lieb LP (HBL-LP) fors,,...,S.:
for all subgroups H<Z%,  rank(H) < 2; s;*rank(d,(H))
Thm (Christ/Tao/Carbery/Bennett): Given s,,...,s .,
S| <1, [4S)|°

Thm: Given a program with array refs given by ¢,
choose s; to minimize s,z =2, s; subject to HBL-LP. Then

#twords_moved = Q (#iterations/Ms+e1)



Is this bound attainable?

But first: Can we write it down?

Thm: (bad news) HBL-LP reduces to Hilbert’s 10t problem
over Q (conjectured to be undecidable)

Thm: (good news) Another LP with same solution is
decidable

Depends on loop dependencies
— Best case: none, or reductions (like matmul)

Thm: In many cases, solution x of Dual HBL-LP gives
optimal tiling

— Ex: For Matmul, x = [1/2, 1/2, 1/2] so optimal tiling is
M1/2X M1/2X M1/2



New Thm applied to Direct N-Body
for i=1:n, for j=1:n, F(i) += force( P(i) , P(j) )

Record array indices in matrix A

|
1

A = 1

\_0

J
0 )

0

1)

F
P(i)
P(j)

Solve LP for x = [xi,xj]": max1'™x s.t. Ax<1
—Result: x=[1,1], 1™x =2 =545,
Thm: #words_moved = Q(n%/M>H8-1)= Q(n2/M1)
Attained by block sizes M¥ MY = M M?!



s this bound attainable (1/2)?

But first: Can we write it down?
Thm: (bad news) HBL-LP reduces to Hilbert’s 10t problem over Q
— conjectured to be undecidable
Thm: (good news) Another LP with same solution is decidable (but expensive):

Let L =(V1,V2,...) be countable list of all subspaces of Q"
i=1
repeat
i=i+1
until polytope determined by inequalities from (V1,...,Vi) is right one

Thm: (better news) Enough to search L = lattice of kernels of ¢,, 9,, ..., d,,
— Similar to result of Valdimarsson in continuum case
— Corollary (Dedekind) If m=3, only need to consider 28 subspaces

Thm: (even better news) Easy to write down LP explicitly in many simple
cases of interest (eg all ¢, = {subset of indices})



Ongoing Work

Accelerate decision procedure for lower bounds
— Ex: At most 3 arrays, or 4 loop nests

Have yet to find a case where we cannot attain
lower bound — can we prove this?

Extend “perfect scaling” results for time and
energy by using extra memory

— “n.5D algorithms”

Incorporate into compilers



