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Abstract

 

Deflation turns a matrix eigenproblem into two of smaller dimensions by annihilating a 
block of off-diagonal elements.  When does deflation perturb at worst the last significant 
digit or two of each of an  Hermitian  matrix’s eigenvalues no matter how widely their 
magnitudes spread?  We seek practicable answers to this question,  particularly for 
tridiagonals,  analogous to answers for bidiagonals’ singular values found by  Ren-Cang 
Li  in  1994.  How deflation affects singular vectors and eigenvectors is assessed too,  as 
is the exploitation of spectral gaps when known.

 

Prepared for  IWASEP IX  in  Napa,  Calif.,  4 - 7 June 2012,   and for
the  12 Sept. 2012 Scientific Computation Seminar  at  U.C. Berkeley.

This work has been influenced by  Jim Demmel,  Ming Gu,  Ren-Cang Li  
and  Beresford Parlett;  but any errors and oversights are mine alone.

This is posted on my web page at  www.eecs.berkeley.edu/~wkahan/4June12.pdf .
Proofs and details are posted at  www.eecs.berkeley.edu/~wkahan/ma221/Deflate.pdf .
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Y  comes from  H  via  
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Triangular   S :=   and  Z :=   have nonnegative singular value sets respectively 
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SS

 

(D) = {
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≥ δ2 ≥ … ≥ δm }  and   SS(F) = { φ1 ≥ φ2 ≥ … ≥ φn–m }  .

Z  comes from  S  via  Deflation.                      Every  Absolute Error  |σj – ζj| ≤ ||E|| .

  What about  Relative Errors  log(σj/ζj) ?

We seek practicable realistic bounds for relative errors regardless of  `values’  spreads.
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Tools:

A Tiny Tolerance  0 < τ << 1 .                                                        Disregard  τ2
 .

We need not distinguish among   τ ≈  1 – e–τ  ≈  –log(1 – τ)  ≈  τ/(1 ± τ)  ≈ … ,  

nor among  inequalities like   τ > | log(θ/η)| ,   τ > |(θ – η)/θ| ,   τ > |(θ – η)/η| ,  … 

DEFINE:   A Permissible Deflation  induces  ̀values’  relative errors below threshold  τ .

A. Ostrowski’s  now  Classical Inequalities
If   Y = C–1'·H·C–1   then   1/||C–1||2 ≤ θj/ηj ≤ ||C||2   for every  j           (except  0/0 := 1 ).

If   Z = S·C–1  or if   Z = C–1·S ,   then   1/||C–1|| ≤ σj/ζj ≤ ||C||   for every  j    (but  0/0 := 1 ).

A typical choice    C±1 := ,  wherein  U  may be rectangular,  has 

  ||C±1|| = || || =  ||U||/2 + √(1 + ||U||2/4)  = exp(arcsinh(||U||/2)) .

 Why?  Go to  svd(U) .

I ±U
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1 U
0 1
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Streamlined Derivation of  Ren-Cang Li’s  Bounds [1994]

   S := ,   SS(S) = { σ1 ≥ σ2 ≥ … ≥ σn },    Z := ,   SS(Z) = { ζ1 ≥ ζ2 ≥ … ≥ ζn }.

Choose  C :=   to get   Z = S·C–1 ,       ||C±1|| = exp(arcsinh(||D–1·E||/2)) . 

⇒  every rel. error  | log(σj/ζj)| < ||D–1·E||/2 .     Similarly every  | log(σj/ζj)| < ||E·F–1||/2 .

Conclusion:  If  either  ||D–1·E|| < 2τ  or  ||E·F–1|| < 2τ  then every  | log(σj/ζj)| < τ .

It persists with  0/0 := 1  even if some  ζj = 0  so long as either  ||D–1·E||  or  ||E·F–1||  exists.

Virtue:    ||D–1·E|| ≤ ||D–1||·||E|| ≤ ||Z–1||·||E||   derived from absolute error-bounds.  And 

sometimes  ||D–1·E|| << ||D–1||·||E||  and costs a lot less to compute,  as happens
in  Parlett’s  fast  dqds  process to compute a bidiagonal’s singular values.
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Example:

Let  n-by-n  S := bidiag  =    in which the pair    is 

missing from only the first and last columns,  and  s > f >> 1 > e > 0 .

When is  e  is so small that replacing it by  o  deflates  S  
with no relative error worse than  τ  in a singular value?

The least singular value  σn  of  S  is very near the least singular value  1/||D–1||  of  D :

   σn ≈ (s2 – 1)/√(s2n – n·s2 + n – 1)                for  s > 3  and  n > 3 .
The largest singular values of  S  are not far from those of  D :

  σ1 ≈ s + 1                                                             for  s > 3  and  n > 3 .
This puts  f  amidst  SS(D) ,  so no spectral gap  (cf. p. 14)  is available compared with 
which to deem  e2  negligible.

Yet  R-C. Li’s  criterion implies that  e  is negligible if  e < 2τ·f  
although this  e  can exceed  σn  hugely.

No other relative-accuracy-preserving criterion I know
would permit this example to be so deflated.

 s  s  …  s  s  e  

1  1  …  …  1  1  f
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s
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What does  a  Permissible Deflation  do to  Some  of the  Singular Vectors? 

   S := ,   SS(S) = { σ1 ≥ σ2 ≥ … ≥ σn },    Z := ,   SS(Z) = { ζ1 ≥ ζ2 ≥ … ≥ ζn }.

Let  F  have singular value  φ  and normalized singular row-vectors  u'   and  v'   satisfying
||u|| = ||v|| = 1 ,    F·u = φ·v    and    v'·F = φ·u'  .

After deflating  S  to  Z ,  we accept  φ  in  SS(Z)  as a computed approximation to some  
σ  in  SS(S) ,  and accept  Z ’s  corresponding singular row-vectors  [o', u' ]  and  [o', v' ]  
as computed approximations to singular vectors of  S .  These vector’s residuals are 

      r  := S· – φ·  =      and    [o', v' ]·S – φ·[o', u' ] = o' .

     ||r || = ||E·u|| = φ·||E·F–1·v|| ≤ φ·||E·F–1|| < 2τ·φ   when   ||E·F–1|| < 2τ .
    (one of  R-C. Li’s  deflation criteria)

This  Relatively  (relative to  φ )  tiny residual  r   figures in the angles between the desired 
singular vectors of  S  and their approximations  [o', u' ]  and  [o', v' ]  from  Z :

Roughly,       angles  ≤  ||r ||/(absolute gap)  =  ( ||r ||/φ )/(relative gap)  <  2τ/(relative gap) 
wherein     absolute gap := min{|ζj – φ|  over  ζj ≠ φ}  ,    relative gap := (absolute gap)/φ .

It all generalizes from simple  φ  to clustered with invariant subspaces.  Reassuring so far?
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What does a  Permissible Deflation  do to  the Rest  of the  Singular Vectors? 

   S := ,   SS(S) = { σ1 ≥ σ2 ≥ … ≥ σn },    Z := ,   SS(Z) = { ζ1 ≥ ζ2 ≥ … ≥ ζn }.

Let  D  have singular value  δ  and normalized singular row-vectors  x'   and  y'   satisfying
||x|| = ||y|| = 1 ,    D·x = δ·y    and    y'·D = δ·x'  .

After deflating  S  to  Z ,  we accept  δ  in  SS(Z)  as a computed approximation to some  
σ  in  SS(S) ,  and accept  Z ’s  corresponding singular row-vectors  [x' , o']  and  [y' , o']  
as computed approximations to singular vectors of  S .  These vector’s residuals are 

 S· – δ· = o  and  r'  := [y' , o']·S – δ·[x' , o'] = [o', y'·E] ;

  ||r' ||/δ = ||y'·E||/δ = ||x'·D–1·E|| .      Must this be small?

What if  only one  of  R-C. Li’s  deflation criteria,  say  ||E·F–1|| < 2τ ,  is satisfied,  not the 

other?  Suppose  ||D–1·E||  and  ||r' ||/δ  are both huge.  It happens with  p. 5’s  example  S .

Despite the  Relatively  (relative to  δ )  big residual  r'  ,  deflation rotates  `vectors through 
  SMALL  angles  <  2τ/(relative gap)   ROUGHLY.

Why?

Singular vectors of  S–1  are those of  S  swapped.  Residual for  S–1  is  Relatively  tiny.
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What does a  Permissible Deflation  do to  Some  Eigenvalues?

Recall  H := H'  :=   and  Y := Y'  :=    have ordered  Spectra  respectively

EE(H) = { θ1 ≥ θ2 ≥ … ≥ θn }   and   EE(Y) = {  η1 ≥ η2 ≥ … ≥ ηn } =  EE(M) ∪  EE(W) 
 wherein   EE(M) = {  µ1 ≥ µ2 ≥ … ≥ µm }  and   EE(W) = { ω1 ≥ ω2 ≥ … ≥ ωn–m }  .

Claim:   Some subset of  m  eigenvalues  θj  in  EE(H)  are approximated by  EE(M)  within

    factors no farther from  1  than are  exp(±2·arcsinh(||M–1·B||/2)) .  Consequently …  

The Relative errors in  EE(M)  are all smaller than threshold  τ  whenever  ||M–1·B|| < τ .
Useful for tridiagonal  M .

Proof:   C :=    makes   C–1'·H·C–1 =    with   W := W – B'·M–1·B .

  •  •  •  •  •  
Claim  says nothing about  EE(W)  and the remaining  n–m  θj’s .      We could have  W = O .

Analogous Claim:

The Relative errors in  EE(W)  are all smaller than threshold  τ  whenever  ||B·W–1|| < τ .

What if  both  ||M–1·B|| < τ  and  ||B·W–1|| < τ ?     Must  EE(Y)  approximate  all  of  EE(H) ?
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What does a  Permissible Deflation  do to  All   Eigenvalues?

Recall  H := H'  :=   and  Y := Y'  :=    have ordered  Spectra  respectively

EE(H) = { θ1 ≥ θ2 ≥ … ≥ θn }   and   EE(Y) = {  η1 ≥ η2 ≥ … ≥ ηn } =  EE(M) ∪  EE(W) 
 wherein   EE(M) = {  µ1 ≥ µ2 ≥ … ≥ µm }  and   EE(W) = { ω1 ≥ ω2 ≥ … ≥ ωn–m }  .

Claim:   If  both  ||M–1·B|| < τ  and  ||B·W–1|| < τ  ,  then  EE(Y)  approximates  all  of  EE(H) ;

  every  | log(θj/ηj) |  <  τ + O(τ2) .                           cf.  R-C. Li’s on p.4 

Proof:  

C :=  will make  C–1'·H·C–1 = Y  exactly and  ||C±1||2 < 1 + τ + τ2
 + O(τ4)

    when  (I – K)'·M·(I – K) = M – B·W–1·B'  ,  which equation has an  
      explicit rapidly-convergent power-series solution  K ,  and 

  ||K|| < τ2/2 + O(τ4) .          v. pp. 5-6 of  …/Deflate.pdf 

2-by-2  examples    and  :  • • •  Claim  is best-possible in the absence of more 

data about  EE(M)  and  EE(W) ,  but vastly improvable if a known gap separates them. 
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What does a Permissible Deflation  do to  Eigenvectors?

Recall  H := H'  :=   and  Y := Y'  :=    have ordered  Spectra  respectively

EE(H) = { θ1 ≥ θ2 ≥ … ≥ θn }   and   EE(Y) = {  η1 ≥ η2 ≥ … ≥ ηn } =  EE(M) ∪  EE(W) 
 wherein   EE(M) = {  µ1 ≥ µ2 ≥ … ≥ µm }  and   EE(W) = { ω1 ≥ ω2 ≥ … ≥ ωn–m }  .

Choose any  η ∈  EE(Y) ;  either  η ∈  EE(M)  or  η ∈  EE(W)  or both.  Say  η = µ ∈  EE(M) ;  
let  u  be the normalized eigenvector of  M  belonging to  µ :   M·u = µ·u  and  ||u|| = 1 .

Then  Y ’s  row-eigenvector  y'  = [u' , o]  approximates  H ’s  belonging to  θ ≈ η ;  and 

residual   r'  = y'·H – η·y'  = [o', u'·B]   has    ||r' || = ||u'·B|| = ||µ·u'·M–1·B|| ≤ |µ|·||M–1·B|| . 

This is why  ||r' || < τ·|η|  when  η = µ ∈  EE(M)  and  ||M–1·B|| < τ .

Similarly  ||r' || < τ·|η|  when  η = ω ∈  EE(W)  and  ||B·W–1|| < τ .

Thus,  eigenvector residuals are  Relatively  (relative to eigenvalue  η )  tiny like  τ·|η| .

Permissible Deflation rotates eigenvectors of  H  to those of  Y  through  angles …

Roughly,     angles  ≤  ||r' ||/(absolute gap)  =  ( ||r' ||/|η| )/(relative gap)  <  2τ/(relative gap) 
wherein     absolute gap := min{|ηj – η|  over  ηj ≠ η}  ,    relative gap := (absolute gap)/|η| .

It all generalizes from simple  η  to clustered with invariant subspaces.  Reassuring?
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Spectral Gaps  figure in  Eigenvalues’ Quadratic Relative Error-Bounds

Recall  H := H'  :=   and  Y := Y'  :=    have ordered  Spectra  respectively

EE(H) = { θ1 ≥ θ2 ≥ … ≥ θn }   and   EE(Y) = {  η1 ≥ η2 ≥ … ≥ ηn } =  EE(M) ∪  EE(W) 
 wherein   EE(M) = {  µ1 ≥ µ2 ≥ … ≥ µm }  and   EE(W) = { ω1 ≥ ω2 ≥ … ≥ ωn–m }  .

Error-bounds between  EE(H)  and  EE(Y)  have been roughly proportional to  B  so far.  
When  B  is small enough,  smaller  Quadratic  bounds roughly proportional to  B'·B  
may be available provided known  Gaps  big enough separate  EE(M)  from  EE(W) .

The  Absolute Spectral Gap  γ(η)  separates  η ∈  EE(Y)  from  EE(M)  or  EE(W)  thus:
 If  η ∈  EE(M)  then  γ(η) := min{ |ω – η|  over all  ω ∈  EE(W) }  ,  else
 if  η ∈  EE(W)  then  γ(η) := min{ |µ – η|  over all  µ ∈  EE(M) }  .

A  Relative Spectral Gap  Γ(η)  separates  η ∈  EE(Y)  from  EE(M)  or  EE(W)  thus:
 if  η ∈  EE(M) ∩ EE(W)  then  Γ(η) := γ(η) = 0 ;  else  Γ(η) := γ(η)/|η| .

Define       Ψ(ξ) := tan( arctan(2ξ)) = tanh( arcsinh(2ξ)) = 2ξ/(1 + √(1 + 4ξ2)) .

Among its properties only these will be needed:            
 0 < dΨ(ξ)/dξ ≤ 1 ;      Ψ(ξ)/ξ ↗ 1  as  ξ ↘ 0 ;
             Ψ(ξ) ↗ 1  as  ξ ↗ ∞ .
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Recall  H := H'  :=   and  Y := Y'  :=    have ordered  Spectra  respectively

EE(H) = { θ1 ≥ θ2 ≥ … ≥ θn }   and   EE(Y) = {  η1 ≥ η2 ≥ … ≥ ηn } =  EE(M) ∪  EE(W) 
 wherein   EE(M) = {  µ1 ≥ µ2 ≥ … ≥ µm }  and   EE(W) = { ω1 ≥ ω2 ≥ … ≥ ωn–m }  .

Optimal quadratic absolute error-bounds for eigenvalues from  C-K. Li & R-C. Li [2005]:
   |θj – ηj| ≤  Ψ(||B||/ γ(ηj))·||B||                                                                AA BB  

<  min{ ||B|| ,  ||B||2/ γ(ηj) }   when  ||B|| > 0  and gap  γ(ηj) > 0 .

Quadratic relative error-bounds involving relative gaps  Γ(ηj)  come directly from    AA BB  :

  |θj/ηj – 1| ≤  Ψ(||B/ηj||/Γ(ηj))·||B/ηj|| .                                               RR AA BB  

Those bounds tend to pessimism because they involve  ||B/ηj||  and are very general,  
allowing  EE(M)  and  EE(W)  to mingle like red and black cards in a shuffled deck.  We 
will impose a gap between the smallest interval  [EE(W)] containing EE(W) ,  and  [EE(M)]  :

     Relative gaps  Γ(η) := γ(η)/|η| ≥ γ/|η| .
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Recall  H := H'  :=   and  Y := Y'  :=    have ordered  Spectra  respectively

EE(H) = { θ1 ≥ θ2 ≥ … ≥ θn }   and   EE(Y) = {  η1 ≥ η2 ≥ … ≥ ηn } =  EE(M) ∪  EE(W) 
 wherein   EE(M) = {  µ1 ≥ µ2 ≥ … ≥ µm }  and   EE(W) = { ω1 ≥ ω2 ≥ … ≥ ωn–m }  .

In  May 2012  Ren-Cang Li  adapted  AA BB ’s  lengthy proof to get the following usually 
better bounds for the  n–m  largest in  EE(H)  when  [EE(W)] > [EE(M)]  and  [EE(W)] > 0 :

     Relative gaps  Γ(ωj) = 1 – µ1/ωj > 0 .   Then

 0 ≤ θj/ωj – 1 ≤ Ψ(||B·W–1||/Γ(ωj))·||B·W–1||   for  1 ≤ j ≤ n–m .                         RR BB WW  

For the  m  least in  EE(H)  when  [EE(W)] > [EE(M)] > 0  and   ||M–1·B|| < 1/√(( )2 + ) :

     Relative gaps  Γ(µj) = ωn–m/µj – 1 > 0 .   Then

           0 ≤ 1 – θn–m+j/µj  <  Ψ(||M–1·B||/Γ(µj))·||M
–1·B||   for  1 ≤ j ≤ m .                  RR MM BB  

M B
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[EE(M)] [ EE(W)]gap γ
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0
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µ1
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--------

µ1
µm
--------
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Recall  H := H'  :=   and  Y := Y'  :=    have ordered  Spectra  respectively

EE(H) = { θ1 ≥ θ2 ≥ … ≥ θn }   and   EE(Y) = {  η1 ≥ η2 ≥ … ≥ ηn } =  EE(M) ∪  EE(W) 
 wherein   EE(M) = {  µ1 ≥ µ2 ≥ … ≥ µm }  and   EE(W) = { ω1 ≥ ω2 ≥ … ≥ ωn–m }  . 

Recall also new bounds  RR MM BB   for the  m  least in  EE(H)   when  [EE(W)] > [EE(M)] > 0

and   ||M–1·B|| < 1/√(( )2 + ) ;  then  relative gaps  Γ(µj) = ωn–m/µj – 1 > 0   and 

           0 ≤ 1 – θn–m+j/µj  <  Ψ(||M–1·B||/Γ(µj))·||M
–1·B||   for  1 ≤ j ≤ m .                  RR MM BB  

Is  RR MM BB ’s  extra requirement  “ ||M–1·B|| < 1/√((µ1/µm)2 + µ1/µm) ”  unavoidable?

  See example  H3  on  p. 12  of  …/Deflate.pdf . 
Fortunately the extra requirement is very often satisfied by a permissible deflation’s tiny 

relative error tolerance  τ > ||M–1·B||2 ,  which amounts to a constraint like  µm/µ1 > √2τ .

However,  a deflation permitted by quadratic relative error-bounds  RR MM BB   and  RR BB WW   
may turn eigenvectors through angles bigger than  √τ ,  thus perhaps spoiling them 
intolerably.
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Spectral Gaps  for  Singular Values’ Quadratic Relative Error-Bounds

Recall   S := ,  SS(S) = { σ1 ≥ σ2 ≥ … ≥ σn },   Z := ,  SS(Z) = { ζ1 ≥ ζ2 ≥ … ≥ ζn }.

SS(Z) = SS(D) ∪  SS(F)  where  SS(D) = { δ1 ≥ δ2 ≥ … ≥ δm }  and  SS(F) = { φ1 ≥ φ2 ≥ … ≥ φn–m }

are separated by gaps defined in a way now familiar  (and now overloaded):

The  Absolute Spectral Gap  γ(ζ)  separates  ζ ∈  SS(Z)  from  SS(D)  or  SS(F)  thus:
 If  ζ ∈  SS(D)  then  γ(ζ) := min{ |φ – ζ|  over all  φ ∈  SS(F) } ,  else
 if  ζ ∈  SS(F)  then  γ(ζ) := min{ |δ – ζ|  over all  δ ∈  SS(D) }  .

A  Relative Spectral Gap  Γ(ζ)  separates  ζ ∈  SS(Z)  from  SS(D)  or  SS(F)  thus:
 if  ζ ∈  SS(D) ∩ SS(F)  then  Γ(ζ) := γ(ζ) = 0 ;  else  Γ(ζ) := γ(ζ)/ζ .

Li & Li [2005]  applied  AA BB   to    whose eigenvalues are  –SS(S) ∪  SS(S)  to get

  |σj – ζj| ≤  Ψ(||E||/ γ(ζj))·||E||                                                            AA EE 

<  min{ ||E|| ,  ||E||2/ γ(ζj) }      when  ||E|| > 0  and  γ(ζj) > 0 .

Those absolute error-bounds  AA EE  imply promptly these quadratic relative error-bounds:

  |σj/ζj – 1| ≤  Ψ(||E/ζj||/ Γ(ζj))·||E/ζj|| .                                                 RR AA EE 

D E

O' F

D O

O' F

O D' O O

D O E O

O' E' O F'

O' O' F O
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Recall   S := ,  SS(S) = { σ1 ≥ σ2 ≥ … ≥ σn },   Z := ,  SS(Z) = { ζ1 ≥ ζ2 ≥ … ≥ ζn }.

SS(Z) = SS(D) ∪  SS(F)  where  SS(D) = { δ1 ≥ δ2 ≥ … ≥ δm }  and  SS(F) = { φ1 ≥ φ2 ≥ … ≥ φn–m }

are separated by relative gaps  Γ(ζj) ;  if they allow  SS(D)  and  SS(F)  to mingle,  then

  |σj/ζj – 1| ≤  Ψ(||E/ζj||/ Γ(ζj))·||E/ζj|| .                                                 RR AA EE 

To replace  ||E/ζj||  by something perhaps smaller and cheaper to compute we relinquish 

mingling.  Assume narrowest containing intervals to be ordered,  [SS(D)] > [SS(F)] ≥ 0 ,  
and separated by sufficiently wide relative gaps thus:  

If gaps  Gj := 1 – (φ1/δj)
2 – ||D–1·E||2 > 0  for  1 ≤ j ≤ m   then

  0 ≤ (σj/δj)
2 – 1 ≤  Ψ(||D–1·E||/Gj)·||D

–1·E|| .                                        RR DD EE 

If gaps  Gj := 1 – (φj/δm)2 – ||D–1·E||2 > 0  for  1 ≤ j ≤ n–m ,  then   (with  0/0 := 1 )  

  0 ≤ (φj/σm+j)
2

 – 1 ≤  Ψ(||D–1·E||/ Gj)·||D
–1·E|| .                                   RR EE FF 

The appearance of  ||D–1·E||  in both  RR DD EE  and  RR EE FF  is no accident.  Compare  p. 4.

D E

O' F

D O

O' F

[SS(F)] [ SS(D)]gap γ

φn–m φ1 δm δ1
•0 +–
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All four quadratic relative error bounds  RR MM BB  ,  RR BB WW  ,  RR DD EE  and  RR EE FF  look like

  “ Relative Error  ≤  Ψ(β/Γ)·β ”   in which

  β  (over)estimates  ||B·W–1||  or  ||M–1·B||  or  ||D–1·E|| ,    and
  Γ  (under)estimates  a relative gap.

Applications of these bounds need not compute the function  Ψ  because predicate 

  “ Ψ(β/Γ)·β < τ ”    is equivalent to the simpler    “ β2 < (τ + Γ)·τ ”.

Adequate underestimates  Γ  of spectral gaps are usually costly to compute unless the 
matrices in question are dominated enough by their diagonals,  as happens during some 
iterative schemes to compute eigenvalues and singular values.

Formulas that help estimate gaps  Γ  are tabulated in  §8  of  …/Deflate.pdf .

CAUTION:   Deflations permitted by adequately tiny quadratic relative error-bounds
may preserve the accuracy of  `values  but spoil the accuracy of  `vectors.
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Application to  Tests  of  Computed Eigenvalues’  Relative Accuracies

Given:  n-by-n  A = A'  ,  diagonal  Λ  of  m  computed eigenvalues,  and  n-by-m  Q 
 whose columns are computed  approximately  orthonormal eigenvectors.

Desired:  Use  Rayleigh-Ritz  to tidy up  Λ  and  Q ,  and assess  Λ ’s  relative accuracy.

Recommended:  Accumulate just  Residuals’  scalar products extra-precisely.

Process:
•  To tidy up  Q ,  compute first  Residual  V := I – Q'·Q ,  then updated  Q := Q + Q·V .

  (Now new  Q ’s  residual  I – Q'·Q ≈ V2  should be predictably negligible.)

•  To tidy up  Λ ,  compute temporary  Residual  R := A·Q – Q·Λ ,  then  ∆Λ := Q'·R .

∆Λ = ∆Λ'  ± roundoff;  clean it up by setting  ∆Λ := (∆Λ + ∆Λ') .

Compute  M := Λ + ∆Λ = M'   and  R := R – Q·∆Λ ≈ A·Q – Q·M ± roundoff .
(Now  M ≈ Q'·A·Q  should be nearly diagonal,  and  Q'·R = O ± roundoff.)

•  Relative errors in  EE(M)  can’t exceed  ||R·M–1|| ,  which plays rôle of  ||M–1·B||  on p. 8.
(Jacobi’s  iteration can compute  EE(M)  quickly.)

•  Total work is  O(n·m2) + (Residual  R ’s  O(m·n2)  at worst,  much less if  A  is sparse).

1
2
---

3
4
--

1
2
---
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Application to  Computation of a Bidiagonal’s  Singular Values  by  dqds
Given:  n-by-n  upper bidiagonal  S  represented by arrays  {√qj}  and  {√ej} .

Desired:  Compute the squared singular values of  S  as eigenvalues of a tridiagonal

   S·S'  = tridiag( ) 

 without ever computing the elements of  S  or  S·S'   explicitly.  Why not?  p. 5.

Process:  Each  dqds  iteration chooses a  Shift  ß ≥ 0  and overwrites the current  S  by the
upper bidiagonal Cholesky  factor  S  of  S·S'  – ß·I = S'·S ,  unless  ß  is too big.
If  √ß > (the least singular value of  S)  choose a smaller  ß  for another attempt.
After a successful attempt,  update  ∑ß  to  ∑ß := ß + ∑ß .  Ultimately  ß → 0 .

Ultimately,  iteration drives every  ej → 0  and  ∑ß + qn → (original least singular value)2 .

Avoid lethargic convergence by exploiting every  Permissible Deflation  to set an  ej → 0 .

Tests for a tiny  ej  add costs to an inner loop that already has in it one division etc.:

•  R-C. Li’s Relative Error test a multiply and compare
•  An absolute error test a compare
•  Ming Gu’s  absolute error test   ⇒  qn → 0 ⇒  en–1 → 0 a compare  (only if  ß = 0) 

To choose  ß  well needs a test for  min{…}  too.  Which tests are indispensable? 

  q2 e1⋅   q3 e2⋅   …   qn 1– en 2–⋅   qn en 1–⋅   

q1 e1+   q2 e2+   q3 e3+   …   qn 1– en 1–+      qn

  q2 e1⋅   q3 e2⋅   …   qn 1– en 2–⋅   qn en 1–⋅   
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Conclusions

•  Considering how expensive are worthwhile estimates of spectral gaps,  and how rarely 
deflation is permitted by quadratic error-bounds,  what good are they?  Perhaps they 
serve here mostly to explain why the non-quadratic bounds of  p. 4  and  p. 8  are so 
often so pessimistic though best-possible without estimates of gaps.

The last word about quadratic error-bounds probably remains to be written.

•  Like criteria for terminating an iteration,  criteria for deflation have to be chosen by 
the error-analyst to avoid excessive computation without incurring excessive inaccuracy.

Deflation may be permitted by more than one criterion at each of very many sites;  the 
opportunities are too numerous for all criteria to be tested at all sites.  Instead an 
economical subset must be found.

The quest continues.
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