

File: 26Sept19 EVOLVING WORK IN PROGRESS version dated October 28, 2019 6:41 pm

Prof. W. Kahan, University of California @ Berkeley Page 1/24

Automatic Step-Size Control for Minimization Iterations

Prof. W. Kahan (Retired)
University of California

Berkeley CA., USA

Abstract:

The "Training" of "Deep Learning" for "Artificial Intelligence" is a process
that minimizes a "Loss Function" ƒ

(

w

)

 subject to memoryconstraints that allow
the computation of ƒ

(

w

)

 and Gradients

G

(

w

)

 := dƒ

(

w

)/

d

w`

 but not the Hessian
d

2

ƒ

(

w

)

/

d

w

2

 nor estimates of it from many stored pairs {

G

(

w

)

,

w

}. Therefore
the process is iterative using "Gradient Descent" or an accelerated modification
of it like "Gradient Descent Plus Momentum". These iterations require choices
of one or two scalar "Hyper-Parameters" which cause divergence if chosen
badly. Fastest convergence requires choices derived from two of the Hessian's
attributes, its "Norm" and "Condition Number", that can almost never be
known in advance. This retards Training,– severely if the Condition Number
is big. A new scheme chooses Gradient Descent's Hyper-Parameter, a step-
size called "the Learning Rate", automatically without any prior information
about the Hessian; and yet that scheme has been observed always to converge

ultimately

 almost as fast as could any accelerated version of Gradient Descent
with optimally chosen Hyper-Parameters. Alas, a mathematical proof of that
new scheme's efficacy has not been found yet.

This document is posted at people.eecs.berkeley.edu/~wkahan/26Sept19.pdf
Details are posted at people.eecs.berkeley.edu/~wkahan/STEPSIZE.pdf

File: 26Sept19 EVOLVING WORK IN PROGRESS version dated October 28, 2019 6:41 pm

Prof. W. Kahan, University of California @ Berkeley Page 2/24

Automatic Step-Size Control for Minimization Iterations

In a space of high dimension, we seek vectors

x

 to minimize a
“smooth” scalar function ƒ

(

x

)

 , We may have to find more than
one minimum to select one we prefer.

Memory limitations restrict our choices of algorithms.

Their speeds depend upon “

H

yper-

P

arameters” we must choose.

Two Regimes -- Two Strategies

Ignorance obstructs our ability to choose

H-P

s well..

How fast could agorithms go with the (unknown) best

H-P

s ?

How can our programs go almost that fast despite our ignorance?

File: 26Sept19 EVOLVING WORK IN PROGRESS version dated October 28, 2019 6:41 pm

Prof. W. Kahan, University of California @ Berkeley Page 3/24

 “... if a machine is expected to be infallible,
 it cannot also be intelligent.”

 A.M. Turing, 1947

Intelligence entails curiosity, adaptability to unpredictable and
 predictable changes, and an ability to learn from mistakes

i.a

.

“Deep Learning” does not deserve to be called “Learning”
 unless it can learn also from mistakes.

This entails REtraining; it must not be too slow.

 How fast can (Re)Training algorithms be made to go?

File: 26Sept19 EVOLVING WORK IN PROGRESS version dated October 28, 2019 6:41 pm

Prof. W. Kahan, University of California @ Berkeley Page 4/24

Memory limitations restrict our choices of algorithms.

e.g

.,

GD

: Gradient Descent:

(AI calls Step-Size

∆

τ

 new

x

 :=

x

 –

∆

τ

·

G

(

x

)

“the Learning Rate”)

GD+M

: Gradient Descent + Momentum:
 new

x

 :=

x

 –

α

·

G

(

x

)

 +

β

·(

x

 – old

x

) and variations.

They all require choices for scalar

H

yper-

P

arameters

∆

τ

,

α

,

β

.

How should these be chosen ?

Data
x

N
N

M ≈ Millions

N ≈ Thousands

We seek x to minimize ƒ(x) .

computable: M·N work, N storage.

Hessian H(x) := ∂2ƒ(x)/∂x2 is NOT

Our chosen algorithm must come from ...

Gradient-Based Iterations

computable; M·N2 work, N2/2 storage

Gradient G(x) := ∂ƒ(x)/∂x´ ; a few are

M

File: 26Sept19 EVOLVING WORK IN PROGRESS version dated October 28, 2019 6:41 pm

Prof. W. Kahan, University of California @ Berkeley Page 5/24

Gradient-Based Iterations can be construed as Discretizations of
 Differential Equations:

GD: dx(τ)/dτ = –G(x(τ)) = –∂ƒ(x(τ))/∂x´ .
ƒ declines along each Trajectory x satisfying the Differential Equation:
 dƒ(x(τ))/dτ = –||G(x(τ))||2 < 0 so long as G ≠ o .

Each Trajectory terminates at a Stationary Point xx where G(xx) = o .
 xx is almost always a (local) Minimum of ƒ .

GD+M : dx(τ)/dτ = v(τ) ;
 dv(τ)/dτ = –G(x(τ)) – µ·v(τ) for some Drag µ > 0 .
Associated with these Differential Equations is a Pseudo-Hamiltonian
 Æ(x, v) := ƒ(x) + ||v||2/2 (analogous to Total Energy)
Æ(x, v) declines along each of the Differential Equations’ Trajectories:
 dÆ(x(τ), v(τ))/dτ = –µ·||v(τ)||2 < 0 so long as v(τ) ≠≠≠≠ o .

Each Trajectory ends at a Stationary Point {xx , vv} where G(xx) = vv = o .
 {xx , vv} is almost always a (local) Minimum of ƒ and of Æ .

 Trajectories fill the space. What do they look like?

File: 26Sept19 EVOLVING WORK IN PROGRESS version dated October 28, 2019 6:41 pm

Prof. W. Kahan, University of California @ Berkeley Page 6/24

 Near a Minimum, for GD, and for GD+M with high Drag µ

Visualize this in a space of high dimension N or 2N ; twisted “L”

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

o

 Cond(H) = 5

{ xx , o}

File: 26Sept19 EVOLVING WORK IN PROGRESS version dated October 28, 2019 6:41 pm

Prof. W. Kahan, University of California @ Berkeley Page 7/24

 Near a Minimum, for GD+M with low Drag µ

Visualize this in a space of high dimension 2N ; Corkscrews & twisted L

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

o

 Cond(H) = 50

{ xx , o}

File: 26Sept19 EVOLVING WORK IN PROGRESS version dated October 28, 2019 6:41 pm

Prof. W. Kahan, University of California @ Berkeley Page 8/24

Two Regimes -- Two Strategies

Regime #0: Iterates x are not near enough to a Minimum of ƒ ;
 Curvature (H(x)) varies -- Hyperbolic, Ellipsoidal.
 Hyper-Parameters influence iterations unpredictably.

Strategy #0: Choose Step-Sizes ∆τ (Learning Rates) small enough that
 computed iterates x follow a trajectory closely enough that
 they approach a minimum xx determined by the initial x
 rather than by Hyper-Parameters or computational accidents.

If ƒ has more than one minimum, some preferable to others, prudence
 obliges us to seek them by starting searches from several initial points.

Even if initial points are distributed partly randomly,
bigger step-sizes ∆τ may increase the likelihood that

some minima xx get rediscovered repeatedly
while others go unnoticed.

File: 26Sept19 EVOLVING WORK IN PROGRESS version dated October 28, 2019 6:41 pm

Prof. W. Kahan, University of California @ Berkeley Page 9/24

Two Regimes -- Two Strategies

Regime #1: Iterates x are near enough to a Minimum xx that the
 Curvature (H(x)) is Ellipsoidal and varies relatively little.
 Hyper-Parameters determine iterations’ ultimate convergence
 rate from two attributes of H(xx):
 its Norm ||H|| and its Condition Number Ç := ||H||·||H-1|| .

Strategy #1: When Ç >> 1 and Hyper-Parameters are optimal, step-
 sizes ∆τ are big enough that iterates Ricochet wildly while
 converging as fast as possible. Their behavior is practically
 indistinguishable from substantially slower convergence or
 divergence due to slightly sub-optimal Hyper-Parameters.

 But ||H|| and Ç can almost never be known in advance.

How can good Hyper-Parameters be chosen despite our ignorance?

 How good is good enough?

File: 26Sept19 EVOLVING WORK IN PROGRESS version dated October 28, 2019 6:41 pm

Prof. W. Kahan, University of California @ Berkeley Page 10/24

How fast could agorithms go with the (unknown) best H-Ps ?

Because our iterates can Ricochet, we measure an iteration’s ultimate
rate of convergence –log(ρ) by finding the ratio ρn by which a very big
number n of iterations reduces ||G(x)|| in Regime #1. In other words,

the convergence ratio ρ is the average factor by which
each of vastly many iteration-steps (“Epochs”) reduces ||G(x)||

starting from almost every initial iterate x in Regime #1.

A 1960s theorem by V. Samanskii says
every Gradient-Based Iteration (all our iterations are among them)

must have a convergence ratio
 ρ ≥ 1 – 2/(1 + √Ç)

no matter how the iteration’s Hyper-Parameters were chosen.
And that inequality can becomes equality for

some Gradient-Based Iterations in Regime #1.

In particular, ρρρρ = 1 – 2/(1 + √Ç) for Optimally Chosen
 constant Hyper-Parameters for

 some versions of Gradient Descent Plus Momentum
running in Regime #1.

File: 26Sept19 EVOLVING WORK IN PROGRESS version dated October 28, 2019 6:41 pm

Prof. W. Kahan, University of California @ Berkeley Page 11/24

Two Versions of Gradient Descent Plus Momentum:

GD+M: new v := v – ∆τ·(G(x) + µ·v) ; new x := x + ∆τ·(new v) ;
 i.e. new x := x – α·G(x) + β·(x – old x) ;
 when α = ∆τ2 , β = 1 – µ·∆τ , and x – old x = ∆τ·v .

Converges in Regime #1 if & only if ||H||·α < 2 + 2β < 4 .
Optimal choices: α = (4/||H||)/(1 + 1/√Ç)2 , β = ((√Ç–1)/(1+√Ç))2 .

Best Convergence Ratio: ρρρρ = 1 – 2/(1 + √Ç) = √β is Samanskii’s best.

AGD: Anadromic Gradient Descent:
 y := x + v·∆τ/2 ;

 new v := v – (G(y) + µ·v)·∆τ/(1 + µ·∆τ/2) ;
 new x := y + (new v)·∆τ/2 .

Converges in Regime #1 if & only if ||H||·∆τ2 < 4 .
Optimal choices: ∆τ = (2/√||H||)/√1 + 1/Ç , µ·∆τ = 4√Ç/(1 + Ç) .

Best Convergence Ratio: ρρρρ = 1 – 2/(1 + √Ç) is Samanskii’s best.

AGD tolerates bigger step-sizes ∆τ than GD+M and any Drag µ > 0 .

File: 26Sept19 EVOLVING WORK IN PROGRESS version dated October 28, 2019 6:41 pm

Prof. W. Kahan, University of California @ Berkeley Page 12/24

 GD+M’s Convergence Rate –log(ρ) for H’s Condition No. = 50

The Rate plummets for slightly sub-optimal learning rate α or β .
Divergence occurs if α is slightly too big or β slightly too small..

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Learn Rate α • ||H|| best @ 3.0702

β

 b
es

t @
 0

.5
65

81

GD+M's Rate -log(ρ) Cond'n # of H : C = 50

DIVERGENT !

0.05

0.1

0.15

0.2

0.25

•

File: 26Sept19 EVOLVING WORK IN PROGRESS version dated October 28, 2019 6:41 pm

Prof. W. Kahan, University of California @ Berkeley Page 13/24

 AGD’s Convergence Rate –log(ρ) for H’s Condition No. = 50

Sub-optimal step-sizes ∆τ and drag µ are tolerated well; but the Rate
plummets if µ is slightly too big. ∆τ slightly too big causes divergence.

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Stepsize ∆τ • ||H|| best @ 1.9803

D
ra

g
 µ

 /
||H

||

 b
es

t @
 0

.2
80

06

ANADROMOC GRADIENT DESCENT: Cond'n # of H: C = 50

0.05

0.1

0.15

0.2

0.25

*

File: 26Sept19 EVOLVING WORK IN PROGRESS version dated October 28, 2019 6:41 pm

Prof. W. Kahan, University of California @ Berkeley Page 14/24

But ||H|| and Ç can almost never be known in advance.
Does this put Samanskii’s best ρρρρ beyond reach? Maybe not:

Ordinary un-accelerated Gradient Descent’s
 new x := x – ∆τ·G(x)
changes ƒ(x) to

 ƒ(new x) ≈ ƒ(x) – ∆τ·||G(x)||2 + ∆τ2·G(x)´•H(x)•G(x)/2 ± O(∆τ·||G(x)||)3
        ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

whose last term  “±O...”  becomes relatively negligible as iterate  x  goes 
deeper into  Regime #1  approaching  xx  where  G(xx) = o .

To minimize  ƒ(new x)  (while ignoring  “±O...”)  we would have chosen 
a step-size

  ∆τ/( 2 + 2(ƒ(new x)  – ƒ(x))/(∆τ·||G(x)||2) ) 
≈   G(x)´•G(x)/( G(x)´•H(x)•G(x)  ±  O(∆τ·||G(x)||)3 )   

had we known what we know now.  

Too late now;  but better late than never.  



File: 26Sept19                                      EVOLVING WORK IN PROGRESS                              version dated  October 28, 2019 6:41 pm

Prof. W. Kahan,  University of California @ Berkeley                                                                                                                                Page 15/24

When iterate  x  is deep in  Regime #1,  after executing a  GD-step
                             new x := x – ∆τ·G(x) , 

let us compute

 new ∆τ :=  ∆τ/max{  0.25,   2 + 2(ƒ(new x)  – ƒ(x))/(∆τ·||G(x)||2) } 

to be used as the step-size for the next  GD-step.  The  “max{  0.25, ...}” 
prevents  new ∆τ  from going wild because of a computational accident 
like roundoff. 

But if consecutively  new ∆τ = 4∆τ  much too often,  suspicions should 
arise that either  Ç  is enormous or  x  is not deep in  Regime #1  after all.

Computed from the formula above,  step-sizes  new ∆τ  can fluctuate 
chaotically between  1/||H||  and  Ç/||H| ;  and then this  GD  iteration has 
been observed to converge rapidly as if its ultimate average convergence 
ratio were nearly  Samanskii’s  best  ρρρρ = 1 – 2/(1 + √Ç) .  

Why that scheme above works so well has not yet been explained to my 
mathematical satisfaction,  partly because it doesn’t always work so well.

 That scheme has a failure mode.



File: 26Sept19                                      EVOLVING WORK IN PROGRESS                              version dated  October 28, 2019 6:41 pm

Prof. W. Kahan,  University of California @ Berkeley                                                                                                                                Page 16/24

When iterate  x  is deep in  Regime #1,  after executing a  GD-step
                             new x := x – ∆τ·G(x) , 

we compute

 new ∆τ :=  ∆τ/max{  0.25,   2 + 2(ƒ(new x)  – ƒ(x))/(∆τ·||G(x)||2) } 
as the step-size for the next  GD-step  except occasionally,  at random,

 new ∆τ :=  ∆τ/2 .

This thwarts a failure mode when,  for peculiar initial  x  and  ∆τ ,  every  
new ∆τ ≈ (2/||H||)/(1 + Ç)  and the  ultimate  average convergence ratio 
is  1 – 2/(1 + Ç) ,  much worse than  Samanskii’s  best  ρρρρ = 1 – 2/(1 + √Ç)  
when  Ç >> 1 .  The failure mode resembles the scheme’s behavior when  
Ç  exceeds  1  only a little,  in which case  GD  converges rapidly;  but 
we wish not to iterate long enough to measure  GD’s  ultimate  rate.

Occasionally computing  new ∆τ :=  ∆τ/2  won’t change the rate much.

Does the scheme above have another failure mode?
I have failed to find one after trying many examples.

The scheme always converged as fast as I expected.



File: 26Sept19                                      EVOLVING WORK IN PROGRESS                              version dated  October 28, 2019 6:41 pm

Prof. W. Kahan,  University of California @ Berkeley                                                                                                                                Page 17/24

Escaping from  Regime #0
Though we seek an  xx  where  G(xx) = o ,  Gradient-Based Iterations  do 
not always reduce  ||G|| ,  especially in  Regime #0  where the curvature  
(H(x))  can be hyperbolic.  Instead we can gauge an iteration’s progress 
by how much its every step diminishes ...

ƒ(x) by  GD ,
Æ(x, v) by  GD+M   and  AGD .

If  ∆τ is small enough,  each  GD-step   new x := x – ∆τ·G(x)   gets ...

     ƒ(new x) ≈ ƒ(x) – ∆τ·(4||G(x)||2 + ||G(x) + G(new x)||2)/8  + O(∆τ3) 

in which the coefficient of  ∆τ  is the rate at which  ƒ(new x)  decreases 
for very small step-sizes.  It’s not obvious.  ƒ(new x)  and  G(new x)  will 
be computed in the course of preparing for the next step.  But the next 
step will not be taken if  ƒ(new x) ≥ ƒ(x) .  Instead that  new x  must be 
discarded and recomputed from the saved  x  and  G(x) ,  but now with a 
new step-size  δτ  smaller than  ∆τ .

How  much  smaller ? 



File: 26Sept19                                      EVOLVING WORK IN PROGRESS                              version dated  October 28, 2019 6:41 pm

Prof. W. Kahan,  University of California @ Berkeley                                                                                                                                Page 18/24

  new x := x – ∆τ·G(x) 
     ƒ(new x) ≈ ƒ(x) – ∆τ·(4||G(x)||2 + ||G(x) + G(new x)||2)/8  + O(∆τ3) 

If   ƒ(new x) ≥ ƒ(x) ,  then  new x  must be recomputed,  but with a new 
step-size  δτ  smaller than  ∆τ .  How much smaller ? 

A rough answer comes from approximating the term  “O(∆τ3)”  above:
  O(∆τ3) ≈ ¥(x, ∆τ)·||G(x)||2·∆τ3 
where  ¥(x, ∆τ)  varies very slowly with  ∆τ ,  we hope,  and usually  > 0. 

If the variation of  ¥(x, ∆τ)  and of  G(new x)  with  ∆τ  is ignored,  we 
can predict that 

  New x := x – δτ·G(x) 
will produce  ƒ(New x)  hopefully well-approximated by this expression:
   ƒ(x) – δτ·(4||G(x)||2 + ||G(x) + G(new x)||2)/8  + ¥(x, ∆τ)·||G(x)||2·δτ3.

Let’s choose  δτ  to minimize this expression after obtaining  ¥(x, ∆τ)  
from the expression for  ƒ(new x)  above.  The resulting  δτ  is below ...

••
°

ƒ

δτ



File: 26Sept19                                      EVOLVING WORK IN PROGRESS                              version dated  October 28, 2019 6:41 pm

Prof. W. Kahan,  University of California @ Berkeley                                                                                                                                Page 19/24

  new x := x – ∆τ·G(x) 
     ƒ(new x) ≈ ƒ(x) – ∆τ·(4||G(x)||2 + ||G(x) + G(new x)||2)/8  + O(∆τ3) 

If   ƒ(new x) ≥≥≥≥ ƒ(x) ,  then  new x  must be recomputed,  but with a new 
step-size  δτ  smaller than  ∆τ .  Here is how to compute δτ :

Compute  ∆ƒ := ƒ(new x) – ƒ(x) ;               (now  ∆ƒ ≥ 0 )
  V2 := 4||G(x)||2 + ||G(x) + G(new x)||2 ;
 δτ := ∆τ/√max{ 0.8,   3 + 24∆ƒ/(∆τ·V2) }  .

And then  New x := x – δτ·G(x)   over-writes   new x ;   etc.

The  “max{ 0.8, ...}”  is explained below;  it makes no difference yet.

If instead  ƒ(new x) < ƒ(x)  then retain  new x ,  G(new x) and ƒ(new x)
but compute  δτ  as above for the next iteration-step’s step-size in the 
expectation that it will nearly minimize the next computed value of  ƒ .

Now  “max{ 0.8, ...}”  acts to impose a bound  1.12 > δτ/∆τ  to restrict 
step-sizes’ growth-rate lest they get too big too soon and cause too many 
iterates  new x  to be recomputed.

In  Regime #0  this scheme goes at least about as fast as any other tried.



File: 26Sept19                                      EVOLVING WORK IN PROGRESS                              version dated  October 28, 2019 6:41 pm

Prof. W. Kahan,  University of California @ Berkeley                                                                                                                                Page 20/24

When have iterates escaped from  Regime #0  into  Regime #1 ?

A symptom is that ... 
recomputations of  new x  become infrequent,   and 
each of the past several  GD  iteration-steps diminishes  ||G(x)|| .

It’s also a symptom of a rare approach to a  (Hyperbolic)  Saddle-Point.
   Both that approach and its departure can cost many iteration-steps.

Sometimes  (rarely)  that approach is foreshadowed by this inequality:
 0 ≥ G(x)´•(G(x) – G(new x))   
     ≈ ∆τ·G(x)´•(H(x) + H(new x))•G(x)/2  ±  O(∆τ·||G(x)||)3      

because   G´•H•G < 0  whenever  G  enters a cone surrounding all the 
eigenvectors of  H  belonging to its negative eigenvalues.  If ever that 
happens,  or if  ||G||  increases,  stay or go back in  Regime #0 . 

To stimulate the detection of and escape from a  Saddle-Point,
occasionally add to  new x  a very small random perturbation

orthogonal to both  G(x)  and  G(new x)  while    
||G(new x)||  is small but not yet tiny enough to disregard.

... BUT there may be no escape from  Regime #0 .



File: 26Sept19                                      EVOLVING WORK IN PROGRESS                              version dated  October 28, 2019 6:41 pm

Prof. W. Kahan,  University of California @ Berkeley                                                                                                                                Page 21/24

    H.H. Rosenbrock’s  Banana:   Its  Minimum  lies almost in  Regime #0 .

The black parabola,  separating hyperbolic from ellipsoidal curvatures,  runs so 
near the  Minimum *   that iterates converging to it often straddle the parabola.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

 X 

 Y
 

Rosenbrock's Banana:   a = 1,   b = 5,   Ç = 133.1925

10

20

30

40

50

60

70

80

Hyperbolic

Ellipsoidal



File: 26Sept19                                      EVOLVING WORK IN PROGRESS                              version dated  October 28, 2019 6:41 pm

Prof. W. Kahan,  University of California @ Berkeley                                                                                                                                Page 22/24

SUMMARY

With no prior knowledge of 
the  Hessian’s  Norm  ||H||  nor  Condition Number  Ç ,

Gradient-Based  iterations are performed, 
computing  ƒ  and its gradient  G  usually just once per iteration-step,

and computing step-sizes  ∆τ  from by-products of  ƒ  and  G ,

that  seem  ultimately  to achieve convergence at rates 
roughly as good as the best that any other  Gradient-Based  iteration,

like  GD,  AGD,  and every version of  GD+M ,  could achieve

as if all their  Hyper-Parameters  were constants computed optimally 
from rarely known valies of  ||H||  and  Ç .

Alas,   “seem”  is not a mathematical proof.

And as  M. Keynes  said,  “In the long run,  we are all dead.”



File: 26Sept19                                      EVOLVING WORK IN PROGRESS                              version dated  October 28, 2019 6:41 pm

Prof. W. Kahan,  University of California @ Berkeley                                                                                                                                Page 23/24

Questions for Another Occasion:
Might  AGD  escape from  Regime #0  faster than  GD  can?
( AGD  is a  2nd Order Discretization;  GD  is a  1st Order.)

What happens to examples, ——  lots of them?

Is  ƒ  not smooth?   A self-inflicted wound?

How accurately should we try to compute a minimizing  xx ?

When can the iteration be stopped with a satisfactory  xx ??

What makes one computed minimum  xx  better than another?

What’s wrong with  “Stochastic Gradient Descent” ?

How are valid inferences drawn from fictitious hypotheses?
(Actually  ∆τ  is not small,  nor is  ||G(x)||  until near the end.)



File: 26Sept19                                      EVOLVING WORK IN PROGRESS                              version dated  October 28, 2019 6:41 pm

Prof. W. Kahan,  University of California @ Berkeley                                                                                                                                Page 24/24

Supporting Equipment  for which I owe  Thanks:

Explorations were conducted on an ancient but very reliable
Intel 302  running  MS DOS 6.2,   PE2,  

MATLAB 3 .5  and  DERIVE 4.11 .

This document was produced on a cranky old 
Apple Power-Mac G4  running  OS 9.2 ,

MATLAB 5 .2  and  FrameMaker 5 .

This document is posted at   people.eecs.berkeley.edu/~wkahan/26Sept19.pdf
Details are posted at     people.eecs.berkeley.edu/~wkahan/STEPSIZE.pdf
   Earlier thoughts at     people.eecs.berkeley.edu/~wkahan/7Nov18.pdf


