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Why avoid communication? (1/2)

Algorithms have two costs (measured in time or energy):
1. Arithmetic (FLOPS)
2. Communication: moving data between

— levels of a memory hierarchy (sequential case)
— processors over a network (parallel case).
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Why avoid communication? (2/3)

* Running time of an algorithm is sum of 3 terms:
— #flops * time_per_flop
— # words moved / bandwidth

" communication
— # messages * latency

* Time_per_flop << 1/ bandwidth << latency
e Gaps growing exponentially with time [FOSC]

Annual improvements
Time_per_flop Bandwidth Latency
Network 26% 15%
59%
DRAM 23% 5%

e Avoid communication to save time



Why Minimize Communication? (2/2)
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Why Minimize Communication? (2/2)

Minimize communication to save energy
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Goals

* Redesign algorithms to avoid communication
e Between all memory hierarchy levels
e [1 < L2 <> DRAM <= network, etc
e Attain lower bounds if possible
e Current algorithms often far from lower bounds
e Large speedups and energy savings possible



President Obama cites Communication-Avoiding Algorithms in
the FY 2012 Department of Energy Budget Request to Congress:

“New Algorithm Improves Performance and Accuracy on Extreme-Scale
Computing Systems. On modern computer architectures, communication
between processors takes longer than the performance of a floating
point arithmetic operation by a given processor. ASCR researchers have
developed a new method, derived from commonly used linear algebra
methods, to minimize communications between processors and the
memory hierarchy, by reformulating the communication patterns
specified within the algorithm. This method has been implemented in the
TRILINOS framewollk, a highly-regarded suite of software, which provides
functionality for regearchers around the world to solve large scale,
complex multi-physjcs problems.”

FY 2010 Congressional Buidget, Volume 4, FY2010 Accomplishments, Advanced Scientific Computing

CA-GMRES (Hoemmen, Mohiyuddin, Yelick, JD) Research (ASCR), pages 65-67.
“Tall-Skinny” QR (Grigori, Hoemmen, Langou, JD)
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Summary of CA Algorithms

* “Direct” Linear Algebra

 Lower bounds on communication for linear algebra
problems like Ax=b, least squares, Ax = Ax, SVD, etc

* New algorithms that attain these lower bounds

* Being added to libraries: Sca/LAPACK, PLASMA,
MAGMA

 Large speed-ups possible
e Autotuning to find optimal implementation
* Ditto for “Iterative” Linear Algebra

e Ditto (work in progress) for programs accessing
arrays (eg n-body)
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 “Direct” Linear Algebra
* Lower bounds on communication
* New algorithms that attain these lower bounds

e Ditto for “Iterative” Linear Algebra

e Ditto (work in progress) for programs accessing
arrays (eg n-body)



Lower bound for all “direct” linear algebra
* Let M = “fast” memory size (per processor)

#twords_moved (per processor) = Q(#flops (per processor) / M1/2)

 Parallel case: assume either load or memory balanced

 Holds for
— Matmul



Lower bound for all “direct” linear algebra
* Let M = “fast” memory size (per processor)

#twords_moved (per processor) = Q(#flops (per processor) / M1/2)

#fmessages_sent 2 #twords_moved / largest_message_size

 Parallel case: assume either load or memory balanced

 Holds for
— Matmul, BLAS, LU, QR, eig, SVD, tensor contractions, ...

— Some whole programs (sequences of these operations,
no matter how individual ops are interleaved, eg AX)

— Dense and sparse matrices (where #flops << n3)
— Sequential and parallel algorithms
— Some graph-theoretic algorithms (eg Floyd-Warshall)



Lower bound for all “direct” linear algebra
* Let M = “fast” memory size (per processor)

#twords_moved (per processor) = Q(#flops (per processor) / M1/2)

#messages_sent (per processor) = Q(#flops (per processor) / M3/2)

 Parallel case: assume either load or memory balanced

 Holds for
— Matmul, BLAS, LU, QR, eig, SVD, tensor contractions, ...

— Some whole programs (sequences of these operations,
no matter how individual ops are interleaved, eg AX)

SIAM SIAG/Linear Algebra Prize, 2012
Ballard, D., Holtz, Schwartz



Can we attain these lower bounds?

Do conventional dense algorithms as implemented
in LAPACK and ScaLAPACK attain these bounds?

— Often not

If not, are there other algorithms that do?
— Yes, for much of dense linear algebra

— New algorithms, with new numerical properties,
new ways to encode answers, new data structures

— Not just loop transformations

Only a few sparse algorithms so far
Lots of work in progress

Case study: Matrix Multiply



Naive Matrix Multiply

{implements C = C + A*B}
fori=1ton

forj=1ton

fork=1ton
C(i,j) = C(i,j) + A(i,k) * B(k,j)

C(i,j) C(i,) Ali.2)
B(-j)

I
+
*
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Naive Matrix Multiply

{implements C = C + A*B}
fori=1ton
{read row i of A into fast memory}
forj=1ton
{read C(i,j) into fast memory}
{read column j of B into fast memory}
fork=1ton
C(i,j) = C(i,j) + Ali,k) * B(k,j)
{write C(i,j) back to slow memory}

C(i,j) C(i,) Ali.2)
B(-j)

I
+
*
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Naive Matrix Multiply

{implements C = C + A*B}
fori=1ton

{read row i of A into fast memory}
forj=1ton

{read C(i,j) into fast memory}

{read column j of B into fast memory}
fork=1ton

C(i,j) = C(i,j) + A(i,k) * B(k,j)
{write C(i,j) back to slow memory}

.. h?reads altogether

.. n? reads altogether
.. n3reads altogether

... % writes altogether

C(i,j) C(i,) Ali.2)

B(.))

n3 + 3n? reads/writes altogether — dominates 2n3 arithmetic

18



Blocked (Tiled) Matrix Multiply

Consider A,B,C to be n/b-by-n/b matrices of b-by-b subblocks where
b is called the block size; assume 3 b-by-b blocks fit in fast memory

fori=1ton/b
forj=1ton/b

{read block C(i,j) into fast memory}

fork=1ton/b
{read block A(i,k) into fast memory}
{read block B(k,j) into fast memory}
C(i,j) = C(i,j) + A(i,k) * B(k,j) {do a matrix multiply on blocks}

{write block C(i,j) back to slow memory}

ol cw || i
b-by-b //7 ..................................... % .
block . B(k.,j)

I
+
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Blocked (Tiled) Matrix Multiply

Consider A,B,C to be n/b-by-n/b matrices of b-by-b subblocks where
b is called the block size; assume 3 b-by-b blocks fit in fast memory

fori=1ton/b
forj=1ton/b

{read block C(i,j) into fast memory} ... b2 x (n/b)? = n? reads

fork=1ton/b
{read block A(i,k) into fast memory} ... b%x (n/b)3=n3/b reads
{read block B(k,j) into fast memory} ... b?x (n/b)3=n3/b reads
C(i,j) = C(i,j) + A(i,k) * B(k,j) {do a matrix multiply on blocks}

{write block C(i,j) back to slow memory} ... b%? x (n/b)? = n? writes

ol cw || i
b-by-b //7 ..................................... % .
block . B(k.,j)

I
+

2n3/b + 2n? reads/writes << 2n3 arithmetic - Faster!

N
oJ




Does blocked matmul attain lower bound?

Recall: if 3 b-by-b blocks fit in fast memory of
size M, then #reads/writes = 2n3/b + 2n?

Make b as large as possible: 3b% <M, so
#ireads/writes > 31/2n3/M1/2 + 2n2

Attains lower bound = Q (#flops / M¥/2)

But what if we don’t know M?
Or if there are multiple levels of fast memory?

How do we write the algorithm?



Recursive Matrix Multiplication (RMM) (1/2)

* For simplicity: square matrices with n =2
e C=|C1Cipl =A-B= |Ay Ay By By,
Ca Cz; Az Ay Bag By

= {A11'B11+ AByy AyBypt A12'BZZJ
Ayi'Bi+ Ayp'Byy AyBiat AyyBo

* True when each A, etc 1x1 or n/2 x n/2

func C = RMM (A, B, n)
ifn=1,C=A*B,else
{ C,44=RMM (A, , B4y, n/2) + RMM (A,, , B,;, n/2)
C,,=RMM (A,,, B,,, n/2) + RMM (A,, , B,,, n/2)
C,,=RMM (A,,, B, n/2) + RMM (A,, , B,,, n/2)
C,,=RMM (A,,, B;,,n/2) + RMM (A,, , B,,, n/2) }
return

22



Recursive Matrix Multiplication (RMM) (2/2)

func C = RMM (A, B, n)
if n=1, C=A*B, else

{ C,;4==RMM (A, , B;;, n/2) + RMM (A,, , B,;, n/2)
C,,=RMM (A;,, B;,, n/2) + RMM (A,, , B,,, n/2)
C,,=RMM (A,,, B, n/2) + RMM (A,,, B,,, n/2)

For big speedups, see SC12 poster
on “Beating MKL and ScaLAPACK

at Rectangular Matmul” 11/13 at
5:15-7pm )

=0O(n3/MV2+n2) . same as blocked matmul

“Cache oblivious”, works for memory hierarchies, but not panacea
23



How hard is hand-tuning matmul, anyway?

90%
3 ACML Matrix multiply on 2.3GHz
AMD Opteron (Budapest)
70%
5 60%
Q
a.
“6 50%
c
2 40%
D
@ | -----maxovern=1,.,
L 30%
averageovern=1,.768 W SL________Le="
20% - —@—suppliedin binary form 18
—O— uses Intel compiler, SSE intrinsics 8 16 19 6 12 4 .
10% -| —@—usesGNU compiler, SSE intrinsics given
—(r—uses GNU compiler, no intrinsics A 21
—@— uses PGl compiler, no intrinsics

0% -

* Results of 22 student teams trying to tune matrix-multiply, in CS267 Spr09
» Students given “blocked” code to start with (7x faster than naive)

« Still hard to get close to vendor tuned performance (ACML) (another 6x)
* For more discussion, see www.cs.berkeley.edu/~volkov/cs267.sp09/hw1/results/

24




How hard is hand-tuning matmul, anyway?
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Parallel MatMul with 2D Processor Layout

P processors in PY2x P1/2 grid
— Processors communicate along rows, columns

e Each processor owns n/PY2 x n/PY2submatrices of A,B,C

* Example: P=16, processors numbered from P, to P,

— Processor P;; owns submatrices Ay, B;; and C;;

C = A * B
Poo|Po1|Po2|Pos Poo]Po1|Po2| Pos PoolPo1|Po2|Pos
P10]P11|P12| P13 P10]P11|P12| P13 P10]P11|P12| P13
P20]P21P22| P23 P20]P21|P22] P23 P20]P21|P22] P23
P30|P31|P32|P33 P30]P31|P32| P33 P30|P31|P32| P33




SUMMA Algorithm

« SUMMA = Scalable Universal Matrix Multiply

— Comes within factor of log P of lower bounds:
* Assume fast memory size M = O(n?/P) per processor — 1 copy of data
« #words_moved = Q( #flops / M¥2) = Q( (n3/P) / (n2/P)¥2) = Q( n%/ PY/2)
e #messages = Q( #flops / M3/2) = Q( (n3/P) / (n?/P)32) = Q( PV2)

— Can accommodate any processor grid, matrix dimensions & layout

— Used in practice in PBLAS = Parallel BLAS
 www.netlib.org/lapack/lawns/lawn{96,100}.ps

* Comparison to Cannon’s Algorithm
— Cannon attains lower bound

— But Cannon harder to generalize to other grids, dimensions,
layouts, and Cannon may use more memory

27



SUMMA — n x n matmul on PY2x P12 grid

k j /B(kj)

N * l =
i ZC\\ N A C(i,j)
e

A(i,k)

Ci, j) is n/P'2 x n/P2 submatrix of C on processor P
A(i,k) is n/PV2 x b submatrix of A
B(k,j) is b x n/P'2 submatrix of B
» C(i,j) = C(i,)) + Zk A(i,k)*B(k,))
- summation over submatrices
Need not be square processor grid

28



SUMMA- n x n matmul on PY2x P12 grid

K j /B(k)

e
N * l - <— Brow
NN

o - (i)
A(i,k) o T

Acol

For k=0 to n/b-1
foralli=1 to P12

owner of A(i,k) broadcasts it to whole processor row (using binary tree)
forallj=1to P2

owner of B(k,j) broadcasts it to whole processor column (using bin. tree)
Receive A(i,k) into Acol
Receive B(k,j) into Brow
C_myproc = C_myproc + Acol * Brow

29




SUMMA Communication Costs

For k=0 to n/b-1
foralli=1 to P12

owner of A(i,k) broadcasts it to whole processor row (using binary tree)
... #words =log P"2*b*n/P12 , #messages = log P12
forallj=1to P12

owner of B(k,j) broadcasts it to whole processor column (using bin. tree)
. same #words and #messages
Receive A(i,k) into Acol
Receive B(k,j) into Brow

C_myproc = C_myproc + Acol * Brow

° Total #words =log P * n2 /P12
° Within factor of log P of lower bound

° (more complicated implementation removes log P factor)
° Total #messages =log P * n/b
° Choose b close to maximum, n/P12,

1/2
to approach lower bound P 30




Can we do better?

* Lower bound assumed 1 copy of data: M = O(n?/P) per proc.

* What if matrix small enough to fit c>1 copies, so M = cn?/P ?
— #twords_moved = Q( #flops / MY2) =Q( n2/ ( c/2P1/2))
— #messages = Q( #flops / M3/2) =Q( PYV2 /c3/?)

* (Can we attain new lower bound?
— Special case: “3D Matmul”: ¢ =P/3

e Dekel, Nassimi, Sahni [81], Bernsten [89],

Agarwal, Chandra, Snir [90], Johnson [93],
Agarwal, Balle, Gustavson, Joshi, Palkar [95]

* Processors arranged in P13 x P13 x P1/3 grid

* Processor (i,j,k) performs C(i,j) = C(i,j) + A(i,k)*B(k,j), where
each submatrix is n/P/3x n/p/3

— Not always that much memory available...

31



2.5D Matrix Multiplication

* Assume can fit cn?/P data per processor, c>1
* Processors form (P/c)¥2 x (P/c)¥? x ¢ grid
(P/c)1/?
Sl

Q\c,\ _
\ ‘ Example: P= 32, c=2
c -




2.5D Matrix Multiplication

* Assume can fit cn?/P data per processor, c > 1
* Processors form (P/c)¥2 x (P/c)¥? x ¢ grid

J

Initially P(i,j,0) owns A(i,j) and B(i,j)
K each of size n(c/P)Y/? x n(c/P)/?

(1) P(i,j,0) broadcasts A(i,j) and B(i,j) to P(i,j,k)
(2) Processors at level k perform 1/c-th of SUMMA, i.e. 1/c-th of Z_ A(i,m)*B(m,j)
(3) Sum-reduce partial sums Z . A(i,m)*B(m,j) along k-axis so P(i,j,0) owns C(i,j)



2.5D Matmul on BG/P, 16K nodes / 64K cores

Matrix multiplication on 16,384 nodes of BG/P

100 I I
[ 2.5D MM s
2D MM

80 [ 2.7X faster ]

60 — Using c=16 matrix copies

40 b

Percentage of machine peak

12X faster
o - :
o ;

8192 131072



2.5D Matmul on BG/P, 16K nodes / 64K cores

c = 16 copies
Matrix multiplication on 16,384 nodes of BG/P

e 1.4 | | 1 ]
Y X communication -
> 12F idle 3
5 = 95% reduction in comm computation ==
N 1 " -
© - N
E 08F 3
@] L i
c N i
) 6 F ~
g %0 :
c 04F 2.7x faster -
S x

3 -

n :

0
/7\(979 /7\(979 \73
0 '50 ’90 ’QS

%
Distinguished Paper Award, EuroPar’11

SC’11 paper by Solomonik, Bhatele, D.



Perfect Strong Scaling —in Time and Energy (1/2)

Every time you add a processor, you should use its memory M too
Start with minimal number of procs: PM = 3n?
Increase P by a factor of c =» total memory increases by a factor of c
Notation for timing model:
— V1, By, a; = secs per flop, per word_moved, per message of size m
T(cP) = n3/(cP) [ yr+ Br/M¥2 + a/(mM1/2) ]
=T(P)/c
Notation for energy model:
— Ve, Be, a¢ = joules for same operations
— O = joules per word of memory used per sec
— & = joules per sec for leakage, etc.
E(cP) = cP { n3/(cP) [ v+ Be/MY2 + o/ (mMY/2) | + §.MT(cP) + €.T(cP) }
= E(P)



Perfect Strong Scaling in Time of
2.5D Matmul on BG/P, n=64K

Matrix multiplication on BG/P (n=65,536)

100 l l
| - 25D MM ——

B0 [ -

7777777777777777777777777777777777777777777777777777777777777777777777777777777

Percentage of machine peak

T —_ -
o b 1
0 ] l

256 512 1024 2048

#nodes



Perfect Strong Scaling —in Time and Energy (2/2)

Perfect scaling extends to N-body, Strassen, ...
We can use these models to answer many questions, including:

What is the minimum energy required for a computation?

Given a maximum allowed runtime T, what is the minimum
energy E needed to achieve it?

Given a maximum energy budget E, what is the minimum
runtime T that we can attain?

The ratio P = E/T gives us the average power required to run
the algorithm. Can we minimize the average power consumed?

Given an algorithm, problem size, number of processors and
target energy efficiency (GFLOPS/W), can we determine a set
of architectural parameters to describe a conforming
computer architecture?



Extending to rest of Direct Linear Algebra
Naive Gaussian Elimination: A =LU

fori=1ton1 - for i=1ton-1
A(i+1:n,i) = A(i+1:n,i) * (1 / A(i,i) ) _
... scale a vector 3 update column i
A+t i+1:n) = A+1:n, i) update trailing matrix

-A(i+1:n, i) *A(i, i+1:n)
... rank-1 update

Work at step i of Gaussian Elimination
i

Finished part of U

i AG,) | AGKD < A(i,i+1:n)

Finished
[multipliers

1
A(j,i‘—""’l A,k
1

i

A(i+1:n,i) A(i+1l:n,i+1:n)
39



Communication in sequential

One-sided Factorizations (LU, QR, ...)

* Naive Approach
for i=1ton-1
update column i
update trailing matrix
* Hwords_moved = O(n3)

« #words moved = O(n3/M*/3)

Blocked Approach (LAPACK)
for i=1ton/b-1

update block i of b columns

update trailing matrix

* Recursive Approach
func factor(A)

if A has 1 column, update it
else

factor(left half of A)
update right half of A

factor(right half of A)
« #words moved = O(n3/M/2)

* None of these approaches
* minimizes #messages
* handles eig() or svd()
* works in parallel

* Need more ideas



TSQR: QR of a Tall, Skinny matrix

N
J

=

=

=

=

-
N
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TSQR: QR of a Tall, Skinny matrix

- B - B
Wo | ((QuoRog | [ Quo O [Rae
W - W, _ Qi Ryg _ Q0 [ Ry
W, Q0 Ryo Qy Ryo
W3 ) \Qso Ryo ) U Qyp ) Ry
~ B

R10 _ O~01 R01 _ QOl _ Ros
Rzo Q11 R11 Qll R11

] o

Output = { Qqy, Q 0, Quor Q300 Qg Qyp, Qs Ry }




TSQR: An Architecture-Dependent Algorithm

W, | - Rouo > R
01
Parallel: (/- wl — 210 T~ Ry,
Wi | — Ry 7 Riz
i W, | — R
00
. R
Sequential: y=| W —3 R 3 R,
W, \:>R03
L W3 _
i W, | — Roo P
Dual Core:  w=| Wi | =™ Ry —>"00 7 o
W, —> Ry, 3'%3
| Ws _ > Ry

Multicore / Multisocket / Multirack / Multisite / Out-of-core: ?

Can choose reduction tree dynamically



TSQR Performance Results

e Parallel
— Intel Clovertown
— Up to 8x speedup (8 core, dual socket, 10M x 10)
— Pentium Il cluster, Dolphin Interconnect, MPICH
* Upto 6.7x speedup (16 procs, 100K x 200)
— BlueGene/L
* Up to 4x speedup (32 procs, 1M x 50)
— Tesla C 2050 / Fermi
e Upto13x (110,592 x 100)
— Grid —4x on 4 cities (Dongarra et al)
— Cloud — 1.6x slower than accessing data twice (Gleich and Benson)
 Sequential
— “Infinite speedup” for out-of-Core on PowerPC laptop
e As little as 2x slowdown vs (predicted) infinite DRAM
* LAPACK with virtual memory never finished

 SVD costs about the same
e Joint work with Grigori, Hoemmen, Langou, Anderson, Ballard, Keutzer,
others



Back to LU: Using similar idea for TSLU as TSQR:

Use reduction tree, to do “Tournament Pivoting”
s N
W, /P1 Ly 'U1\ Choose b pivot rows of W,, call them W’
Wb = W, [PylLyU, Choose b pivot rows of W,, call them W,
W;| [Py L;Ug Choose b pivot rows of W, call them W’
W, | P, L, U, Choose b pivot rows of W,, call them W/’
. - /
4 N
W'I, P L U .
W, | - 12" =12 127 Choose b pivot rows, call them W’
wi’ P34-L34-U34J Choose b pivot rows, call them W,,’
- /

Wi,
[W J P123a"L1234"Us231  Choose b pivot rows
34

« Go back to W and use these b pivot rows
 Move them to top, do LU without pivoting
« Extra work, but lower order term
« Thm: As numerically stable as Partial Pivoting on a larger matrix 45



Exascale Machine Parameters
Source: DOE Exascale Workshop

2720 = 1,000,000 nodes

1024 cores/node (a billion cores!)
100 GB/sec interconnect bandwidth
400 GB/sec DRAM bandwidth

1 microsec interconnect latency

50 nanosec memory latency

32 Petabytes of memory

1/2 GB total L1 on a node



log, (n%/p)
log, (memory_per_proc)

Exascale predicted speedups
for Gaussian Elimination:
2D CA-LU vs ScalLAPACK-LU

CALU/Scalapack speed up

(5]

279

2438

186 5

155 [k

124

©
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o
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2.5Dvs 2D LU
With and Without Pivoting

LU on 16,384 nodes of BG/P (n=131,072)

100 1 | '
communication
[ idle
80 - compute m— —
L X
o [ ]
E 4 F 2X faster
= : .
20 :_ 2X faster _:
ok
Yo, Yo S, G
/0/1,0 'O/”o

0, 0,
8 Or 8 O¢
<0 < 5 <D < 5



Summary of dense sequential algorithms
attaining communication lower bounds

» Algorithms shown minimizing # Messages use (recursive) block layout
. Not1p055|ble with columnwise or rowwise layouts

* Many re

erences (see reports), only some shown, plus ours

* Cache-oblivious are underlined, Green are ours, ? is unknown/future work

Algorithm

2 Levels of Memory

Multiple Levels of Memory

#Words Moved and # Messages

#Words Moved and #Messages

BLAS-3

Cholesky

LU with
pivoting

QR
Rank-
revealing

Eig, SVD




Summary of dense parallel algorithms
attaining communication lower bounds

- Assume nxn matrices on P processors
* Minimum Memory per processor = M = O(n?/ P)
* Recall lower bounds:

#words_moved = Q((n3/P) /M¥2) =

Q(n2/ pY2)

#messages = Q((n3/P) /M32) = Q(PV2)

Algorithm Reference Factor exceeding Factor exceeding
lower bound for lower bound for
#words_moved #messages

Matrix Multiply

Cholesky

LU

QR

Sym Eig, SVD

Nonsym Eig




Summary of dense parallel algorithms
attaining communication lower bounds

- Assume nxn matrices on P processors (conventional approach)
* Minimum Memory per processor = M = 0O(n?/ P)
e Recall lower bounds:

#words_moved = Q((n3/P) /M¥Y2) = Q(n2/ PV2)

#messages = Q((n3/P) /M32) = Q(PV2)

Algorithm Reference Factor exceeding Factor exceeding
lower bound for lower bound for
#words_moved #messages

Matrix Multiply | [Cannon, 69] 1

Cholesky ScaLAPACK log P

LU ScaLAPACK log P

QR ScaLAPACK log P

Sym Eig, SVD ScaLAPACK log P

Nonsym Eig ScaLAPACK P1/2 log P




Summary of dense parallel algorithms
attaining communication lower bounds

- Assume nxn matrices on P processors (conventional approach)
* Minimum Memory per processor = M = O(n?/ P)
e Recall lower bounds:

#words_moved = Q((n3/P) /M¥Y2) = Q(n%2/ PV2)

#messages = Q((n3/P) /M32) = Q(PV2)

Algorithm Reference Factor exceeding Factor exceeding
lower bound for lower bound for
#words_moved #messages

Matrix Multiply | [Cannon, 69] 1 1

Cholesky ScaLAPACK log P log P

LU ScaLAPACK log P n log P / P1/2

QR ScaLAPACK log P n log P / P1/2

Sym Eig, SVD ScaLAPACK log P n/ P12

Nonsym Eig ScaLAPACK P1/2 log P nlog P




Summary of dense parallel algorithms
attaining communication lower bounds

- Assume nxn matrices on P processors (better)
* Minimum Memory per processor = M = O(n?/ P)
e Recall lower bounds:

#words_moved = Q((n3/P) /M¥Y2) = Q(n2/ PY2)

#messages = Q((n3/P) /M32) = Q(PV2)

Algorithm Reference Factor exceeding Factor exceeding
lower bound for lower bound for
#words_moved #messages

Matrix Multiply | [Cannon, 69] 1 1

Cholesky ScaLAPACK log P log P

LU [GDX10] log P log P

QR [DGHLOS8] log P log3 P

Sym Eig, SVD [BDD11] log P log3 P

Nonsym Eig [BDD11] log P log3 P




Can we do even better?

- Assume nxn matrices on P processors
e Use c copies of data: M = O(cn?/ P) per processor
* Increasing M reduces lower bounds:

#words _moved

= Q((n¥/P) / M*2)

= Q(n?/ (c/>PY?))

#messages = Q((n3/P) /M32) = Q(PY2/c32)

Algorithm Reference Factor exceeding | Factor exceeding lower
lower bound for | bound for #messages
#words_moved

Matrix Multiply | [DS11,SBD11] polylog P polylog P

Cholesky [SD11, in prog.] polylog P c2 polylog P — optimal!

LU [DS11,SBD11] polylog P c2 polylog P — optimal!

QR Via Cholesky QR polylog P c2 polylog P — optimal!

Sym Eig, SVD ?

Nonsym Eig ?




Symmetric Band Reduction

Grey Ballard and Nick Knight

A = QAQ'=T, where

— A=AT is banded

— T tridiagonal

— Similar idea for SVD of a band matrix

Use alone, or as second phase when A is dense:
— Dense = Banded = Tridiagonal

Implemented in LAPACK's sytrd

Algorithm does not satisfy communication lower bound
theorem for applying orthogonal transformations

— |t can communicate even less!
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Successive Band Reduction
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b = bandwidth
¢ = #columns
d = #diagonals
Constraint: c+d<b
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Successive Band Reduction

b = bandwidth
¢ = #columns
d = #diagonals
Constraint: c+d<b
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Successive Band Reduction
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Constraint: c+d<b
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Successive Band Reduction
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Successive Band Reduction
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Successive Band Reduction
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Successive Band Reduction
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b+1

Successive Band Reduction

b+1
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c = #columns
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Q5 5

Constraint: c+td < b



Conventional vs CA - SBR

Touch all data 4 times Touch all data once

Conventional COmmunicaﬁOn'AVOiding

Many tuning parameters:
Number of “sweeps”, #diagonals cleared per sweep, sizes of parallelograms
#bulges chased at one time, how far to chase each bulge

Right choices reduce #words_moved by factor M/bw, not just M1/2



Speedups of Sym. Band Reduction
vs DSBTRD

Up to 17x on Intel Gainestown, vs MKL 10.0
— n=12000, b=500, 8 threads

Up to 12x on Intel Westmere, vs MKL 10.3
— n=12000, b=200, 10 threads

Up to 25x on AMD Budapest, vs ACML 4.4
— n=9000, b=500, 4 threads

Up to 30x on AMD Magny-Cours, vs ACML 4.4
— n=12000, b=500, 6 threads

Neither MKL nor ACML benefits from multithreading in
DSBTRD

— Best sequential speedup vs MKL: 1.9x
— Best sequential speedup vs ACML: 8.5x



Communication Lower Bounds for
Strassen-like matmul algorithms

Classical Strassen’s Strassen-like
O(n3) matmul: O(n'87) matmul: O(n“) matmul:
#words _moved = #words _moved = #words _moved =
Q (M(n/M¥2)3/P) | | Q (M(n/MY2)'87/P) | | Q (M(n/M¥/2)*/P)

Proof: graph expansion (different from classical matmu
— Strassen-like: DAG must be “regular” and connected

Extends up to M = n2 / p2/®
Best Paper Prize (SPAA’11), Ballard, D., Holtz, Schwartz
to appear in JACM

Is the lower bound attainable?




Communication Avoiding Parallel Strassen (CAPS)

BFS VS.

A-B

Runs all 7 multiplies in parallel Runs all 7 multiplies sequentially

Each on P/7 processors Each on all P processors

Needs 7/4 as much memory Needs 1/4 as much memory
CAPS

In practice, how to
best interleave

BFS and DFS is

a “tuning parameter”

If EnoughMemory and P =7
then BFS step
else DFS step

end if




Performance Benchmarking, Strong Scaling Plot
Franklin (Cray XT4) n = 94080

50

CAPé —*—'

2.5D-Strassen —»— -

W H
o o

Effective GFLOPS per node
N
o

2D-Strassen ---e---

T " Strassen-2D ---a---

ScalLAPACK ---&---

| For detalls see SC12 talk on

“Communication-Avoiding
Parallel Strassen” by
Grey Ballard et al 11/15 at 4pm

Speedups: 24%-184%

(over previous Strassen-based algorithms)

L
P=49

L . . : N
P=343 P=2401

2.5D Classical —&—




Summary of Direct Linear Algebra

* New lower bounds, optimal algorithms, big speedups in theory
and practice

* Lots of ongoing work on
— Algorithms:

 LDLT, QR with pivoting, other pivoting schemes, eigenproblem:s, ...
* All-pairs-shortest-path, ...

e Both 2D (c=1) and 2.5D (c>1)

e But only bandwidth may decrease with c>1, not latency

* Sparse matrices

— Platforms:
e Multicore, cluster, GPU, cloud, heterogeneous, low-energy, ...
— Software:
* Integration into Sca/LAPACK, PLASMA, MAGMA, ...
* |ntegration into applications (on IBM BG/Q)
— Qbox (with LLNL, IBM): molecular dynamics
— CTF (with ANL): symmetric tensor contractions



Outline

 “Direct” Linear Algebra
 Lower bounds on communication
* New algorithms that attain these lower bounds

* Ditto for “Iterative” Linear Algebra

e Ditto (work in progress) for programs accessing
arrays (eg n-body)



Avoiding Communication in lterative Linear Algebra

* k-steps of iterative solver for sparse Ax=b or Ax=Ax
— Does k SpMVs with A and starting vector
— Many such “Krylov Subspace Methods”

e Goal: minimize communication
— Assume matrix “well-partitioned”

— Serial implementation
* Conventional: O(k) moves of data from slow to fast memory
 New: O(1) moves of data — optimal
— Parallel implementation on p processors
e Conventional: O(k log p) messages (k SpMV calls, dot prods)
 New: O(log p) messages - optimal
* Lots of speed up possible (modeled and measured)

— Price: some redundant computation
74



Communication Avoiding Kernels:
The Matrix Powers Kernel : [Ax, A%x, ..., A*X]

* Replace k iterations of y = A-x with [Ax, A%x, ..., A%X]

A3'X O 06 0 ¢ 0 0 0 0 0 0 0 0 O 0 O 0 O O 0 O O O O 0 O O 0 O 0 O 0 o
AZ'X O 0 0 06 0 0 0 0 0 0 0 0 O O O 0 0 O O O O 0 O O O O O O O 0o o
Ax © o ¢ 6 06 06 0 06 0 0 06 0 06 0 0 06 0 0 0 0 0 0 0 0 0 0 0 0 0 o o o
X o 0 06 06 0 0 0 0 0 06 0 0 O 0 06 0 0 O 0 O O 0 O O O O 0 O O 0 o
12 3 4. .. 32

 Example: A tridiagonal, n=32, k=3
 Works for any “well-partitioned” A



Communication Avoiding Kernels:
The Matrix Powers Kernel : [Ax, A%x, ..., A*X]

* Replace k iterations of y = A-x with [Ax, A%x, ..., A%X]

A3'X O 06 0 ¢ 0 0 0 0 0 0 0 0 O 0 O 0 O O 0 O O O O 0 O O 0 O 0 O 0 o
AZ'X O 0 0 06 0 0 0 0 0 0 0 0 O O O 0 0 O O O O 0 O O O O O O O 0o o
AXx © QA\Q o 06 06 06 0 0 0 06 06 0 0 O 0 06 0 0 0 O O O O 0 O O O O o o
X o 0 o 06 06 6 0 0 0 06 0 0 0 O 0 06 0 0 O 0 O O 0 O 06 O O 0o 0o o o
12 3 4. .. 32

 Example: A tridiagonal, n=32, k=3



Communication Avoiding Kernels:
The Matrix Powers Kernel : [Ax, A%x, ..., A*X]

* Replace k iterations of y = A-x with [Ax, A%x, ..., A%X]
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12 3 4. .. 32

 Example: A tridiagonal, n=32, k=3
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The Matrix Powers Kernel : [Ax, A%x, ..., A*X]
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Communication Avoiding Kernels:
The Matrix Powers Kernel : [Ax, A%x, ..., A*X]

* Replace k iterations of y = A-x with [Ax, A%x, ..., A%X]
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 Example: A tridiagonal, n=32, k=3



Communication Avoiding Kernels:
The Matrix Powers Kernel : [Ax, A%x, ..., A*X]

* Replace k iterations of y = A-x with [Ax, A%x, ..., A*x]

AS.x @ o o o o o © 0 0 0 0 0 0 0 0 0
A2.x ¢ o o o o o © 06 0 0 0 0 0 0 0 0
Ax © o o o o o © 0 0 0 0 0 0 0 0 0
X © o o o o o © 0 0 0 0 0 0 0 0 0
12 3 4. 32

 Example: A tridiagonal, n=32, k=3



Communication Avoiding Kernels:
The Matrix Powers Kernel : [Ax, A%x, ..., A*X]

* Replace k iterations of y = A-x with [Ax, A%x, ..., A%X]
e Sequential Algorithm

A3'X e e, 0 06 0 0 0 0 0 0 0 0 0 0 O 0 0 0 0 O 0 O 0 0 O 0 0 0 o
AZ'X o 0 0 6 0 0 0 0 0 0 0 0 O O O 0 0 O O O O 0 O O O O O O O 0o o
Ax & @€ & 06 0 0 0 .0 0 0 06 0 06 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o o o
X O 0 @0 0 0 0 0 0.0 0 0o 0 0 0 0 0 0 0 06 06 0o 0o 0 06 0 0 0 0 O 0o o
12 3 4. .. 32

 Example: A tridiagonal, n=32, k=3



Communication Avoiding Kernels:
The Matrix Powers Kernel : [Ax, A%x, ..., A*X]

* Replace k iterations of y = A-x with [Ax, A%x, ..., A*x]

e Sequential Algorithm

Step 1 Step 2

A3-x °® o o © 06 0 0 0 0 0 0 0 0 0 0 0 0 0
A2.-x © 06 0 0 0 0 0 0 0 0 0 0 0 0 0
A-X © 06 0 0 0 0 0 0 0 0 0 0 0 0 0
X © 06 0 0 0 0 0 0 0 0 0 0 0 0 0
1 2 3 4.. .. 32

 Example: A tridiagonal, n=32, k=3



Communication Avoiding Kernels:
The Matrix Powers Kernel : [Ax, A%x, ..., A*X]

* Replace k iterations of y = A-x with [Ax, A%x, ..., A*x]

e Sequential Algorithm

Step 1 Step 2

A3-x °® o o ® 0 0 0.0 0 0 0 0 0 0 0 0 0 0
A2.-x ® 0 0 0 0.0 0 0 0 0 0 0 0 0 0
A-X © 0 0 0 0 0.0 0 0 0 0 0 0 0 0
X © 0 0 0 0 0 0.0 0 0 0 0 0 0 0
1 2 3 4.. .. 32

 Example: A tridiagonal, n=32, k=3



Communication Avoiding Kernels:
The Matrix Powers Kernel : [Ax, A%x, ..., A*X]

* Replace k iterations of y = A-x with [Ax, A%x, ..., A*x]

e Sequential Algorithm

Step 1 Step 2

A3-x °® o o © 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A2.-x © 06 0 0 0 0 0 0 0 0 0 0 0 0 0
A-X © 06 0 0 0 0 0 0 0 0 0 0 0 0 0
X © 06 0 0 0 0 0 0 0 0 0 0 0 0 0
1 2 3 4.. .. 32

 Example: A tridiagonal, n=32, k=3



Communication Avoiding Kernels:
The Matrix Powers Kernel : [Ax, A%x, ..., A*X]

* Replace k iterations of y = A-x with [Ax, A%x, ..., A*x]
* Parallel Algorithm

Proc 1 Proc 2

AS.x @ o o o o o o o © 0 0 0 00 0 0 0 0 0 0 0
A2.x @ o o o o o o ® 0 0 0 0/0 0 0 0 0 0 0 0
Ax © 0 o o o o © 0 0 0 0/0 0 0 0 0 0 0 0
X © 0 o o o o 0 0 0 olo 0 0 0 0 0 0 0
1 2 3 4.. .. 32

 Example: A tridiagonal, n=32, k=3
* Each processor communicates once with neighbors



Communication Avoiding Kernels:
The Matrix Powers Kernel : [Ax, A%x, ..., A*X]

* Replace k iterations of y = A-x with [Ax, A%x, ..., A*x]

* Parallel Algorithm

Proc1 Proc 2

A3-x
A2-x
A-X

X

12 3 4. .. 32

 Example: A tridiagonal, n=32, k=3
e Each processor works on (overlapping) trapezoid



Communication Avoiding Kernels:
The Matrix Powers Kernel : [Ax, A%x, ..., A*X]

Same idea works for general sparse matrices

Simple block-row partitioning =»
(hyper)graph partitioning

Top-to-bottom processing =
Traveling Salesman Problem




Minimizing Communication of GMRES to solve Ax=b
GMRES: find x in span{b,Ab,...,Akb} minimizing | | Ax-b ||,

Standard GMRES Communication-avoiding GMRES
fori=1tok W=[v, Ay, A?y, ..., Akv ]
w=A"-v(i-1) ... SpMV [Q,R] = TSQR(W)
MGS(w, v(0),...,v(i-1)) ... “Tall Skinny QR”
update v(i), H build H from R
endfor solve LSQ problem with H

solve LSQ problem with H

Sequential case: #words moved decreases by a factor of k
Parallel case: #messages decreases by a factor of k

eOops — W from power method, precision lost! .8



Matrix diag-cond-1.000000e-11: rel. 2-nrm resid.

Log10 of 2-norm relative residual
|
w

1
“Monomial” basis [AX,...,Akx]

fails to converge

O

Do
Cod o

Different polynomial basis [p,(A)x,...
does converge

o}
ok®.

Nonrestarted GMRES

v Restarted GMRES(192)
O  Monomial-GMRES(24 8)
A Newton-GMRES(24,8)

a

O
Q

Q

© ooo

O

)pk(A)x] |

200

300

400 S00 600
Inner iteration number

700

800

900 1000
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Speed ups of GMRES on 8-core Intel Clovertown

t

w
n

Relative runtime, for best (k,t)

with floor(restart length / k)

P
[

P
=

g
o

g
n

Ay
=)

-

%)

.
=)

o
wn

o
o

Requires Co-tuning Kernels
[MHDYO09]

using 8 threads and restart length 60

Runtime per kernel, relative to CA-GMRES(k,t), for all test matrices,

pwtk

Matrix powers
kernel

TSQR

Block Gram-
Schmidt

Small dense
operations
Sparse matrix-
vector product
Modified
Gram-Schmidt

xenon

bmw cant 1d3pt cfd

Sparse matrix name

shipsec
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Compute rg = b — Axp. Choose 1 arbitrary.

Set po =710, ¢-1=0nx1-
For k=0.1..... until convergence, Do

P = [pska Apskza ey Aspsk]
Q = [qsk—1. AQski—1+ - .. A%Qsp—1]
R = [T,Sk, ATSk, cee Asrsk,]
//Compute the 1 x (35 -+ 3) Gram vector.
T
9= (TO) [Pa Qa R]
//Compute the (3s-+ 3) x (3s+ 3) Gram matrix
PT
G=| QT [ P @Q R }
RT

For /{ =0 to s,

bﬁk - [Bl (5, 6) O*‘H’ OS"H}T

1.
2.
3.
4.
5.
6.
7. Tjy1 1= Zj + a;pj + wjs;
8. ’I'j+1 ZT S5 *(,)u‘jflﬁj
4. «— Ti+1,To 2 O_J
9. B = e
10. Pjt1 = T4 +.dj(pj — ijpj)
11. EndDo

CA-BiCGStab

For j =0 to L%J —1, Do
Qafors = <g.dy;>
sk q — — 11 —
sk+j <g’bqk+]>
sk+j5 = Tsk+j — (sk+j [P, Q, R]bsk+j
For €:O to s—2j+1, Do
(41
sk—f—J dsk—i—j 9k+jbsk+J—1

//such that [P, Q, R]c', . = A'quy;

Sk+]

<C<k+j+1 Gcck+a+1>

Wge ;=
shti = el o Gel >
Tsktj+1 = Tsktj T OsktjPsk+j T w<k+jq8k+j

Wsk+j [P Q’ ] sk—l—j—l—l

Tsk4+j4+1 = Qsk+j5 —
For /=0 to s—2j, Do
d f _ ) (4—0—1
sk+j+1 = Csk+j+1 <k+3 sk—+j+1

//such that [P, @, AE?".sk+j+1

0
<9, dspqj41>
29 Tskjd1”
<g,dgy ;>

] sk+j+1 —

[e%

Bsk+j = 5

Psk+j+1 = Tsk+j+1 + Bsk—f—jpsk—l-] Bsk—l—]wsk-i—j [P Qa ] sk—+j
For /=0 to s—2j, Do
14 P, /41
bsk+]+1 = dsk+3+1 + Bskﬂ—j sk+j 69k+jwsk+jb<k+j
//such that [P, Q, R]b’ kil = = A'Datrjr1-
EndDo
EndDo
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Exact Residual (2-norm)

10 n .

CA-BICGSTAB Convergence, s =32
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CA-BICGETAB Convergence, s =32

10 T T T T T T T
With Residual Replacement (RR)
0 a la Van der Vorst and Ye

10 -
:
G 5 :
™10 Monomial
- Newton
3 — Chebyshev
Rz 10 —o— Monomial+RER
@ 10 || —=—Newton+RR -
L3] —— Chebyshev+RR
(1] .
b Naive
£} : i

15| | T NawetER o
10 - ___ _ & TN o
10'20 1 ] 1 1 ] ] 1
0 20 40 60 80 100 120 140 160
Iteration
ST e oromial | ewton | chaoysher
Replacement Its. 74 (1) [7, 15, 24, 31, ..., [67, 98] (2) 68 (1)

92,97, 103] (17)



Tuning space for Krylov Methods

 Classifications of sparse operators for avoiding communication
* Explicit indices or nonzero entries cause most communication, along with vectors
* Ex: With stencils (all implicit) all communication for vectors

Indices

Explicit (O(nnz)) Implicit (o(nnz))

Nonzero | Explicit (O(nnz))
entries Implicit (o(nnz))

* Operations
* [x, Ax, A%X,...,, A ] or [x, p;(A)X, p,(A)X, ..., p (A)x ]
* Number of columns in x
o [x, Ax, A2x,..., Ax ] and [y, ATy, (AT)2y,..., (AT)%y ], or [y, ATAy, (ATA)2y,..., (ATA)ky ],
 return all vectors or just last one
» Cotuning and/or interleaving
W =[x, Ax, A2x,..., A% ] and {TSQR(W) or WTW or ... }
* Ditto, but throw away W
* Preconditioned versions



Summary of Iterative Linear Algebra

* New Lower bounds, optimal algorithms,
big speedups in theory and practice
* Lots of other progress, open problems
— Many different algorithms reorganized
 More underway, more to be done
— Need to recognize stable variants more easily
— Preconditioning
* Hierarchically Semiseparable Matrices

— Autotuning and synthesis
e pOSKI for SpMV — available at bebop.cs.berkeley.edu
* Different kinds of “sparse matrices”



Outline

 “Direct” Linear Algebra
 Lower bounds on communication
* New algorithms that attain these lower bounds

e Ditto for “Iterative” Linear Algebra

* Ditto (work in progress) for programs accessing
arrays (eg n-body)



Recall optimal sequential Matmul

Naive code
fori=1:n, for j=1:n, for k=1:n, C(i,j)+=A(i,k)*B(k,j)

“Blocked” code
foril =1:b:n, forjl1=1:b:n, forkl=1:b:n
fori2 =0:b-1, forj2 =0:b-1, for k2 =0:b-1"
i=i1+i2, j=j1+j2, k=kl+k2 - b x b matmul
C(i,j)+=A(i,k)*B(k,j) i

Thm: Picking b = MY/2 attains lower bound:
#words_moved = Q(n3/M*/2)
Where does 1/2 come from?



New Thm applied to Matmul
for i=1:n, for j=1:n, for k=1:n, C(i,j) += A(i,k)*B(k,j)

Record array indices in matrix A

i j k
1 0 1)

A =10 1 1

1 1 0

A
B
C

Solve LP for x = [xi,xj,xk]": max1'™x s.t. Ax<1
—Result: x=1[1/2,1/2,1/2]",1'x=3/2 =

Thm: #words moved = Q(n3/M51)= Q(n3/M1/2)
Attained by block sizes M, M* Mk = M1/2 \M1/2 \M1/2



New Thm applied to Direct N-Body

e fori=1:n, for j=1:n, F(i) += force( P(i) , P(j) )

* Record array indices in matrix A
i J

1 0) F
A= |1 0 P(i)
L0 1) P()

* Solve LP for x = [xi,xj]": max1'x s.t.Ax<1
—Result: x=[1,1],1'x =2 =5

e Thm: #words_moved = Q(n2/M>1)= Q(n%/M1)
Attained by block sizes M¥ MY = M1, M?!



N-Body Speedups on IBM-BG/P (Intrepid)
8K cores, 32K particles

K. Yelick, E. Georganas, M. Driscoll, P. Koanantakool, E. Solomonik

Execution Time vs. Replication Factor
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New Thm applied to Random Code

foril=1:n, fori2=1:n, ..., fori6=1:n
A1(i1,i3,i6) += func1(A2(i1,i2,i4),A3(i2,i3,i5),A4(i3,i4,i6))
A5(i2,i6) += func2(A6(il,i4,i5),A3(i3,i4,i6))

Record array indices 12 B M5
1 0 1 0 0 1 Al
In matrix A /1 e 1 o 0\ ;
A= 0 1 1 0 1 0 A3
0 0 1 1 0 1 A3,A4
0 0 1 1 0 1 A5
\_! 0 0 1 1 0/ As

Solve LP for x = [x1,...,x7]": max1'x s.t. Ax<1
— Result: x=1[2/7,3/7,1/7,2/7,3/7,4/7],1"x = 15/7 =5
Thm: #words_moved = Q(né/M51)= Q(n8/M8/7)
Attained by block sizes M2/7, M3/7 M7 M2/7 \M3/7 \4/7



Approach to generalizing lower bounds

e Matmul
for i=1:n, for j=1:n, for k=1:n,
C(i,j)+=A(i,k)*B(k,j)
=> for (i,j,k) in S = subset of 73
Access locations indexed by (i,j), (i,k), (k,j)
* General case
foril=1:n, fori2=il:m, ... for ik =i3:i4
C(i1+2*i3-i7) = func(A(i2+3%*i4,i1,i2,i1+i2,...),B(pnt(3*i4)),...)
D(something else) = func(something else), ...
=> for (i1,i2,...,ik) in S = subset of ZX
Access locations indexed by “projections”, eg
b (i1,i2,...,ik) = (i1+2*i3-i7)
b, (i1,i2,...,1K) = (12+3%14,i1,i2,i1+i2,...), ..



General Communication Bound

e Def: Holder-Brascamp-Lieb Linear Program (HBL-LP)
fors,,...,S.:

for all subgroups H < 7%,  rank(H) < 2; s;*rank(¢;(H))
* Thm: Given a program with array refs given by ¢,
choose s; to minimize s, = 2; s;subject to HBL-LP. Then

#twords_moved = Q (#iterations/Ms-e-1)

— Proof depends on recent result in pure mathematics by
Christ/Tao/Carbery/Bennett



Is this bound attainable (1/2)?

e But first: Can we write it down?

— Thm: (bad news) Reduces to Hilbert’s 10t problem over
Q (conjectured to be undecidable)

— Thm: (good news) Can write it down explicitly in many
cases of interest (eg all ¢, = {subset of indices})

— Thm: (good news) Easy to approximate

* |f you miss a constraint, the lower bound may be too
large (i.e. s,;5, too small) but still worth trying to attain,
because your algorithm will still communicate less



Is this bound attainable (2/2)?

 Depends on loop dependencies
e Best case: none, or reductions (matmul)

e Thm: When all cbj = {subset of indices}, dual of
HBL-LP gives optimal tile sizes:

HBL-LP: minimize 1™s s.t. sT*A>1"T
Dual-HBL-LP: maximize 1™*x s.t. A*x<1
Then for sequential algorithm, tile i; by M
e Ex: Matmul:s=[1/2,1/2,1/2]"=x
e Extends to unimodular transforms of indices



Ongoing Work

ldentify more decidable cases
— Works for any 3 nested loops, or 3 different subscripts

Automate generation of approximate LPs

Extend “perfect scaling” results for time and
energy by using extra memory

Have yet to find a case where we cannot attain
ower bound — can we prove this?

ncorporate into compilers



For more details

* Bebop.cs.berkeley.edu

 CS267 — Berkeley’s Parallel Computing Course
— Live broadcast in Spring 2013

 www.cs.berkeley.edu/~demmel

— Prerecorded version planned in Spring 2013

e www.xsede.org

* Free supercomputer accounts to do homework!



Summary

Time to redesign all linear algebra, n-body,...
algorithms and software
(and compilers...)

Don’t Communic...



