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Hyperbolic Interpolation  and  Iteration towards a Zero

Prof. W. Kahan,  Math. Dept.,  and  E.E. & Computer Sci. Dept.,  Univ. of Calif. @ Berkeley

Abstract:
Given a real function   ƒ(x)  about which we know how to compute its value,  we seek 
one of its  Zeros  z ,  a root of the equation  ƒ(z) = 0 ,  starting from some first guess(es).  
This  z  should be the limit of a sequence of presumably improving guesses

xn+1 := Hƒ(xn, xn–1, xn–2)

computed for  n = 0, 1, 2, 3, …  in turn by an  Hyperbolic Iterating Function  Hƒ  to be 
defined.  It will be compared with a few others,  and its application to an eigenproblem 
will be analyzed in detail.  The bigger questions are …

“ When is a computed result at least about as accurate  
   as the data and the arithmetic’s precision deserve ?  

And how much is that much accuracy worth ? ”  

Prepared for  U.C.B.’s  Scientific and Engineering Numerical Computation Seminar,  Wed. 9 Sept. 2009,
and posted at   <www.cs.berkeley.edu/~wkahan/9Sep09.pdf> .
Mathematical details are posted at  <…/Math128/Hyp.pdf> . 
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Motivation:
Large-scale  Floating-Point  computations employed in  Science and Engineering 

have become  Undebuggable
when afflicted by occasional and often overlooked anomalies caused by roundoff.

“Overlooked” ?   Then how does anyone know they’re there ?

Evidence:
Some such bugs in heavily used software get fixed only after many years.

e.g.  log,  atanh,  sinh,  asinh,  …  in early versions of  MATLAB 
Some such bugs in heavily used software persist over decades.

e.g.  in  Jacobi-like  programs for general symmetric eigenproblems
used by some structural engineers since the  1960s.

e.g.  Failure Modes  in current  MATLABs’    lu,   A\b,   and   c'/A ;  
     see  <www.cs.berkeley.edu/~wkahan/Math128/FailMode.pdf>

Thorough error-analysis  of  roundoff  is too expensive,  and consequently
“More honour’d in the breach than the observance”.       Hamlet 1.iv.14
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Large-scale  Floating-Point  computations employed in  Science and Engineering 
have become  Undebuggable

when afflicted by occasional and often overlooked anomalies caused by roundoff.

What could change  “Undebuggable”  to merely  “difficult to debug”  ?
•  Appropriate tools built into hardware,  compilers  and  debuggers;

see  §14  of  <www.cs.berkeley.edu/~wkahan/Mindless.pdf> .

What could change  “occasional and often overlooked anomalies”  to 
“practically nonexistent anomalies”  ?

•  Floating-point arithmetic of extravagantly higher precision than widely deemed 
adequate,  and fast enough to be used  by default ,  at least initially.

IEEE Standard 754-2004  includes  16-byte wide  Quadruple-Precision,  only as an option.
IBM hardware and  Sun, HP  and  GNU  compilers include  Quadruple,  but too slow for default.

Precisions beyond the  8-byte Double  deemed adequate in  1965  get practically 
no support from  Java,  MATLAB  and other programming languages popular now.
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How much extra precision is extravagant enough? 
Actually,  none! 

D.M. Priest’s theorems (1990 thesis) say that results from an algorithm using extra-precise 
arithmetic can always be obtained from an  unnatural  algorithm that uses no extra-precise 
arithmetic.  Instead it may appear to be computing zero in numerous tricky ways.

The tricks may be estimating rounding errors in order to compensate for them,
thus,  in effect,  simulating extra-precise arithmetic in an ambiance that lacks it.

Priest’s  theorems do not say how much slower unnatural algorithms must run,  nor how 
long a clever programmer must spend to find a tricky one of them not intolerably slow.

Tricky program(mer)s are the bane of the computing industry.

Let’s consider only  natural  algorithms. 
One can be derived by a competent analyst to solve a given problem, 
and that algorithm would work were precision infinite.  But it isn’t.

How much more will that algorithm’s defense against roundoff cost if …
•  extra-precise arithmetic is available in hardware with language support ?
•  extra-precise arithmetic is practically unavailable ?    … Compare …
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To compare costs,  we have to know roughly …

How much extra precision is almost surely adequate? 

IEEE 754 (2004)’s  16-byte-wide Quadruple Precision  is almost surely adequate.
Why ?

Almost all large bodies of scientific and engineering data and intermediate results 
can be stored in arrays of  8-byte-wide  Doubles  if not  4-byte-wide  Floats.

A rough old rule of thumb with some mathematical justification is that arithmetic 
precision somewhat exceeding twice both the precision of data and the accuracy 
sought in results suffices to practically preclude embarrassment by roundoff.

A few of the examples that support this rule of thumb:
•  Nearly double roots
•  Least squares fits to nearly linearly dependent models
•  Trajectories determined mostly by least-effort principles
•  Rank-1  updated symmetric eigenproblem

The last example is the topic for today.
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Rank-1  updated symmetric eigenproblem

Given is a computed eigensystem of a real symmetric matrix  V = V' ,  and a 
column  e  and scalar  α ≠ 0 .  Desired is the eigensystem of  V + α·e·e' ,  and 
sooner than if computed from scratch.

This task is soon reduced to computing the eigensystem of   Λ + α·c·c'  wherein  
Λ = Diag(λ1, λ2, …, λK)  has distinct sorted eigenvalues  λ1 < λ2 < … < λK  of  
V ,  and row  c' = [c1, c2, …, cK]  obtained from  e'  has every  cj ≠ 0 .  Desired 
eigenvalues are the  K  roots  ξj  of the  Spectral  (or  Secular)  Equation  …

  ƒ(ξ) :=  ∑k ck
2/(ξ – λk) – 1/α  = 0 .

After an eigenvalue  ξ  has been computed,  its eigenvector has direction

   x := (ξ·I – Λ)–1·c .

At a conference in  1990  I showed why this simple formula for  x  would give 
wretched results occasionally unless  ξ  were computed in arithmetic somewhat 
more than twice as precise as the data.  My intent was to stimulate demand for 
extra-precise arithmetic in hardware and supported by programming languages.
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Spectral Equation :    ƒ(ξ) :=  ∑k ck
2/(ξ – λk) – 1/α  = 0 ,   to be solved for  ξ .

Eigenvector:   x := (ξ·I – Λ)–1·c .    Can be very unsatisfactory for innocuous data 
unless either  ξ  is computed extra-precisely or …

In  1994,  Ming Gu  and his thesis advisor  Stan Eisenstat  published a tricky† 
algorithm that supplanted that simple formula for  x  by another,  not much more 
costly,  yet seemingly accurate enough without needing extra-precise arithmetic.

“Seemingly accurate enough” ?

Gu  and  Eisenstat  found  Normwise Backward Error-Bounds  for their computed 
eigensystem,  showing that the computed eigenvectors were all orthonormal as 
nearly as could reasonably be desired,  and each eigenvector/value pair were no 
worse than if  Λ  and  c  had been perturbed by amounts below  K·ε·||Λ + α·c·c'||  
and  K·ε·||c||  respectively,  where roundoff threshold  ε := (1.000…001 – 1)/2 .

These error-bounds were deemed exemplary at the time they were found.
_____________________________________________________________
†  Tricky:  Some computers commercially significant then but now long gone required the application 
of unoptimized assignments like  λ := (λ + λ) – λ  to lop off the last bit of every  λj  and  ξj  before use.
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Spectral Equation :    ƒ(ξ) :=  ∑k ck
2/(ξ – λk) – 1/α  = 0 ,   to be solved for  ξ .

Eigenvector:     x := (ξ·I – Λ)–1·c ,    obtained from a different tricky formula.

Errors:   No worse than if  Λ  and  c  had been perturbed in norm by less than    
K·ε·||Λ + α·c·c'||  and  K·ε·||c||  respectively.  These bounds seem tiny at first.

What if the numerical data  λk,  α  and  ck ,  and therefore the eigenvalues  ξj ,  
have wildly diverse magnitudes?  Perturbations allowed by those error-bounds 
are big enough to overwhelm tiny data-elements and obliterate tiny eigenvalues.

Do tiny eigenvalues and their eigenvectors deserve to be messed up that way?

How sharply do diverse data slightly uncertain  (perhaps only in end-figures)  
determine the desired results?    Hard to say.    None the less …

  We are greedy;  we want it all,  on the cheap,  and soon.

We desire results at least about as accurate as the data and the
arithmetic’s precision deserve,  and about as soon as possible.
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We desire results at least about as accurate as the data and the
arithmetic’s precision deserve,  and about as soon as possible.

What does this mean?  Is the desire reasonable ?

Eigensystems are most unlikely to be computed for their own sakes.  They are 
intermediate results between partially processed initial data and final results that 
may well bear directly upon human affairs.  Ideally the final results and their 
variations should depend solely upon the initial data and their variations,  not 
upon by-products of the arithmetic used for the computation.

Roundoff’s effects are tolerable only if negligible in the results or at worst small 
compared with the results’ uncertainties inherited from uncertainties in the data.  
Often the most economical way to inhibit intolerable effects is to carry precision 
so extravagant that we need never find out whether the results are as accurate as 
the data deserve.  What if that precision is practically unavailable or too slow?

Suppose the arithmetic’s precision matches the stored data’s.
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To estimate the cost of managing,  without extra-precise arithmetic,  to compute 
results at least about as accurate as deserved,  shouldn’t we first gauge roughly

how much accuracy is deserved?

This question turns out to be too difficult to answer in general.

The various norms numerical analysts invoke in  Backward Error-Analyses,  to 
explain the accuracies their programs achieve,  can be inappropriate to gauge the 
correlated uncertainties results inherit from uncertainties in their data.  The next 
picture will help to explain why.
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Often relatively few parameters of data determine vastly many more elements of 
a matrix.  Uncertainties in the parameters are inherited as correlated uncertainties 
in the elements and inherited again as correlated uncertainties in the eigensystem 
of the matrix,  and so on.

A numerical analyst’s norm used to gauge the data’s uncertainty may exaggerate 
it in some directions by orders of magnitude even if it is as tight as possible.  The 
exaggerated uncertainty is then propagated into the numerical analyst’s gauge of 
the result’s uncertainty,  which his chosen norm may well exaggerate again.

This is why the accuracy a result  “deserves”  can be so difficult to assess.

DATA

===>
RESULTS
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The  Spectral Equation:        ƒ(ξ) :=  ∑k ck
2/(ξ – λk) – 1/α  = 0 . 

We wish to solve it for  K  roots  ξj  each at least about as accurately as the data 
deserve,  but without ever knowing how much accuracy is deserved.

We must choose …
•  An iterative method:  Secant,  Newton’s,  Muller’s,  Halley’s,  or  …
•  Initial guess(es)  to start the iteration 
•  A criterion which stops the iteration when the deserved accuracy is reached

Typically,  an iterative method is derived from a  Model,  a family of functions 
each of which has a zero relatively easy to compute,  and from which family a 
function can be chosen to approximate  ƒ  closely near (a) recent iterate(s).

For instance,  the  Model  for  Secant  and  Newton’s  iterations is the family of  
Linear functions …
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.

Newton’s Iterating Function:  Nf(v) := v – f(v)/f'(v)  =  Sf(v, v) .

Secant Iterating Function:  Sf(u, w) := u – f(u)/f†(u, w)  where

Divided Difference   f†(u, w) := ( f(u) – f(w) )/(u – w) ;   f†(v, v) := f'(v) .

These iterating functions are analyzed exhaustively in  <www.cs.berkeley.edu/~wkahan/Math128/RealRoots.pdf> .

But the  Spectral Equation’s  ƒ  looks very different from the  f  plotted above.

x
Nf(v) =
Sf(u, w)

f(x)

tangent
secant

u v w
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This graph of a  Spectral Equation’s  ƒ(x)  is for data  Λ := Diag([–1, 0, 2, 4]) ,  
α := 1  and  c' := [1, 2, 1, 1] .  An appropriate  Model  is a family of functions of 
which each has at least one  (finite)  pole.  The simplest such  Model’s  functions 
each has one pole and one zero;  its graph is an  Hyperbola  (or straight line).
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Hyperbolic Iterating Function  Hƒ(u, v, w) :
It is the zero of a  Bilinear Rational  function  (a·x – b)/(c·x + d)  whose graph,  
an hyperbola,  cuts the graph of  ƒ(x)  thrice,  namely at  x = u ,  x = v  and  x = w .

 Hƒ(u, v, w) := u – ƒ(u)/( ƒ†(u, v) – ƒ(v)·ƒ††(u, v, w)/ƒ†(v, w) ) . 

The convergence behavior of this iterating function can be inferred from 
       Hƒ(w, x, y) – ξ     ƒ††(w, x, y)·ƒ††(x, y, z) – ƒ†(x, y)·ƒ†††(w, x, y, ξ) 
     -------------------------------------   =  Rƒ(w, x, y)  :=    -------------------------------------------------------------------------------- .
   (w – ξ)·(x – ξ)·(y – ξ)         ƒ†(w, x)·ƒ†(x, y)  –  ƒ(x)·ƒ††(w, x, y) 

This identity is important:  ξ  is a simple zero of  ƒ  because  ƒ(ξ) = 0 > ƒ'(ξ) ,  so 
if  w → ξ ,  x → ξ  and  y → ξ ,  then 
( Hƒ(w,x,y) – ξ )/((w–ξ)·(x–ξ)·(y–ξ)) →  Rƒ(ξ, ξ, ξ) = ( ƒ"(ξ)2/4 – ƒ'(ξ)·ƒ'"(ξ)/6 )/ƒ'(ξ)2

 ,

Consequently,  when the  Hyperbolic  iteration  xn+1 := Hƒ(xn, xn–1, xn–2)  →  ξ ,  
it converges with  Order  Ø ≈ 1.839  or faster,  which means that,  for all  n  big 

enough,  xn  and  ξ  agree in over  ß1 + ß2·Øn  decimal places for some constants  
ß1  and  ß2 > 0 .  This iteration’s convergence is fast,  faster than  Newton’s ! 

But this  Hyperbolic  iteration is too vulnerable to roundoff.
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 Hƒ(u, v, w) := u – ƒ(u)/( ƒ†(u, v) – ƒ(v)·ƒ††(u, v, w)/ƒ†(v, w) ) . 

Hyperbolic  iteration  xn+1 := Hƒ(xn, xn–1, xn–2)  is too vulnerable to roundoff 
because,  as iterates converge,  computed values of  ƒ  dwindle.  Then roundoff 
looms relatively larger in these values and gets amplified in divided differences 
with small divisors,  causing subsequent iterates to dither unpredictably.

Confluent Hyperbolic Iteration  is much less degraded by roundoff.

The most thoroughly  Confluent Hyperbolic Iteration is  Halley’s Iteration

 xn+1 := Hƒ(xn, xn, xn) =  xn – ƒ(xn)/( ƒ'(xn) – ƒ(xn)·ƒ"(xn)/ƒ'(xn) ) .

If it converges to a simple zero it does so at least cubically  (Order  Ø = 3 )  at the 
cost of computing two derivatives along with  ƒ  per iteration,  and needs only a 
few correct sig. digits of  ƒ'  to dither far less widely than  Hyperbolic Iteration.

BUT,  unless started close enough to a sought zero,  Halley’s  iteration can easily 
jump past a nearby pole and go elsewhere unless retracted.  Every retracted 
iteration is a wasted iteration and,  like ants at a picnic,  they come in convoys.

1
2
---
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The  Confluent Hyperbolic Iterating Function
 Hƒ(y, x,x) = Hƒ(x,x, y) := x – ƒ(x)/( ƒ'(x) – ƒ(x)·ƒ††(x,x,y)/ƒ†(x,y) )   

maintains a  Straddle.

A  Straddle  is a pair of arguments  u  and  v  between which lies one zero  ξ  but 

no pole of the  Spectral Equation’s  ƒ .  Because all three of  ƒ'(u) ,  ƒ†(u, v)  and  
ƒ'(v)  have the same negative sign,  both of  Hƒ(u,u, v)  and  Hƒ(u, v,v)  also lie 
between  u  and  v .  Moreover,  because  Rƒ(u,u, v) < 0  and  Rƒ(u, v,v) < 0  (it’s 
not obvious),  Hƒ(u,u, v)  lies between  u  and  ξ ,  and  Hƒ(u, v,v)  between  v  
and  ξ .  Thus each of these iterating functions maintains and shrinks a  Straddle.

Why is a  Straddle  worth maintaining?
Without a  Straddle,  convergence from only one side can enter a regime of tiny 
steps difficult to diagnose:  Are the steps tiny because iterates have come about as 
close to the sought zero as they ever will?  Or are the steps tiny because iterates 
have entered a regime of very slow convergence to a sought zero not yet close?

What causes very slow convergence?   There is more than one cause.  One is …
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Hidden Zeros
A zero is  Hidden  by a pole when the two are so close that they nearly cancel.  
Here is an example:

  f(x) = (ξ – x)·(1 + 1/x) ,    ξ = 0.0005

Confluent Hyperbolic Iteration  converges to an isolated Hidden zero slowly at 
first from one side,  quickly from the other,  provide the zero has been straddled.  
Convergence to a zero  Hidden  in a cluster can start slowly from both sides.
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How is the  First Straddle  found ?

The  Spectral Equation

   ƒ(ξ) :=  ∑k ck
2/(ξ – λk) – 1/α  = 0  

with  K  terms in the sum is approximated by a simplified  Spectral Equation  
with only two terms in the sum obtained by moving distant poles to or away from 
the pole(s) immediately next to the sought zero  ξ . Poles beyond the neighbor on 
one side of  ξ  are moved onto this neighbor;  poles beyond the neighbor on the 
other side of  ξ  are moved away to  ∞ .  The two two-term equations’  roots can 
be proved to straddle  ξ .  And they cost little to compute.

For the mathematical details see   <…/Hyp.pdf>.
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Bi-Confluent Hyperbolic Iteration:
Given that  u  and  v  straddle a zero but no pole of  ƒ ,  one iteration-step replaces  
u  by  H(u,u, v)  and  v  by  H(u, v,v) .  Convergence is ultimately cubic through a 
nested sequence of  Straddles  that shrink onto the zero  ξ .  Convergence to an 
isolated  Hidden  zero appears to be initially quadratic,  which is fast enough.

When should  Bi-Confluent Hyperbolic Iteration  be  Stopped?
I don’t know yet.  The choice of a stopping criterion would be far easier if extra-
precise arithmetic,  albeit slow,  were available for use in the last few iterations.

Stopping when roundoff first causes the iterates’  nesting to fail may be stopping 
too soon;  I have not yet become satisfied that this simple criterion produces 
results at least about as accurate as the data deserve.  How should it be tested?

If a stopping criterion stops iterating several iterations beyond the first failure of 
nesting,  how many iterations will be wasted? 

Other stopping criteria are under consideration …
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Stopping when the computed  ƒ  is probably largely junk

The computed value of   ƒ(ξ) := ∑k ck
2/(ξ – λk) – 1/α  accumulates roundoff not 

exceeding   ∆ƒ(ξ) := æ·∑k ck
2/|ξ – λk|  in which  æ  is some modest multiple of  

ε ,  the roundoff threshold,  that depends upon dimension  K  and programming 
details.  æ := 2K·ε  usually produces a valid upper bound  ∆ƒ  for roundoff;  and 
putting  æ := 2√K·ε  produces an estimate  ∆ƒ  almost never exceeded.  ∆ƒ  can be 
computed quickly from quantities already computed during the iterations.

It seems reasonable to stop iterating as soon as an iterate  ξ  satisfies …
  |computed ƒ(ξ) |  ≤  ∆ƒ(ξ) + ε·|ξ|·|ƒ'(ξ)| .

The second term on the right ensures that the inequality can be satisfied by at 
least one floating-point number  ξ .  Otherwise,  without that term,  the estimate  
∆ƒ  may be so tight that no floating-point number  ξ  satisfies the inequality …

ƒ + ∆ƒ

ƒ – ∆ƒ
• •• • •• •• •

Consecutive floating-point numbers 

*

*
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I would prefer to find an efficient stopping criterion that never computes  ∆ƒ .  

How can the chosen criterion’s effectiveness be tested other than by comparing 
the final   |computed ƒ(ξ) |   with  ∆ƒ(ξ)  ?    Is there a better way?  I hope so.

The trouble with the stopping criterion
  |computed ƒ(ξ) |  ≤  ∆ƒ(ξ) + ε·|ξ|·|ƒ'(ξ)| 

is that it tends to gross pessimism when  ∆ƒ  is an always-valid upper bound for 
the accumulation of roundoff.  Pessimism is due to rounding errors’ resemblance,  
on computers that conform to  IEEE Standard 754 for floating-point arithmetic,  
to independent random variables with mean zero in so far as they tend to cancel 
partially as they accumulate,  the more so as dimension  K  increases.

But roundoff is not random on those computers.

In fact computed values of the  Spectral Equation’s  ƒ(x)  turn out to be monotone 
non-increasing between poles.  Below is a snapshot comparing values of a typical  
Spectral Equation’s  ƒ(x)  computed with  4-byte  floating-point versus  8-byte:
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This staircase graph is typical,  though the sizes of horizontal steps and vertical 
risers are often far more diverse.  Were roundoff random or biased,  the graph of  ƒ  
would appear ragged or shifted,  and its zeros  ξk  would need a trickier program 
and noticeably longer to be computed  “at least about as accurately as the data and 
the arithmetic’s precision deserve”.  Still,  this much accuracy may be achievable 
only at the cost of several concluding iterations of  Binary Chop,  — too slow.
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