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Deflations Preserving Relative Accuracy

W. Kahan, Prof. Emeritus
Mathematics Dept., and E.E. & Computer Science Dept. #1776
University of California, Berkeley CA 94720-1776
[ wkahanat eecs dOt berkeley dOt edu ]

Abstract

Deflation turns a matrix eigenproblem into two of smaller dimensions by annihilating a
block of off-diagonal elements. When does deflation perturb at worst the last significant
digit or two of each of an Hermitian matrix’s eigenvalues no matter how widely their
magnitudes spread? We seek practicable answers to this question, particularly for
tridiagonals, analogous to answers for bidiagonals’ singular values found by Ren-Cang
Li in 1994. How deflation affects singular vectors and eigenvectors is assessed too, as
is the exploitation of spectral gaps when known.,

Prepared for IWASEP IX in Napa, Calif., 4 -7 June 2012, and for
the 12 Sept. 2012 Scientific Computation Seminar at U.C. Berkeley.

This work has been influenced by Jim Demmel, Ming Gu, Ren-Cang Li
and Beresford Parlett; but any errors and oversights are mine alone.

This is posted on my web page at www.eecs.berkeley.edu/~wkahan/4Junel2.pdf .
Proofs and details are posted at www.eecs.berkeley.edu/~wkahan/ma221/Deflate.pdf .
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Introduction

Hermitian H :=H ::E\;‘ ﬂ and Y := Y::B. v(\)/} have ordere®pectrarespectively

EH)={6,:26,>...26,} and E(Y)={ni=nr2=...2n,}= EM) OEW)
wherein EM) ={ 2= ...24,} and EW)={w 2w = ... 204} -
Here unionll is the union ofMultisets because some eigenvalugs may be repeated.

Y comes from H viaDeflation. Every Absolute Errgd; —n;| < |B]| .
What about Relative Errors Idgyf;) ?

Triangular S ::BE} and Z :BO} have nonnegative singular value sets respectively

S)={012022...20,} and H2)={(12(=...2(,}= SD) U IF)
wherein (D) ={0;20,>...28,,} and SF)={¢;2@®=>...2¢_n} .

Z comes from S videflation Every Absolute Errw; — ;| < |[E]|.
What about Relative Errors Img(Zj) ?

We seek practicable realistic bounds for relative errors regardlesalaks’ spreads.
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Tools:

A Tiny Tolerance 0<T<<1. Disregafd
We need not distinguish among= 1 -e*' = —log(1 —) = T/(1%71) = ...,
nor among inequalities liket > |log(®/n)|, >0 -n)/6|, T>|O6-N)/N]|, ...

DEFINE: A Permissible Deflation induces values’ relative errors below threshatd

A. Ostrowski’'s now Classical Inequalities
f Y=C"H.C! then 1|CYF<8/n<|ICF forevery | (except/@:= 1).

f Z=s.Ctorif Zz=ChS, then {|CY|<g/gi<|[C|| forevery j (but/®:=1).

A typical choice C':= L‘) “—LIU} whereinU may be rectangular, has

G =1 & 101 =juif2 + V(L + JUIP) = exaresinn(pi}2).

Why? Goto svdf) .
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Streamlined Derivation of Ren-Cang Li's Bounds [1994]

s::{g'j YS)={0,20,>..20.}, Z:= {gﬂ YD) ={ 202 ... 200}

Choose C :{ | D‘ltE] toget Z=S%  ||GY| = exfarcsinh(||D-E|}2)).

o} !

[1 everyrel. error |Iog(0j/Zj)| < |IDLE|J2. Similarly every||og(0j/Zj)| < |E-FY)/2.
Conclusion If either ||[DME|| <2 or |E-F| <2 then every|log(o/gj)| <T.

It persists with 0/0 :=1 even if sonie=0 so long as either MBE|| or fE-FY| exists.

virtue:  ||[DLE||< |ID7Y|-EII< [1Z7Y-JEl|  derived from absolute error-bounds. And

sometimes ||D-E|| << [|DY]-|E|| and costs a lot less to compute, as happens
in Parlett’s fastdqds process to compute a bidiagonal’s singular values.
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Example:

Let n-by-n S := bidia{% > 15 S . > 19 J {D ‘j in which the pa@ IS
(o)

missing from only the first and last columns, anedf>>1>e> 0.

When is e is so small that replacing it by deflates S
with no relative error worse than in a singular value?

The least singular value,, of S is very near the least singular valugiDrl|| of D:

o, = (- DNV(P"-ns?+n-1) fors>3 and n>3.
The largest singular values of S are not far from those of D
o;=s+1 fors>3 and n>3.

This putsf amidst (D), so nospectral gap(cf. p. 14) is available compared with
which to deeme® negligible.

Yet R-C. Li's criterion implies thae is negligible if e < 2t f
although thise can exceeds,, hugely.

No other relative-accuracy-preserving criterion | know
would permit this example to be so deflated.
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What does a Permissible Deflation do t&ome of the Singular Vectors?
S :LE)’E} %S)={0,20,>..20,}, Z:= {80} "D ={l 20> . 2 00)
Let F have singular valu@ and normalized singular row-vectous and v' satisfying
lul|=|Vv||=1, Fu=¢@v and V'F=@u'.

After deflating S to Z we acceptp in §Z) as a computed approximation to some

o in §S), and accept B corresponding singular row-vectors',[u'] and p', v']
as computed approximations to singular vectors ofT8ese vector’s residuals are

ri= SH —cpH = {E E“} and d',V']-S-¢fo,u]l=o0".

u Vv (0]

I = [Eull =@ |E-F vl @|E-FY < 2@ when F-Fll<z.
(oneof R-C. Li's deflation criteria)

This Relatively (relative to @) tiny residualr figures in the angles between the desired
singular vectors of S and their approximation§ J'] and p',Vv'] from Z:

Roughly,  anglex |f|/(absolutgap) = ( |t|/o)/(relativegap < 2t/(relativegap)
wherein  absoluigap := min{{;—¢| over {;# ¢}, relativegap := (absolutgap)e.

It all generalizes from simple to clustered with invariant subspacé&seassuringo far?
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What does a Permissible Deflation do téhe Restof the Singular Vectors?

S::E-'j %S)={0,20,>..20,}, Z:= Lf)”j D) = {0202 ... 20}

Let D have singular valu®@ and normalized singular row-vectoxs andy' satisfying
IX[|=]yl|=1, Dx=9%0y and y'-D=0X".

After deflating S to Z we acceptd in &Z) as a computed approximation to some

o in §S), and accept & corresponding singular row-vectorg',[0'] and |, 0]

as computed approximations to singular vectors ofT8ese vector’s residuals are

s-ﬂ —a-ﬂ =0 andr = [y, 0]-S 5[, 0] = [0', ¥ -E]
> : Ko =y -E|fd=|k-DLE|]|. Must this be small?

What if only one of R-C. Li's deflation criteria, sayE|FY|| < &, is satisfied, not the
other? Suppose [[BE|| and i||Jd are both huge. It happens with p.5's example S .

Despite theRelatively (relative tod) big residualr' , deflation rotates "vectors through
SMALL angles < #(relativegap ROUGHLY

Why?

Singular vectors of S are those of S swapped. Residual fof 8 Relatively tiny.
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What does a Permissible Deflation do tdsome Eigenvalues?

B' W o'W
EH)={6,20,2...26,} and E(Y)={ni=2nr2...2n,}= EM) OEW)
wherein EM) ={ 2> ...24,} and EW)={w 2w > ... 204 _m} -

Recall H = I—'|::{'VI B} and Y ::Y::{'\/I O} have orderedspectrarespectively

Claim: Some subset of m eigenvalugsin [E(H) are approximated b=(M) within
factors no farther from 1 than are @@ arcsinh(||M'B|/2)). Consequently ...

TheRelativeerrors in[E(M) are all smaller than threshold whenever ||M'B|| <t .
Useful for tridiagonal M.
Proof: C ::[ oM EB] makes é‘-H-Cl{M 9} with W:=W -B"-M1B .
o) | o'W

Claim says nothing abotz(W) and the remaining n—@'s.  We could have W =0

Analogous Claim:
TheRelativeerrors in E(W) are all smaller than threshoid whenever B-W3| <t .

What if both ||[M™1B|| <t and |B-W| <t ? MustE(Y) approximateall of E(H) ?
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What does a Permissible Deflation do tdAll Eigenvalues?

Recall H:=H ::E\B/" \;E\j and Y=Y ::B O} have orderedspectrarespectively

EH)={6,20,2...26,} and E(Y)={ni=2nr2...2n,}= EM) OEW)
wherein EM) ={ 2> ...24,} and EW)={w 2w > ... 204 _m} -

Claim: If both |[M1B|| <t and |B-W| <1, then E(Y) approximatesall of E(H):
every |log(8,/n;) | < 1+0O(t?) . ¢f. R-C. Li's on p.4

Proof:
C ::[ K0 ] will make C¥-H-C1=Y exactly and |[E|f < 1+1+71%+O%

-1
W B
when (FK)'-M-(I-K) = M—-B-W™B', which equation has an
explicit rapidly-convergent power-series solutién and
IK|| <t?/2+ O . V. pp. 5-6 of .../Deflate.pdf

2-by-2 examples{lj am%1 TJ: e e+ Claim is best-possible in the absence of more
T T —

data aboute(M) and E(W), but vastly improvable if a known gap separates them.
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What does a Permissible Deflation do to Eigenvectors?

Recall H := I—'I::{'VI B} and Y ::Y::{'VI O} have orderedpectrarespectively
B'W o'W

EH)={6,206,>2...26,} and E(Y)={ni=2nr=...2n,}= EM) OEW)
wherein EM) ={ 2> ...24,} and EW)={w 2w > ... 204 _m} -
Choose anyn O E(Y) ; eithern O E(M) or n OE(W) or both. Sayn=p L EM);
let u be the normalized eigenvector of M belongingito M-u =p-u and ||| = 1
Then Y’'s row-eigenvectory' = [u', 0] approximates Fs belonging to6=n; and
residual r =y"-H-ny' =[o',u"B] has {|||=[-B|l = |p-u'-MLB||< |u|-||MLB].
This is why [ || <t-h| whenn =p OE(M) and |[MLB|| <T.
Similarly |f'|| <t-h| whenn =wOEW) and B-W| <t.
Thus, eigenvector residuals aRelatively (relative to eigenvalug ) tiny like t-n| .

Permissible Deflation rotates eigenvectors of H to those of Y through angles ...

Roughly, anglex |J'|/(absolutegap) = (|Ir' [VIn|)/(relativegap < 2/(relativegap)
wherein  absoluigap := min{n;—n| overn;#n}, relativegap := (absolutgap)|n|.

It all generalizes from simplg to clustered with invariant subspacé&&assuring
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Spectral Gaps figure in Eigenvalues’ Quadratic Relative Error-Bounds

Recall H:=H ::E\;’ \;ﬂ and Y =Y ::B. O} have orderedpectrarespectively
E(H)={6;=6,>...26,} and E(Y)={n;=np2...2n,}= EM) D EW)
wherein EM) ={ 2> ...24,} and EW)={w 2w > ... 204 _m} -

Error-bounds betweeiE(H) and E(Y) have been roughly proportional ® so far.
When B is small enough, smallgQuadratic bounds roughly proportional tB'-B
may be available provided know@aps big enough separatg(M) from E(W) .

The Absolute Spectral Gap(n) separates) O E(Y) from E(M) or E(W) thus:
If nOE(M) theny(n) :=min{ |w—n| overallwOEW)}, else
if nOEW) theny(n) :=min{|u—n| overallpOEM)} .

A Relative Spectral Gap (n) separates) U E(Y) from E(M) or E(W) thus:
if n0EM) n E(W) thenT(n):=y(n) =0; elsel"(n) :=y(n)/|n|.

Define  W(€) := tar(%arctaanE)) = tanf(%arcsinf(ZE)) = 28/(1+ V(1 +48?) .

Among its properties only these will be needed: v
O<dPE)dE<1; WE/E "1 asi\0;
WE) 1 asé /o, 6 §
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Recall H:=H ::E\a/'l \;B\J and Y=Y ::B O} have orderedspectrarespectively

E(H)={0;26,2...20,} and E(Y)={ny2n,2...2n,}= EM) L EW)
wherein EM) ={ 122 ...2 4} and EW)={w 2w = ... 204 _m} -

Optimal quadratic absolute error-bounds for eigenvalues from C-K. Li & R-C. Li [2005]:
18, —njl = W(BIV v(ny)-1BII AB
< min{|BIl, IBIF/¥(n;)} when [B|| >0 and gag(n;) >0 .

Quadratic relative error-bounds involving relative gajfg;) come directly from AB :
8i/n; — 2 < (BT (ny)- 1B/}l RAB

Those bounds tend to pessimism because they inch)(/rg||||and are very general,

allowing E(M) and E(W) to mingle like red and black cards in a shuffled deck. We
will impose agap between the smallest intervgg(W)] containinge(W), and[E(M)]:

[EM)] gapy  [EW)]
Mm H1 Wn-_m Wy

Relative gaps™(n) := y(n)/|n|z /|| .
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Recall H:=H ::E\;’ \ij and Y=Y :{'(\)/'I O} have orderedspectrarespectively

EH)={6,:26,>...26,} and E(Y)={ni=n,=...2n,}= EM) OEW)
wherein EM) ={ 2w =...24,} and EW)={w 2w = ... 204} -

In May 2012 Ren-Cang Li adaptedlB’s lengthy proof to get the following usually
better bounds for the n—m largest&t{H) when [E(W)] >[E(M)] and [E(W)] >0 :

[E(M)] gapy  [E(W)]
— | +
+_ldl_m____ O+___lll__[ Wn-m il
Relative gaps () = 1 —py/wy > 0. Then
0<6/wy — 1< W(IB-W YT (w))|B-W | for 1<j<n-m. RBW
For the mleastin E(H) when [E(W)] > [E(M)] >0 and [|[MLB]| < Jlx/((uﬂ 24 f1y.
m m
0 [E(M)] gapy [E(W)]
—_ PY +
Mm M1 Wn—m 0,
Relative gaps (1) = Wy _nfHj —1>0. Then
0S 1-6p_mefly < W(IMEBYT (W))-IM LB for 1<j<m. RM B

Prof. W. Kahan Page 13/22



File: 4Junel2 Deflations Preserving Relative Accuracy Version dated September 9, 2012 5:06 am

Recall H:=H ::E\;’ \ij and Y=Y :{'(\)/'I O} have orderedspectrarespectively

EH)={6,:26,>...26,} and E(Y)={ni=n,=...2n,}= EM) OEW)
wherein EM) ={ 2w =...24,} and EW)={w 2w = ... 204} -
0 [E(M)] gapy [E(W)]
) ) Mm M1 Wn-m Ol
Recall also new bound®@M B for the mleastin E(H) when[E(W)] >[E(M)] >0

and ||M 1Bl < J[\/((::—l)2+ 5—1); then relative gap§ () = w,_,/l; —1>0 and
m m

+

0S 1-6p_mefly < W(IM BT (W))-IM LB for 1<j<m. RM B

Is RMB’s extra requirement “|[M-B|| < IV((1{/Um)® + My/Hy) ” unavoidable?
See example Hon p. 12 of .../Deflate.pdf .
Fortunately the extra requirement is very often satisfied by a permissible deflation’s tiny

relative error tolerance > ||[M™LB|F, which amounts to a constraint lifg,/p; > V2T .
However, a deflation permitted by quadratic relative error-bolRIYs2 and RBW

may turn eigenvectors through angles bigger tifan thus perhaps spoiling them
intolerably.
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Spectral Gaps for Singular Values’ Quadratic Relative Error-Bounds
Recall S::B'j HS)={0,20,>...20,}, Z _{DO} D) = {0202 ... 20}

H2Z) =9D) O YF) wheregD) ={0:20,=...20,} and SF) ={¢;=2@>...2@,_}
are separated by gaps defined in a way now familiar (andweoaded:

The Absolute Spectral Gag(¢) separate€ [0 &Z) from (D) or (F) thus:

If ¢O0SD) theny() :=min{ [p—-| overallod S(F)}, else
if (0 F) theny() :=min{|d-{| overalld0 SD)}.

A Relative Spectral Gap ({) separate€ [ §Z) from §D) or §F) thus:
if {0 S(D) n (F) thenT () :=y({) =0; elsel(Q) :=y(Q)/T.

OD OO
Li & Li [2005] applied AB to g S CE) CF’ whose eigenvalues ar&(S) 0 &(S) to get
OO F O
loj =il = WAENYE))-[Ell AE

< min{|Ell, [EIF/¥()} when | >0 andy()>0.
Those absolute error-boundasg imply promptly these quadratic relative error-bounds:

0/ - 4 < WAE/LIV T (@) IEGI. RAE

Prof. W. Kahan Page 15/22



File: 4Junel2 Deflations Preserving Relative Accuracy Version dated September 9, 2012 5:06 am

Recall S::B'j HS)={0,20,>...20,}, Z —{DO} D) = {0202 ... 20}

H2Z) =9D) O YF) wheregD) ={0:20,=...20,} and SF) ={¢;=2@>...2@,_}
are separated by relative gapg;) ; if they allow (D) and §F) to mingle, then
|0/ — 1 < WAE/GIN T () [E]. RAE
To replace [ﬂ/Zj|| by something perhaps smaller and cheaper to compute we relinquish

mingling. Assume narrowest containing intervals to be orddig(@)] > [S(F)] = 0,
and separated by sufficiently wide relative gaps thus:

0 [S(F)] gapy [S(D)] .
®h—m ¢ Om 01
If gaps G; := 1— (/&) - [DE|F >0 for 1<j<m then
0< (0/5)* - 1< W(IDEVG))-||IDE]|. RDE

If gaps G := 1-(@/8,)° - ID-E|F > 0 for 1<j<n-m, then (with 0/0:=1)
0< (@/0m+)°— 1< W(IDHEVG)-|IDHE]|. REF

The appearance of [[bE|| in bothRDE and RE[F is no accident. Compare p. 4.
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All four quadratic relative error boundRM B, RBW , RDE and REF look like

“ Relative Error<s W(B/M)-B” in which

B (over)estimatesB|W™Y| or ||[M1B]| or ||DYE||, and
[ (under)estimates a relative gap.

Applications of these bounds need not compute the fun¢Hobecause predicate
“WYEPRIN)-B<1” isequivalentto the simpler RZ< (@ +I)T1".

Adequate underestimatds of spectral gaps are usually costly to compute unless the
matrices in question are dominated enough by their diagonals, as happens during some
iterative schemes to compute eigenvalues and singular values.

Formulas that help estimate gapsare tabulated in 88 of .../Deflate.pdf.

CAUTION: Deflations permitted by adequately tiny quadratic relative error-bounds
may preserve the accuracy ofalues but spoil the accuracy ofectors.
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Application to Tests of Computed Eigenvalues’ Relative Accuracies

Given: n-by-n A=A, diagonalA of m computed eigenvalues, and n-by-m Q
whose columns are computegbproximately orthonormal eigenvectors.

Desired: Use Rayleigh-Ritz to tidy up and Q and assesé’s relative accuracy.

Recommended: Accumulate justResiduals scalar products extra-precisely.

Process:
» Totidy up Q compute firstResidualV :=1-Q'-Q, then updated Q := @%Q-V.
(Now new Qs residual FQ'-Q= ﬁvz should be predictably negligible.)
o Totidy up A, compute temporarfResidualR:=A-Q—-Q-A, thenAA .= Q- R.
AN = AN' +roundoff; clean it up by settingA := %(M+M') .

Compute M :sA+AA=M' and R := R—-QAA =A-Q-Q-M * roundoff.
(Now M= Q'-A-Q should be nearly diagonal, and:R3x= O+ roundoft.)

« Relative errors inE(M) can't exceed {-M~Y|, which plays role of ||M-B|| on p. 8.

(Jacobi’s iteration can compul@M) quickly.)

« Total work is O(n-nt) + (ResidualR’s O(m-rf) at worst, much less if A is spa}se
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Application to Computation of a Bidiagonal's Singular Values by dqds

Given: n-by-n upper bidiagonal S represented by arrafg} {and {Ve} .
Desired: Compute the squared singular values of S as eigenvalues of a tridiagonal

o J% ey 43 tey o J%—1Bn_o JIEen_1
S-8S= tl’ldlag(q1+e1 G+ ey Gytey .. Oq_1%€_1 % )
A/qztel q3Eé2 A/qn—lten—z A/qn[en—l

without ever computing the elements of S or' &2%licitly. Why not? p 5.

Process: Each dqds iteration choosessaift 3> 0 and overwrites the current S by the
upper bidiagonal Cholesky factor & S-S—R-1=3-S, unless R is too big.
If V> (the least singular value of S) choose a smaller R for another attempt.
After a successful attempt, updai® to SR:=RB +>R . Ultimately R~ O.

Ultimately, iteration drives every; e O and}[3+q, - (original least singular value)
Avoid lethargic convergendey exploiting every Permissible Deflation to set an- @.
Tests for a tiny jeadd costs to an inner loop that already has in it one diveston

 R-C. Li’'s Relative Error test a multiply and compare
» An absolute error test a compare
« Ming Gu’s absolute error test] g, -~ 01 e,_;1 - O acompargonlyif R =0)

To choose 3 well needs a test for min{...} t&hich tests are indispensable?
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Conclusions

* Considering how expensive are worthwhile estimates of spectral gaps, and how rarely

deflation is permitted by quadratic error-bounds, what good are they? Perhaps they
serve here mostly to explain why the non-quadratic bounds of p. 4 and p. 8 are so
often so pessimistic though best-possible without estimates of gaps.

The last word about quadratic error-bounds probably remains to be written.

* Like criteria for terminating an iteration, criteria for deflation have to be chosen by
the error-analyst to avoid excessive computation without incurring excessive inaccuracy.

Deflation may be permitted by more than one criterion at each of very many sites; the
opportunities are too numerous for all criteria to be tested at all sites. Instead an
economical subset must be found.

The quest continues.
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