
Experimental Comparisons of Online and Batch Versions
of Bagging and Boosting

Nikunj C. Oza
oza@cs.berkeley.edu

Stuart Russell
russell@cs.berkeley.edu

Computer Science Division
University of California

Berkeley, CA 94720-1776

ABSTRACTBagging and boosting are well-known ensemble learning meth-ods. They
ombine multiple learned base models with theaim of improving generalization performan
e. To date, theyhave been used primarily in bat
h mode, i.e., they requiremultiple passes through the training data. In previous work,we presented online bagging and boosting algorithms thatonly require one pass through the training data and pre-sented experimental results on some relatively small datasets.Through additional experiments on a variety of larger syn-theti
 and real datasets, this paper demonstrates that ouronline versions perform
omparably to their bat
h
ounter-parts in terms of
lassi�
ation a

ura
y. We also demon-strate the substantial redu
tion in running time we obtainwith our online algorithms be
ause they require fewer passesthrough the training data.
1. INTRODUCTIONTraditional supervised learning algorithms generate a sin-gle model su
h as a de
ision tree or neural network and useit to
lassify examples.1 Ensemble learning algorithms
om-bine the predi
tions of multiple base models, ea
h of whi
his learned using a traditional algorithm. Bagging [3℄ andBoosting [4℄ are well-known ensemble learning algorithmsthat have been shown to be very e�e
tive in improvinggeneralization performan
e
ompared to the individual basemodels. Theoreti
al analysis of boosting's performan
e sup-ports these results [4℄.In previous work [7℄, we developed online versions of thesealgorithms. Online learning algorithms pro
ess ea
h train-ing instan
e on
e \on arrival" without the need for storageand repro
essing, and maintain a
urrent hypothesis that re-
e
ts all the training instan
es seen so far. Su
h algorithmshave advantages over typi
al bat
h algorithms in situationswhere data arrive
ontinuously. They are also useful with1In this paper, we only deal with the
lassi�
ation problem.
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD ’01 San Francisco, California USA
Copyright 2001 ACM X-XXXXX-XX-X/XX/XX ... $5.00.

very large data sets on se
ondary storage, for whi
h themultiple passes required by most bat
h algorithms are pro-hibitively expensive. In Se
tions 2 and 3, we des
ribe ouronline bagging and online boosting algorithms, respe
tively.Spe
i�
ally, we des
ribe how we mirror the methods thatthe bat
h bagging and boosting algorithms use to gener-ate distin
t base models, whi
h are known to help ensembleperforman
e.In our previous work, we also dis
ussed our theoreti
alresults and some empiri
al
omparisons of the
lassi�
ationa

ura
ies of our online algorithms and the
orrespondingbat
h algorithms on some relatively small datasets. In Se
-tion 4, we review the previous experiments and further ex-plore the behavior of our online algorithms through experi-ments with larger datasets|both syntheti
 and real. Con-sistent with previous work, we run our online bagging andboosting algorithms with lossless online algorithms for de-
ision trees and Naive Bayes
lassi�ers|for a given trainingset, a lossless online learning algorithm returns a hypoth-esis identi
al to that returned by the
orresponding bat
halgorithm. Overall, our online bagging and boosting algo-rithms perform
omparably to their bat
h
ounterparts interms of
lassi�
ation a

ura
y. We also
ompare their run-ning times. If the online base model learning algorithm isnot signi�
antly slower than the
orresponding bat
h algo-rithm, then the bagging and online bagging algorithms donot have a large di�eren
e in their running time in our tests.On the other hand, our online boosting algorithm runs sig-ni�
antly faster than bat
h boosting. For example, on ourlargest dataset, bat
h boosting ran four times longer thanonline boosting to a
hieve
omparable
lassi�
ation a

u-ra
y.Sometimes our online boosting algorithm signi�
antly un-derperforms bat
h boosting for a small number of trainingexamples. Even when the training set is large, our onlinealgorithm may underperform initially before �nally
at
hingup to the bat
h algorithm. This
hara
teristi
 is
ommonwith online algorithms be
ause they do not have the luxuryof viewing the training set as a whole the way bat
h algo-rithms do. We experiment with \priming" online boostingby running it in bat
h mode for some initial subset of thetraining set and running in online mode for the remainderof the training set. In most of the experiments that we dis-
uss in this paper, priming leads to improved
lassi�
ationperforman
e.We also
ompare the base models' error rates on the train-

OnlineBagging(h; d)For ea
h base model hm, (m 2 f1; 2; : : : ;Mg) in h,Set k a

ording to Poisson(1).Do k timeshm = Lo(hm; d)Figure 1: Online Bagging Algorithm: h is the set of Mbase models learned so far, d is the latest training exam-ple to arrive, and Lo is the online base model learningalgorithm.ing set under bat
h and online boosting. This is an impor-tant
omparison be
ause these errors are used to
al
ulatethe weights of the training examples supplied to the di�er-ent base models. They are also used to assign weights tothe base models for use when
lassifying a new example.The
loser these errors are, the more similar the trainingexample weights and base model weights are in the two algo-rithms, leading to more similar
lassi�
ation performan
es.The base model error rates exhibit similar trends in bat
hand online boosting, whi
h partly explains the similar
las-si�
ation a

ura
ies we have obtained so far.Our experiments with syntheti
 datasets are meant to
ompare bat
h and online boosting with base models hav-ing small, medium, and large errors. Our three syntheti
datasets are of varying diÆ
ulty for learning Naive Bayes
lassi�ers. We show that boosting behaves di�erently onthese datasets and that online boosting mirrors these be-haviors.
2. ONLINE BAGGINGGiven a training dataset of size N , standard bat
h bagging
reates M base models, ea
h trained on a bootstrap sam-ple of size N
reated by drawing random samples with re-pla
ement from the original training set. Ea
h base model'straining set
ontains K
opies of ea
h of the original trainingexamples whereP (K = k) = Nk!� 1N �k �1� 1N �N�kwhi
h is the Binomial distribution. As N ! 1, the dis-tribution of K tends to a Poisson(1) distribution: P (K =k) � exp(�1)k! . As dis
ussed in [7℄, we
an perform bag-ging online as follows: as ea
h training example is presentedto our algorithm, for ea
h base model,
hoose the exampleK � Poisson(1) times and update the base model a

ord-ingly (see �gure 1). New instan
es are
lassi�ed the sameway in online and bat
h bagging|by unweighted voting ofthe M base models.Online bagging is a good approximation to bat
h bag-ging to the extent that their base model learning algorithmsprodu
e similar hypotheses when trained with similar dis-tributions of training examples. In past work [7℄, we provedthat if the same original training set is supplied to the twobagging algorithms, then the distributions over the trainingsets supplied to the base models in bat
h and online bag-ging
onverge as the size of that original training set growsto in�nity. We further proved, for some very simple learn-ing algorithms (K-Nearest Neighbor and
ontingen
y-tablelearning), that the
onvergen
e of the distributions over the

Initial
onditions: �s
m = 0; �swm = 0.OnlineBoosting(h;Lo; d)Set the example's \weight" �d = 1.For ea
h base model hm, (m 2 f1; 2; : : : ;Mg) in h,Set k a

ording to Poisson(�d).Do k timeshm = Lo(hm; d)If hm(d) is the
orre
t label,then�s
m � �s
m + �d�m � �swm�s
m+�swm�d � �d � 12(1��m)�else �swm � �swm + �d�m � �swm�s
m+�swm�d � �d � 12�m �To
lassify new examples:Return h(x) = argmax
2CPm:hm(x)=y log 1��m�m .Figure 2: Online Boosting Algorithm: h is the set of Mbase models learned so far, d is the latest training exam-ple to arrive, and Lo is the online base model learningalgorithm.training sets leads to
onvergen
e of the
lassi�
ation per-forman
e of online bagging to that of bat
h bagging. We areworking on tightly
hara
terizing the learning algorithms forwhi
h we obtain this type of
onvergen
e.
3. ONLINE BOOSTINGOur online boosting algorithm is designed to
orrespondto the bat
h boosting algorithm, AdaBoost.M1 [4℄. Ad-aBoost generates a sequen
e of base models h1; : : : ; hM us-ing weighted training sets su
h that the training examplesmis
lassi�ed by model hm�1 are given half the total weightwhen generating model hm and the
orre
tly
lassi�ed ex-amples are given the remaining half of the weight.Our online boosting algorithm (Figure 2) is similar to ouronline bagging algorithm ex
ept that when a base modelmis
lassi�es a training example, the Poisson distribution pa-rameter (�) asso
iated with that example is in
reased whenpresented to the next base model; otherwise it is de
reased.Just as in AdaBoost, our algorithm gives the examples mis-
lassi�ed by one stage half the total weight in the next stage;the
orre
tly
lassi�ed examples are given the remaining halfof the weight.One area of
on
ern is that, in AdaBoost, an example'sweight is adjusted based on the performan
e of a base modelon the entire training set while in online boosting, the weightadjustment is based on the base model's performan
e onlyon the examples seen earlier. To see why this may be anissue,
onsider running AdaBoost and online boosting on atraining set of size 10000. In AdaBoost, the �rst base modelh1 is generated from all 10000 examples before being testedon, say, the tenth training example.2 In online boosting, h1is generated from only the �rst ten examples before being2Re
all that we test base model hm on the training exam-ples in order to adjust their weights before using them togenerate base model hm+1.

Table 1: The datasets used in our experiments. Forthe Soybean and Census In
ome datasets, we havegiven the sizes of the supplied training and test sets.For the remaining datasets, we have given the sizesof the training and test sets in our �ve-fold
ross-validation runs.Data Set Training Test Inputs ClassesSet SetPromoters 84 22 57 2Balan
e 500 125 4 3Soybean-Large 307 376 35 19Breast Can
er [5℄ 559 140 9 2German Credit 800 200 20 2Car Evaluation 1382 346 6 4Chess 2556 640 36 2Mushroom 6499 1625 22 2Nursery 10368 2592 8 5Conne
t4 54045 13512 42 3Syntheti
-1 80000 20000 20 2Syntheti
-2 80000 20000 20 2Syntheti
-3 80000 20000 20 2Census In
ome 199523 99762 39 2Forest Covertype 464809 116203 54 7tested on the tenth example. Clearly, at the moment whenthe tenth training example is being tested, we may expe
tthe two h1's to be very di�erent; therefore, h2 in AdaBoostand h2 in online boosting may be presented with di�erentweights for the tenth training example. This may, in turn,lead to di�erent weights for the tenth example when gener-ating h3 in ea
h algorithm, and so on. Intuitively, we wantonline boosting to get a good mix of training examples sothat the base models and their normalized errors in onlineboosting qui
kly
onverge to what they are in AdaBoost.The more rapidly this
onvergen
e o

urs, the more similarthe training examples' weight adjustments will be and themore similar their performan
es will be. In the next se
tion,we demonstrate, for some of our larger datasets, that thisappears to happen.
4. EXPERIMENTAL RESULTSIn this se
tion, we dis
uss some experiments that demon-strate the performan
e of our online algorithms relative totheir bat
h
ounterparts. For de
ision trees, we have reim-plemented the lossless ITI online algorithm [8℄ in C++;bat
h and online Naive Bayes algorithms are essentially iden-ti
al. We ran these experiments on Dell 6350
omputershaving 600MHz Pentium III pro
essors and 2GB of mem-ory.
4.1 The DataWe tested our algorithms on several UCI datasets [2℄, twodatasets (Census In
ome and Forest Covertype) from theUCI KDD ar
hive [1℄, and three syntheti
 datasets. We givetheir sizes and numbers of attributes and
lasses in Table 1.All three of our syntheti
 datasets have two
lasses. Theprior probability of ea
h
lass is 0.5, and every attribute ex-
ept the last one is
onditionally dependent upon the
lass

Table 2: P (Aa = 0jAa+1; C) for a 2 f1; 2; : : : ; 19g inSyntheti
 DatasetsP (Aa = 0) Aa+1 = 0 Aa+1 = 1C = 0 0.8 0.2C = 1 0.9 0.1and the next attribute. We set up the attributes this waybe
ause the Naive Bayes model only represents the prob-abilities of ea
h attribute given the
lass, and we wanteddata that is not realizable by a single Naive Bayes
lassi�erso that boosting is more likely to yield improvement. Theprobabilities of ea
h attribute ex
ept the last one (Aa fora 2 f1; 2; : : : ; 19g) are as shown in Table 2.The only di�eren
e between the three syntheti
 datasetsis P (A20jC). In Syntheti
-1, P (A20 = 0jC = 0) = 0:495 andP (A20 = 0jC = 1) = 0:505. In Syntheti
-2, these probabili-ties are 0.1 and 0.8, while in Syntheti
-3, these are 0.01 and0.975, respe
tively.
4.2 General ResultsFigures 3 and 4 are s
atterplots
omparing the errors ofthe bat
h and online versions of bagging and boosting. Thefull paper [6℄
ontains a table with all the results. Ea
h pointin the �gures represents one dataset. To redu
e
lutter, wedo not show error bars in our �gures, however we performedsigni�
an
e tests (t-test, � = 0:05) and dis
uss the resultslater in this paper. The bat
h algorithm a

ura
ies are aver-ages over ten runs of �ve-fold
ross-validation for a total of50 runs, ex
ept for the Soybean and Census In
ome datasetswhere we performed ten runs with the supplied training andtest set. We tested our online algorithms with �ve randomorders of ea
h training set generated for the bat
h algorithms(order matters for online boosting, even with a lossless learn-ing algorithm) for a total of 250 runs (50 runs on the Soybeanand Census In
ome datasets). We tested bagging and boost-ing with de
ision trees only on some of the smaller datasets(Promoters, Balan
e, Breast Can
er, Car Evaluation) be-
ause the lossless de
ision tree algorithm is too expensivewith larger datasets in online mode. Bagging and onlinebagging perform
omparably in all our tests. Boosting andonline boosting perform
omparably on all ex
ept the verysmall Promoters dataset.The largest dataset for whi
h we ran the bagging andboosting algorithms with de
ision trees was the Car Evalu-ation dataset from the UCI Repository. Figure 5 shows thelearning
urve. Bat
h and online bagging with de
ision treesperform almost identi
ally (and always signi�
antly betterthan a single de
ision tree). AdaBoost also performs sig-ni�
antly better than a single de
ision tree for all numbersof examples. Online boosting struggles at �rst but performs
omparably to AdaBoost and signi�
antly better than singlede
ision trees for the maximum number of examples. Notethat online boosting's performan
e steadily be
omes
loserto that of AdaBoost as the number of examples grows, asone expe
ts from an online algorithm when
ompared to itsbat
h version.Figure 6 shows the learning
urves for the Census In
omedataset. Bat
h and online boosting perform
omparablyto ea
h other and signi�
antly outperform a single modelfor all numbers of examples. On the other hand, bagging

and online bagging do not improve signi�
antly upon a sin-gle Naive Bayes
lassi�er. Bagging does not improve uponNaive Bayes on any of the datasets, whi
h we expe
ted be-
ause of the stability of Naive Bayes [3℄, i.e., small
hangesin the dataset do not signi�
antly
hange ea
h Naive Bayes
lassi�er, so that almost all of the base models tend to votethe same way for a given example. Online bagging alwaysperforms
omparably to bat
h bagging in our experiments;therefore, online bagging also does not improve upon NaiveBayes.
4.3 Priming the Online Boosting AlgorithmFigure 7 gives a s
atterplot similar to Figure 4 ex
eptthat the online boosting algorithm trains in bat
h mode withsome initial portion of the training set and online mode withthe remainder. In primed mode, bat
h training was donewith the lesser of the �rst 20% of the dataset or the �rst10000 training examples. Overall, primed online boostingimproves upon the unprimed version. Only in
ase of thePromoters dataset with Naive Bayes
lassi�ers did primingyield signi�
ant improvement over unprimed online boost-ing. Nevertheless, we did a
hieve some improvement throughpriming in all
ases ex
ept Promoters and Breast Can
erwith de
ision trees, and Soybean, Car Evaluation, and For-est Covertype with Naive Bayes.As we dis
ussed earlier, in the Car Evaluation dataset'slearning
urves (Figure 5), online boosting signi�
antly un-derperforms bat
h boosting for all but the maximumnumberof examples. Figure 8 displays the original bat
h boostingand online boosting learning
urves along with primed on-line boosting with the �rst 200 training examples learnedin bat
h mode. Primed online boosting with de
ision treesperforms
omparably to bat
h boosting for all numbers ofexamples, i.e., its performan
e gets
lose to bat
h boosting'sperforman
e mu
h qui
ker.
4.4 Base Model ErrorsFigures 9 and 10 show the average errors on the train-ing sets of the
onse
utive base models in bat
h and onlineboosting with Naive Bayes for the se
ond syntheti
 datasetand Census In
ome dataset, respe
tively (see the full pa-per [6℄ for more su
h graphs). As mentioned earlier, the
loser these errors are in bat
h and online boosting, the
loser the behavior of these two algorithms. We depi
t theaverage errors for the maximum number of base models gen-erated by the bat
h boosting algorithm. For example, on theCensus In
ome dataset, no run of bat
h boosting ever gen-erated more than 22 base models. This happens be
auseif the next base model that is generated has error greaterthan 0.5, then the algorithm stops. Our online boosting al-gorithm always generates the full set of 100 base models be-
ause, during training, we do not know how the base modelerrors will
u
tuate; however, to
lassify a new example, weonly use the �rst L base models su
h that model L+ 1 haserror greater than 0.5.The base model errors of online and bat
h boosting arequite similar for Syntheti
-2: the �rst base model performsquite well in both bat
h and online boosting. Both algo-rithms then follow the pattern of having subsequent basemodels perform worse, whi
h is typi
al be
ause subsequentbase models are presented with previously mis
lassi�ed ex-amples having higher weight, whi
h makes their learningproblems more diÆ
ult. In the Census In
ome dataset, the

performan
es of the base models also follow this generaltrend, although more loosely.
4.5 Running TimesFigures 11 and 12
ontain the average running times ofNaive Bayes and the ensemble algorithms with Naive Bayesbase models for the Census In
ome dataset and Forest Cover-type dataset, respe
tively. Both the online and bat
h ensem-ble algorithms use a learning algorithm for the Naive Bayesbase models that requires one pass through the training set.As the number of training examples in
reases, we expe
t therate of growth of the running time to be less for our onlineensemble algorithms than for the bat
h algorithms. Our on-line algorithms require only one pass through the trainingset whereas bat
h bagging requires one pass per base model(to generate its training set and perform the training) andbat
h boosting requires two passes per base model (on
eto generate the Naive Bayes
lassi�er and on
e to test thenewly-generated
lassi�er on the training examples to up-date their weights). However, for small numbers of trainingexamples, the running time may be greater for online learn-ing be
ause the greater number of passes required throughthe data stru
tures that represent the base models may out-weigh the greater number of passes required through thetraining set. Also, in
ase of base models for whi
h onlinelearning takes mu
h more time than bat
h learning, the to-tal exe
ution time for the online ensemble algorithm wouldbe mu
h greater than for the bat
h algorithm. Additionally,our online boosting algorithm always generates and updates100 base models, whereas boosting often generates fewerbase models as dis
ussed above.The running time for online boosting is substantially lessthan for bat
h boosting on both Census In
ome (20 minutesvs. 7.1 hours on the entire dataset) and Forest Covertype(4.3 hours vs. 18.8 hours). Relative to the boosting al-gorithms, the running times of the bagging algorithms arenegligible.
5. CONCLUSIONSThis paper dis
usses online versions of the popular bag-ging and boosting algorithms. We have demonstrated thatthey mostly perform
omparably to their bat
h
ounterpartsin terms of
lassi�
ation a

ura
y. We experimented withpriming our algorithm by running an initial subset of thetraining set in bat
h mode and then pro
essing the remain-ing examples online and a
hieved improvement by doing so.We also demonstrated the
omparable performan
e of on-line boosting and bat
h boosting in more detail by examin-ing the errors of the base models on the training set, whi
hdire
tly a�e
t the weights given to the training examplesin the di�erent stages of boosting. We have also shownthat, if the online base model learning algorithm has a run-ning time
omparable to the
orresponding bat
h algorithm,then the running time of online boosting
an be mu
h lowerthan bat
h boosting, demonstrating the signi�
ant savingsobtained by pro
essing the training set just on
e.In addition to
ontinuing empiri
al work with large datasetsand di�erent base model learning algorithms, we are work-ing on several theoreti
al tasks in
luding tightly
hara
ter-izing the
lass of learning algorithms for whi
h
onvergen
ebetween online and bat
h bagging
an be proved and de-veloping an analyti
al framework for online boosting. Weare also investigating the
ase of lossy online base model

0
5

10
15
20
25
30
35
40
45
50

0 5 10 15 20 25 30 35 40 45 50

O
nl

in
e

B
ag

gi
ng

Batch BaggingFigure 3: Test Error Rates: Bat
h Bagging vs.Online Bagging. A star indi
ates that the two al-gorithms used de
ision tree base models while asquare indi
ates Naive Bayes base models.
0
5

10
15
20
25
30
35
40
45
50

0 5 10 15 20 25 30 35 40 45 50

O
nl

in
e

B
oo

st
in

g

Batch BoostingFigure 4: Test Error Rates: Bat
h Boosting vs.Online Boosting, A star indi
ates that the two al-gorithms used de
ision tree base models while asquare indi
ates Naive Bayes base models.

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 200 400 600 800 1000 1200 1400

F
ra

ct
io

n
C

or
re

ct

Number of Training Examples

Car Evaluation with Decision Trees

Decision Tree
Bagging

Online Bagging
AdaBoost

Online Boosting

Figure 5: Learning
urves for Car-Evaluationdataset. 0.5

0.6

0.7

0.8

0.9

1

0 50000 100000 150000 200000

F
ra

ct
io

n
C

or
re

ct

Number of Training Examples

Census Income with Naive Bayes

Naive Bayes
Bagging

Online Bagging
Boosting

Online BoostingFigure 6: Learning
urves for Census In
omedataset.

0
5

10
15
20
25
30
35
40
45
50

0 5 10 15 20 25 30 35 40 45 50

O
nl

in
e

B
oo

st
in

g

Batch BoostingFigure 7: Test Error Rates: Bat
h Boosting vs.Primed Online Boosting. 0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 200 400 600 800 1000 1200 1400

F
ra

ct
io

n
C

or
re

ct

Number of Training Examples

Car Evaluation with Decision Trees

Boosting
Online Boosting

Online Boosting(200)

Figure 8: Learning
urves for Car Evaluationdataset. Online Boosting(200) is primed onlineboosting with the �rst 200 examples learned inbat
h mode|it performs
omparably to bat
hboosting.

0

0.2

0.4

0.6

0.8

1

2 4 6 8 10 12 14 16

E
rr

or
 o

n
T

ra
in

in
g

S
et

Base Model Number

Synthetic-2 with Naive Bayes

Boosting
Online Boosting

Figure 9: Base Model Errors for Syntheti
-2Dataset. 0

0.2

0.4

0.6

0.8

1

5 10 15 20

E
rr

or
 o

n
T

ra
in

in
g

S
et

Base Model Number

Census Income with Naive Bayes

Boosting
Online Boosting

Figure 10: Base Model Errors for Census In
omeDataset.
0

5000

10000

15000

20000

25000

30000

0 50000 100000 150000 200000

R
un

ni
ng

 T
im

e
(s

ec
on

ds
)

Number of Training Examples

Census Income with Naive Bayes

Naive Bayes
Bagging

Online Bagging
Boosting

Online Boosting

Figure 11: Running Times for Census In
omeDataset. 0

10000

20000

30000

40000

50000

60000

70000

0 50 100 150 200 250 300 350 400 450 500

R
un

ni
ng

 T
im

e
(s

ec
on

ds
)

Number of Training Examples (x 1000)

Forest Covertype with Naive Bayes

Naive Bayes
Bagging

Online Bagging
Boosting

Online Boosting

Figure 12: Running Times for Forest CovertypeDataset.learning and its e�e
t on ensemble performan
e.
6. ACKNOWLEDGEMENTSThe Wis
onsin Breast Can
er dataset was obtained fromthe University of Wis
onsin Hospitals, Madison from Dr.William H. Wolberg. The Forest Covertype is Copyrighted1998 by Jo
k A. Bla
kard and Colorado State University.
7. REFERENCES[1℄ S.D. Bay. The UCI KDD ar
hive, 1999. (URL:http://kdd.i
s.u
i.edu).[2℄ C. Blake, E. Keogh, and C.J. Merz. UCI repository ofma
hine learning databases, 1999. (URL:http://www.i
s.u
i.edu/�mlearn/MLRepository.html).[3℄ L. Breiman. Bagging predi
tors. Ma
hine Learning,24(2):123{140, 1996.[4℄ Yoav Freund and Robert E. S
hapire. Ade
ision-theoreti
 generalization of on-line learning andan appli
ation to boosting. Journal of Computer andSystem S
ien
es, 55(1):119{139, 1997.[5℄ O. L. Mangasarian, R. Setiono, and W. H. Wolberg.Pattern re
ognition via linear programming: Theoryand appli
ation to medi
al diagnosis. In Thomas F.

Coleman and Yuying Li, editors, Large-S
ale Numeri
alOptimization, pages 22{30. SIAM Publi
ations, 1990.[6℄ Nikunj C. Oza and Stuart Russell. Experimental
omparisons of online and bat
h versions of baggingand boosting. Te
hni
al report, Ele
tri
al Engineeringand Computer S
ien
e Department, University ofCalifornia, Berkeley, CA. In preparation.[7℄ Nikunj C. Oza and Stuart Russell. Online bagging andboosting. In Arti�
ial Intelligen
e and Statisti
s 2001,pages 105{112. Morgan Kaufmann, 2001.[8℄ P.E. Utgo�, N.C. Berkman, and J.A. Clouse. De
isiontree indu
tion based on eÆ
ient tree restru
turing.Ma
hine Learning, 29(1):5{44, 1997.

