

File: 20July10 On the Future of Numerical Linear Algebra Version dated July 10, 2010 7:44 am

Prof. W. Kahan, U.C. Berkeley for the Panel @ Pete StewartÕs 70th É Page 1/2

Undebuggability of Big Floating-Point Programs
for Scientific and Engineering Computations

Inordinate effort and time are being expended on attempts,

often unsuccessful,

to debug floating-point programs,

most of them presumed already debugged,

whose application to some ostensibly innocuous data,

not necessarily test data,

has produced results that arouse suspicion

perhaps undeserved.

Wasted Time:

 Instances have occurred when a bug was never found before
the underlying system was upgraded and the bug went elsewhere or away.

How are floating-point programs worse than others ?

Though heir to the same ills as others, these suffer three more:

•1) Roundoff :

 What you see is not what you get, and
 what you get is not what you asked for.

•2) Floating-Point Exceptions :

 Over/Underflow, Invalid
Operations, ...; no

flags

 to expose them;

•3) Overly Aggressive Compiler “Optimizations” :

O.K. for integers but not Flt. Pt. because of •1) & •2).

Would you like to go back to the years of my youth when floating-
point was deemed refractory to error-analysis, thus undebuggable?

File: 20July10 On the Future of Numerical Linear Algebra Version dated July 10, 2010 7:44 am

Prof. W. Kahan, U.C. Berkeley for the Panel @ Pete StewartÕs 70th É Page 2/2

Undebuggability of Big Floating-Point Programs

•1)

 Roundoff

•2)

 Exceptions

•3)

 Over-Optimization

Exploitation of parallelism worsens our situation :

To minimize communications costs (

cf

. J.W. Demmel &

al

.) we use
novel algorithms that have not yet been (and may never be) proved
numerically stable for all innocuous data. Hence more obscure bugs.

Two Palliatives:

 (No complete cure exists.)

•I)

 To greatly attenuate damage from roundoff and exceptions,
carry

by default

 extravagantly excessive precision and range
during computation;

cf

. pre-1980 Kernighan-Ritchie

C

 .

•II)

 To diminish time spent debugging, we need aids:

•

Compiler support for modes (

e.g

., directed roundings) and flags as scoped
 variables, perhaps like

APL

’s System Variables

CT

, ... ,

•

Linker-planted

Milestones

 for flags’ & NaNs’

Retrospective Diagnostics

.

•

Compiler-Debugger collaboration to inject breaks

etc

. in object modules too

Current efforts towards that end at U.C. Berkeley:

 <eecs.berkeley.edu/~grevy/publications/files/pdf/BaDeKaSe10.pdf>

supported by Sun Microsystems, and The MathWorks

See too my web page, <eecs.berkeley.edu/~wkahan/... for ...

 • History: .../7094II.pdf>, .../BASCD08K.pdf>

 • (Counter)Proposals: .../7Oct09.pdf>, .../Mindless.pdf>

The Challenge:

 Can we collect the necessary

Coalition of Competencies ?

 Hardware, Compilers, Link-and-Loaders, Debuggers, Environments

