Communication Lower Bounds and Optimal
Algorithms for Programs that Reference Arrays

James Demmel
UC Berkeley
Math and EECS Depts.

Joint work with
Michael Christ, Nicholas Knight, Thomas Scanlon, Katherine Yelick

Motivation: Why avoid communication?

e Communication = moving data

— Between levels of memory hierarchy

— Between processors over network
e Running time of an algorithm is sum of 3 terms:
— #flops * time_per_flop
— #words_moved / bandwidth ... communication

— #messages * latency ... communication
e Time per flop < 1/bandwidth < latency

— Gaps growing exponentially
e Avoid communication to save time

e Same story for energy: Avoid communication to save energy

Example: Optimal Sequential Matmul

e Naive code
—for i=1:n, for j=1:n, for k=1:n, C(i,j)+ = A(i, k) * B(k,)
— Moves O(n?) words between cache (size M < n?) and DRAM
e “Blocked” code

— Write A as n/b x n/b matrix of b x b blocks Ali, j]
— Ditto for B, C
—for i=1:n/b, for j=1:n/b, for k=1:n/b,

Cli, jl+ = Ali, k] « B[k,j] ... b x b matmul

e Thm [Hong,Kung|: Choosing b N (M/ 3)1/ 2 attains lower bound:
#words_moved = Q(n? /M 1/ 2)

e Where do 1/2’s come from?

New Theorem, applied to Matmul

o for i=1:n, for j=1:n, for k=1:n, C(i,7)+ = A(i, k) x B(k, j)

e Record array indices in matrix A

U N
Afl1l 0 1
A= Bl0 1 1
C\1 1 0

o Let v = |z, 7, zi]!, 1 = vector of 17s

e Solve LP: maximize 11 2 such that Az < 1

o Solution: = =[1/2,1/2,1/2], 112 =3/2 = sypn;

e Thm: #words moved = Q(n®/MSHBL=L) = Q(n?/M1/2).

e Attain by blocking index i by ©(M%i) = ©O(M1/?), ditto for j, k

New Theorem, applied to Direct n-Body

o for i=1:n, for j=1:n, F(i)+ = force(P(i), P(j))

e Record array indices in matrix A

1]

F 1 0
A= Pu|1 0
P(GNO 1

o Let v =[x, xj]T, 1 = vector of 1’s

e Solve LP: maximize 11 2 such that Az < 1
o Solution: z =[1,1), 11z =2=syps
e Thm: #words moved = Q(n?/M3HBL=1) = Q(n?/M1).

e Attain by blocking index i by O(M%i) = (M), ditto for j

New Theorem, applied to Random Code

o for t11=1:n, ... , for i6=1:n,
Al1(31,43,16)+ = funcl(A2(il,i2,14), A3(12,13,45), A4(i3,14,16))
Ab5(i2,16)+ = func2(A6(¢1,14,1:5), A3(i3,14,16))

e Record array indices in 6 X 6 matrix A

—one column per index 71....,26
— one row per distinct set of array subscripts Al, ..., A6
— A(7,7) = 1 if array subscript ¢ has index j, else 0
o Let # = [, ...,zg]", 1 = vector of 1’s
e Solve LP: maximize 112 such that Az < 1
e Solution: = = [2/7,3/7,1/7,2/7,3/7,4/7), 1 x = 15/7 = syps
o Thm: #words moved = Q(n8/M5HBL=L) = Q(n0/M8/7).
e Attained by block sizes M2/T M3/T MYT M2/T M3/T MAT

Summary of Results (1/3)

e [ixtend communication lower bound proof from linear algebra to
any program with
— Inner loop iterations indexed by (iq, ..., %)
— Arrays in inner loop subscripted by linear functions of indices
— Ex: A(iq1,19 — i1, 3] — 4ig + Tiy, ...), B(pntr(is + 6ig)), ...
— Can be dense or sparse, sequential or parallel, ...

e Based on recent generalization of Holder, Loomis-Whitney,
Brascamp-Lieb inequalities by Bennett/Carbery/Christ/Tao
— Need to count lattice points, not volumes
— Get linear program with one inequality per subgroup H < 7.4

— Solution of linear program (HBL-LP) is sgpy,
— Thm: #words moved = Q(#loop_iterations/MSHBL—1)

Summary of Results (2/3)

e Can we write down the lower bound?

— One inequality per subgroup H < 7% but still finitely many!

—Thm (Bad news): Writing down all inequalities in HBL-LP
<= Hilbert’s 10th Problem over QQ

— Thm (Good news): Another LP has same solution, is decidable
(but expensive, so far)

— Thm (Better news): Easy to write down HBL-LP explicitly in
many cases of interest (eg when subscripts are just subsets of
indices)

— Also easy to get upper/lower bounds on solution sg g,

Summary of Results (3/3)

e Can we attain the lower bound?

— Depends on loop dependencies
— Best case: none, or reductions (like matmul)

— Thm: When subscripts are just subsets of indices, the solution
x of dual HBL-LP tells us the optimal tile sizes M*1.... M*d

— Ex: linear algebra, n-body, “random code”, database join, ...

— Conjecture: always attainable (modulo dependencies)

Outline

1. Recall lower bound proot for direct linear algebra using
Loomis-Whitney

2. Holder-Brascamp-Lieb Linear Program (HBL-LP)
e Continuous case, then discrete case
3. Applying lower bound to more general code
4. Decidability of lower bound
e Where Hilbert’s 10th Problem over QQ arises, how to avoid it
5. opecial Case: When subscripts are just subsets of indices
e WWhy HBL-LP simpler, why dual tells us optimal algorithm

6. Conclusions and Open Problems

Recall Proof for Direct Linear Algebra (3 Nested Loops)

Segment 1

+-

* M = fast memory size
Segment 2 * G =total number of flops

* Break instruction stream into
“segments” of M loads/stores
- * Data available per segment = 2*M
* Somehow derive upper bound
F on #flops possible per segment
#isegments * F2G
+ #loads/stores = M * #segments

-y = MG/F
* All depends on upper bound F

Time

Segment 3 "

Geometric Model

“C face”
Cube representing
C(1,1) += A{1,3)-B(3,1)
// // C(2,3) // //' /
/ / C(1,1) /
“l=| |V
ALy | @)
/
A(1,2) é /1= P J
Fd @
=|
A(2,1) A(1,1) 7 c.é'
U
I &5 v
“A face”

If we have at most 2M “A squares”, 2M “B squares”, and
2M “C squares” on faces, how many cubes can we have?

Loomis-Whitney

-—t

| £y
— 42
X

cubes in black box with
side lengths x, y and z

= Volume of black box

=Xyz

=(xz-zy-yx)"?

= (#Acs - #Bos - #Cos)12

Loomis-Whitney

Mk

G projection
— -

A projection

| €—

(i,k) is in A projection if (i,j,k) in 3D set
(j,k) is in B projection if (i,j,k) in 3D set

cubes in black box with (i,j) is in C projection if (i,j,k) in 3D set

side lengths x, y and z

= Volume of black box Thm (Loomis & Whitney, 1949)

=Xyz # cubes in 3D set = Volume of 3D set
=(xz-zy-yx)"? < (area(A projection) -

= (#Acs - #Bos - #Cos)12 area(B projection) -

area(C projection)) 12

Summary of Lower Bound Proof for 3 Nested Loops

e VM = fast memory size, G = total number of flops

e Break instruction stream into segments of M loads/stores

e —> 2M words of data available during segment

e Use Loomis Whitney to bound F' = #multiplies/segment by
F < (#Aentries)l/ 2. (#Bentries)l/ 2. (#Centries)l/ :

< <2M)3/2 _ O(MS/Z)

o F-#segments> G =>#segments > G/ F

o #loads/stores = M- #segments > MG/F = Q(G/M1/?)

e Result independent of dependencies (so works for LU, etc)

e Result independent of G (so works for sparse, parallel etc)

e Bound decreases with M = replication may help (2.5D algs)

First Extension Strategy

e Loomis-Whitney = Holder-Brascamp-Lieb (HBL)
e Volume of F C R? = Volume of E ¢ R?

e Projections from (¢, j, k) to (4, 7), (¢, k), (k,j) =
any linear projections ¢1, ..., om

e vol(F) < (area(Eij))l/Q . (avea(E;))Y? - (area(Ejk))l/Q —
vol(E) < C - [vol(¢;(E))®i

Where do we get exponents s; and C' < oo?

Continuous HBL
Continuous HBL Linear Program (C-HBL-LP):

dim(RY) =d = "s; - dim(¢;(RY) = s, - d;
1=1 1=1

and for all subspaces H < R? dim(H) < 37, s; - dim(¢;(H))

Note: There exist infinitely many H, but only finitely many
possible constraints in C-HBL-LP (at most (d + 1)m+1)

Thm (B/C/C/T): s; > 0 satisty C-HBL-LP if and only if
3 C < oo such that for all f; : R% — 0,00) in Lyys,

| I ftotonds < H/)] dy)i = C- HHfzul/sz
1=1

Continuous HBL - Special case (1/3)

m

m
dim(RY) =d =Y "s; - dim(¢;(RY) =D s, - d;
=1 1=1
and for all subspaces H < R?, dim(H) < > ity si - dim(e;(H))

Thm (B/C/C/T): s; > 0 satisty C-HBL-LP f and only if
3 C' < oo such that for all f; R — 0,00) in Ll/si

| T tentonds < ¢ TTAlys
1=1 1=1

Holder’s Inequality: Choose all ¢; = identity, so Y ;" s; =1

HHfz H1<CHHfZ”1/sZ ... can show C' =1

Continuous HBL - Special case (2/3)

dim(RY) =d =Y "s; - dim(¢;(RY)) =Y "s;-d; (%)
i=1 1=1

and for all subspaces H < R?, dim(H) < > ity si - dim(e;(H))

Thm (B/C/C/T): s; > 0 satisty C-HBL-LP f and only if
3 C' < oo such that for all f; R — 0,00) in Ll/si

| T tentonds < ¢ TTAlys
1=1 1=1

Brascamp-Lieb Inequality: Given only (*), C' maximized by
filx) = exp(—:z:TAz-a:) for some s.p.d. A; (C could be o)

Continuous HBL - Special case (3/3)

dim(RY) =d =Y "s; - dim(¢;(RY) =D s, - d;
=1 1=1

and for all subspaces H < R?, dim(H) < > ity si - dim(e;(H))

Thm (B/C/C/T): s; > 0 satisty C-HBL-LP f and only if
3 C' < oo such that for all f; R — 0,00) in Ll/si

| T tentonds < ¢ TTAlys
1=1 1=1

Loomis-Whitney & beyond: Given bounded E C Rd,
f; = indicator function of ¢;(F),

m
vol(E H (vol(¢;(E

Illustration of C-HBL-LP

X
Area<cscB xvy

Area not< Cxforany C<eeo

2
.m m
= a
— | @
Q g
+~ =+ O
o pum| -—FD -—m
Q C
o Q 5
2 < S
I e 2
S
.m vn
- e e
- - TYXIXL
s B ssoest
Q, = esceee
Y
w __ssesse
pe -
~= -
av) -
m— Dl_.ﬂ
2 T
= ""l-l-“ ¢ +
@) 'sessee .__U..._
O ™Il L =
O
S _
4
Lm ==
Vi
qw W
W o
S
m S
+~
=
an

#ipnts not < C #x_pnts forany C< oo

Second Extension Strategy: Discrete HBL (1/2)

e Count lattice points instead of volumes:
— Lattice points correspond to loop iterations
(2,4, k) «— C(i,7)+ = A(i, k) x B(k,j)
— Projected lattice points correspond to array entries
(¢2,7) «— C(i,7), etc
e Vector space R? — abelian ogToup 7% under addition
e Subspaces H < R? — subgroups A < 7.4
e Linear projection ¢; = group homomorphism ¢,
e Subspace ¢;(H) = subgroup ¢;(H)
o dim(H) = rank(H), dim(¢;(H)) = rank(¢;(H))
e Like C-HBL-LP, but all H, ¢; are integer, not real

Second Extension Strategy: Discrete HBL (2/2)

Discrete HBL Linear Program (D-HBL-LP):
for all subgroups H < Z¢, rank(H) < Y7, s; - rank(¢;(H))

Note: There exist infinitely many H, but only finitely many
possible constraints in D-HBL-LP (at most (d + 1)m+1)

Thm (B/C/C/T): s; > 0 satisty D-HBL-LP if and only if
for any finite set £ C Z% its cardinality | E| is bounded by

]E\<H]¢Z) .. O =1l

We want tightest bound when |¢;(F)| < 2M ,ie. |E| < (QM)Z?il i
—> Compute sgpr, = min » " s; subject to D-HBL-LP

Thm: #words moved = Q(#iterations/MSHBL™)

Some ideas in the proof of Discrete HBL (1/2)
VH < Z% rank(H) < 7 sirank(¢;(H)) <= |E| < [|¢i(E)|%
e Necessity

— For any H < Zd let £, ben xn x---xn “brick” in H
— |En| = ©(n*** (")) and 19i(En)] = Ok 1)

O k) |En|<Hm (B

H nSi rank(g;(H))y _ O(" Sz"fank<¢i(H>>)

Some ideas in the proof of Discrete HBL (2/2)
VH < 7 rank(H) < Y7L, sivank(i(H) <= | B| < TTiLy [¢i(B)|"
e Sufficiency (hard part)

— Suffices to consider extreme points s = [s1, ..., $yu| of polytope
defined by D-HBL-LP

— Induction over d
—Def: H < Z% critical if rank(H) = S s; - rank(¢;(H))

— Given V < Z% and s extreme point, then either
3 critical {0} < H <V (induction on H) or s € {0, 1}

Applying Bounds to More General Code (1/5)

e General model:

forall Z € Z C Zd, in some order
iner loop(Z, A1(¢1(Z)), ..., Am(ém(Z)))

e Ex: LU inner loop: A(i,j) = A(e,7) — L(i, k) x U(k, j)
— Ok to ignore loop scaling columns of L
— Ok to overwrite A: L(i, k) = A(i, k) for ¢ > k, ditto for U
— Same idea applies to BLAS, Cholesky, LDLT ..

— Same idea applies to tensor contractions

— QR, eig, SVD need another idea

Applying Bounds to More General Code (2/5)

e General model:

forall Z € Z C Zd, in some order
iner loop(Z, A1(¢1(Z)), ..., Am(ém(Z)))

e Ex: Computing B = A" (k odd)
foriv=1:|k/2],C=A-B,B=A-C

e Imperfectly nested loops

e Can't just omit B = A - C'; infinite data reuse possible, so any

lower bound o< | Z| must be 0; leads to infeasible HBL-LP

e Solution: impose reads/writes: let A[l] = A, then
for i1 =2: k, Ali1] = A[1] %« Ali; — 1]

e Apply lower bound to new code, subtract added #reads/writes
o #words moved = Q(kn3 /M2 — kn?) = Q(kn?/M1/?)

Applying Bounds to More General Code (3/5)

e General model:

forall Z € Z C Zd, in some order
iner loop(Z, A1(¢1(Z)), ..., Am(ém(Z)))

e [ix: Database join
foriy =1: Ny, forio=1: Ny
if predicate(R(i1), S(i)) = true,
output(iy, ig) = func(R(i1), S(i))
— Write Z = Zp U Zp, depending on predicate
— Apply lower bound to Zp, Zp separately, take max
— #words_moved = Q(max(|Z7|, |Z|/M))

Applying Bounds to More General Code (4/5)

e General model:

forall Z € Z C Zd, in some order
iner loop(Z, A1(¢1(Z)), ..., Am(ém(Z)))

e [ix: Dense or sparse QR decomposition, using orthogonal trans-
formations

e Not one “algorithm,” many variations: un/blocked Givens/Householder,
order in which entries zeroed out, ...

e Blocking orth. trans. = imperfectly nested loops

— Challenge: output of first nest input to second, so need to bound
data reuse

Applying Bounds to More General Code (5/5)

e Dense or sparse QR decomposition, continued
e Thm 1: #words moved = Q(#flops/M1/2) if
— Blocked Householder with any block sizes

— One Householder transform per column
o Thm 2: #words moved = Q(#flops/M/2) if
— “Forward Progress”: each entry zeroed out once

— Block size must be 1
e Conjecture: Forward Progress sufficient

e GGeneralizes to eigenvalue problems

Decidability of the Lower Bound (1/3)

e Recall Continuous HBL-LP: dim(R%) = d = 31", s;-dim(¢;(R%))
and VH <R, dim(H) < 317 s, - dim(¢p;(H))

e To write this down, need to solve:
Given rg,rg,, .-, TH,,, decide if 3H < R? s t.
dim(H) = rg, dim(¢1(H)) = rg,,..., dim(¢m(H)) =g,
e Write H as d X d matrix
e Write each ¢; as d; X d matrix
e Fixpress rank conditions by (non)zero constraints on minors

e Tarski-decidable

— Enough to get upper bound on sgp; = valid lower bound
on communication (possibly too low)

Decidability of the Lower Bound (2/3)

e What about Discrete HBL-LP?
VH < Z% rank(H) < 31", s; - rank(¢;(H))

e To write this down, need to solve:
Given rg,rg,, .-, TH,,, decide if 3H < 7% 5.
rank(H) = rg, rank(¢1(H)) = THy> s rank(¢m(H)) =rg,

e Can encode with minors as before

e Thm: Whether any given system of polynomial equations with
rational coefficients has a rational solution or not can be encoded
by right choice of @1, ..., Om.

e Cor: Being able to write down D-HBL-LP <=
3 decision procedure for Hilbert’s 10th Problem over Q

— Over QQ instead of Z because all conditions homogeneous

Decidability of the Lower Bound (3/3)

e What about Discrete HBL-LP?
VH < Z% rank(H) < 31", s; - rank(¢;(H))

e Constraints define polytope P in space of [sq, ..., ;] € R
e Enough to get any subset of subgroups H defining P
o Let (Hy, Hy, Hs, ...) be any enumeration of all H < 7.4
e Let P; be polytope defined by (Hy, ..., H;)
e “Simple” decidability algorithm:
1 =0, repeat © = ¢+ 1 until P; =P

e Thm: Decidable whether a vertex of P; in P

— Similar induction idea as before

e Better algorithm: which subgroups H to try first?

Special Case: When subscripts are just
subsets of indices (1/3)

e [x: linear algebra, N-body, database join, ...
— Matmul: (7, 7, k) are indices, subscripts A(¢, k), B(k, j), C(1, j)
e Much simpler:

— Basy to write down Discrete HBL-LP to get lower bound

— Easy to attain lower bound (modulo dependencies):
Dual of Discrete HBL-LP gives optimal block sizes

— Basis of examples at start of talk
e [ixtends to subsets of unimodular transtormations of indices

— Ex: subsets of (4,2 + 7,31 + 27 + k)

Special Case: When subscripts are just
subsets of indices (2/3)

®1,...,14 be indices, @1,...,¢m be projections
o Let A = 1if ¢ in range of ¢;, else (

e Thm: Let s = [sq,..., S| minimize 11s = spr, such that
sI'A > 11" Then
#words_moved = Q(#loop_iterations/MSHBL1)

e Proof idea

— Constraints s A > 1 are subset of Discrete HBL-LP,
for all H spanned by (0, ...,0,1,0,...,0) (k-th entry = 1)
— Show this subset implies rank(H) < > 7 s;rank(¢;(H))
for all H < 74

Special Case: When subscripts are just
subsets of indices (3/3)

®1,...,14 be indices, @1,...,¢m be projections
o Let A = 1if ¢ in range of ¢;, else (

e Dual LP: Let z = |1, ..., 2] maximize 11z = s such that
Ax < 11

e Thm: The solution x of the Dual LP gives the optimal block sizes
to minimize communication: 7. blocked by M™%

e Proof idea

— Each constraint in Az < 1 bounds number of entries of each
array by M

— 172 = sz7p7 says number of inner loop iterations per block is
MSHBL

e [ixtends to parallel case, “n.5D” algorithms

Some improved algorithms that avoid communication

e Work of many people!
— Up to 12x faster for 2.5D matmul on 64K core IBM BG/P

— Up to 3x faster for tensor contractions on 3K core Cray XEG
— Up to 6.2x faster for APSP on 24K core Cray XE6

— Up to 2.1x faster for 2.5D LU on 64K core IBM BG/P

— Up to 11.8x for direct N-body on 32K core IBM BP/P

— Up to 13x for TSQR on Tesla C2050 Ferma NVIDIA GPU

— Up to 6.7x faster for symeig(band A) on 10 core Intel Westmere
— Up to 2x faster for 2.5D Strassen on 38K core Cray X'T4

e Communicate asymptotically < existing algorithms in theory
—SVD, LDLY, 25D QR, Nonsymmetric eigenproblem

— QR with column pivoting, other pivoting schemes

— Sparse Cholesky, for suitable graphs

Conclusions

e Possible to derive decidable communication lower bounds for many
widely used algorithms that access arrays

e Possible to achieve these bounds in many cases, leading to faster
algorithms

e Open problems

— Make derivation of lower bounds efficient, automate it
— Conjecture: Always attainable, modulo loop dependencies

— Implement in compilers

Key to Success

Key to Success

Don’t Communic...

